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Abstract

Deep networks for computer vision are not reli-
able when they encounter adversarial examples.
In this paper, we introduce a framework that uses
the dense intrinsic constraints in natural images to
robustify inference. By introducing constraints at
inference time, we can shift the burden of robust-
ness from training to testing, thereby allowing the
model to dynamically adjust to each individual
image’s unique and potentially novel character-
istics at inference time. Our theoretical results
show the importance of having dense constraints
at inference time. In contrast to existing single-
constraint methods, we propose to use equivari-
ance, which naturally allows dense constraints
at a fine-grained level in the feature space. Our
empirical experiments show that restoring feature
equivariance at inference time defends against
worst-case adversarial perturbations. The method
obtains improved adversarial robustness on four
datasets (ImageNet, Cityscapes, PASCAL VOC,
and MS-COCO) on image recognition, semantic
segmentation, and instance segmentation tasks.

1. Introduction

Despite the strong performance of deep networks on com-
puter vision benchmarks (He et al., 2016; 2017; Yu et al.,
2017), state-of-the-art systems are not reliable when evalu-
ated in open-world settings (Geirhos et al., 2019; Hendrycks
et al., 2021; Szegedy et al., 2013; Hendrycks & Dietterich,
2019; Croce & Hein, 2020; Carlini & Wagner, 2017). How-
ever, the robustness against a large number of adversarial
cases remains a prerequisite necessary to deploy models in
real-world applications, such as in medical imaging, health-
care, and robotics.
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Figure 1. Equivariance is shared across the input images (left) and
the output labels (right), providing a dense constraint. The pre-
dictions from a model F'(z) should be identical to performing a
spatial transformation on z, a forward pass of F', and undoing that
spatial transformation on the output space (black).

Due to the importance of this problem, there has been a
large number of investigations aiming to improve the train-
ing algorithm to establish reliability. For example, data
augmentation (Yun et al., 2019; Hendrycks et al., 2021)
and adversarial training (Madry et al., 2017; Carmon et al.,
2019) improve robustness by training the model on antici-
pated distribution shifts and worst-case images. However,
placing the burden of robustness on the training algorithm
means that the model can only be robust to the corruptions
that are anticipated ahead of time, which is an unrealistic
assumption in an open world. In addition, retraining the
model on new distributions each time can be expensive.

To address this challenge, we propose to robustify the model
at inference time. Specifically, instead of retraining the
whole model on the new distribution, our inference-time de-
fense shifts the burden to test time with our robust inference
algorithm without updating the model. Prior work (Mao
et al., 2021; Shi et al., 2020; Wang et al., 2021) is limited
to a single constraint at inference time and hence may not
provide the model with enough information to dynamically
adjust to the unique and potentially novel characteristics of
the corruption in the testing image. We therefore ask the
natural question: Can we further improve the robustness
through increasing the number of constraints?

We start with theoretical analysis and prove that applying
more constraints at inference time strictly improves the
model’s robustness. The next question is then: How to ef-
ficiently apply multiple constraints at inference time? One
approach is to directly apply multiple feature invariance
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constraints to the defense. While this defense is effective,
we find the resulting representation can be limited by the
invariance property, therefore harming robust accuracy. For
example, after resizing, the representations of the segmenta-
tion models are not the same, and it is unclear which part
should be invariant.

Our further study with empirical results suggest that a better
approach is to use dense equivariance constraints. Our main
hypothesis is that visual representations must be equivariant
under spatial transformations, which is a dense property that
should hold for all natural images (equivariance consistency
in Figure 1). This property holds when the test data are
from the same distribution that the model has been trained
on. However, once there has been an adversarial corruption,
the equivariance is often broken (Figure 2). Therefore our
key insight is that we can repair the model’s prediction on
corrupted data by restoring the equivariance.

Empirical experiments, theoretical analysis, and visual-
izations highlight that equivariance significantly improves
model robustness over other methods (Mao et al., 2021;
Shi et al., 2020; Wang et al., 2021). On four large datasets
(ImageNet (Deng et al., 2009), Cityscapes (Cordts et al.,
2016), PASCAL-VOC (Everingham et al., 2010), and MS-
COCO (Lin et al., 2014)), our approach improves adversar-
ial robust accuracy by up to 15 points. Our study shows that
equivariance can efficiently improve robustness by increas-
ing the number of constraints (Figure 3). Even under two
adaptive adversarial attacks where the attacker knows our
defense (Athalye et al., 2018; Mao et al., 2021), adding our
method improves robustness. In addition, since equivariance
is an intrinsic property of visual models, we do not need
to train a separate model to predict equivariance (Shi et al.,
2020; Mao et al., 2021). Our code is available at https:
//github.com/cvlab-columbia/Equi4Rob.

2. Related Work

Equivariance. Equivariance benefits a number of visual
tasks (Dieleman et al., 2016; Cohen & Welling, 2016b;
Gupta et al., 2021; Zhang, 2019; Chaman & Dokmanic,
2021; Chaman & Dokmani¢, 2021). Cohen & Welling
(2016a) proposed the first group-convolutional operation
that produces equivariant features to symmetry-group. How-
ever, it can only be equivariant on a discrete subset of trans-
formation (Sosnovik et al., 2019). Steerable equivariance
achieves continuous equivariant transformation (Cohen &
Welling, 2016b; Weiler et al., 2018) on the defined set of
basis, but they cannot be applied to arbitrary convolution fil-
ters due to the requirement of an equivariant basis. Besides
architecture design (Weiler & Cesa, 2019), adding regu-
larization (Barnard & Casasent, 1991) can improve equiv-
ariance in the network. (Kamath et al., 2021) shows that
training equivariance at training time decreases adversarial

robustness. Our method sidesteps this issue by promoting
equivariance for attacked images at test time, improving
equivariance when it is most needed.

Adversarial Attack and Defense.  Adversarial at-
tacks (Szegedy et al., 2013; Madry et al., 2017; Cisse et al.,
2017a; Dong et al., 2018; Carlini & Wagner, 2017; Croce &
Hein, 2020; Arnab et al., 2018) are perturbations optimized
to change the prediction of deep networks. Adversarial train-
ing (Madry et al., 2017; Rice et al., 2020; Carmon et al.,
2019) and its variants (Mao et al., 2019; 2022; Zhang et al.,
2019) are the standard way to defend adversarial examples.
The matching algorithm to produce features invariant to
adversarial perturbations has been shown to produce robust
models (Mahajan et al., 2021; Zhang et al., 2019). However,
training time defense can only be robust to the attack that it
has been trained on. Multitask learning (Mao et al., 2020;
Zamir et al., 2020) and regularization (Cisse et al., 2017b)
can improve adversarial robustness. However, they did not
consider the spatial equivariance in their task. Recently,
inference time defense using contrastive invariance (Mao
etal., 2021) and rotation (Shi et al., 2020) has been shown to
improve adversarial robustness without retraining the model
on unforeseen attacks. However, they only apply a single
constraint, which may not provide enough information.

Test Test Adaptation. Berthelot et al. (2019); Pastore et al.
(2021) perform test-time training on the entire test set for
many iterations, our method only assumes seeing one exam-
ple at a time and performs test-time adaptation on a single
image. Tsai et al. (2023) adapts the model with convolu-
tional prompt, but only works for a large batchsize. Test-
time adaption is also useful in language domain (McDermott
et al.). By leveraging equivariance, we can efficiently incor-
porate dense constraints into our framework, which can be
orders of magnitude more effective than adding constraints
individually (Sun et al., 2020; Lawhon et al., 2022).

3. Method

In this section, we first introduce equivariance for visual
representation, present algorithms to improve adversarial
robustness using equivariance, and then provide theoretical
insight into why the multiple constraints can lead to such
improvement.

3.1. Equivariance in Vision Representation

Let x be an input image. A neural network produces a
representation h = Fy(x) for the input image. Assume
there is a transformation g for the input image. A neural
network is equivariant only when:

Fy(x) =g ' o Fpoyg(x), (1
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Figure 2. Random examples showing equivariance on clean images and non-equivariance on attacked images in Cityscapes, PASCAL
VOC, and COCO. The representation is equivariant when the predicted images (2nd column) and the reversed prediction of transformed
images (3rd, 4th column) are the same. By restoring equivariance, our method corrects the prediction.

where g~1(-) denotes the inverse transformation for g(-),
and o denotes function composition. Equivariant representa-
tions will change symmetrically as the input transformation.
This means applying the transformation to the input image
and undoing the transformation in the representation space,
should result in the same representation as fed in the origi-
nal image. Equivariance provides a meta property that can
be applied to dense feature maps, and generalized to most
existing vision tasks (Gupta et al., 2021; Laptev et al., 2016;
Marcos et al., 2016).

In contrast, invariance is defined as Fy(x) = Fy o g(x),
which requires the model to produce the same representa-
tion after different transformations, such as texture augmen-
tation (Geirhos et al., 2019) and color jittering (Mao et al.,
2021; Chen et al., 2020). Without performing transforma-
tion in the same way as the input, invariance removes all
the information related to the transformation, which can
hurt the final task if the transformation is crucial to the final
task (Lee et al., 2021). On the contrary, equivariant models
maintain the covariance of the transformations (Gupta et al.,
2021; Laptev et al., 2016; Marcos et al., 2016).

Transformation for Equivariance. We use spatial trans-
formation, such as flip, resizing, and rotation, in our ex-
periments. Assume we apply & different transformations
g; where i = 1, ..., k. We denote the cosine similarity as
cos(-). Equivariance across all transformations means the

Algorithm 1 Equivariance Defense

1: Input: Potentially attacked image x, step size 7, num-

ber of iterations 7', deep network F', reverse attack

bound ¢, and equivariance loss function Lqu;.

Output: Prediction

Inference: x’ + x

fort=1,....,T do
x' + x' + n - sign(Normalize(Vyx/ Lequi(x')) +
N(0, 771))

6:  x' ¢ I, )X, which projects the image back into
the bounded region.

end for

8: Predict the final output by §y = F'(x')

~

following term is large:

Logi =Y cos(gr o Fyogi(x). Fy(x) ()

3.2. Equivariance for Adversarial Robustness

Let y be the ground-truth category labels for x. Let the
network that uses the feature h for final task prediction to
be Cy:. For prediction, neural networks learn to predict the
category y = Cyp: o Fy(x) by minimizing the loss L(y,y)
between the predictions and the ground truth. For example,
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for semantic segmentation, L is cross-entropy for each pixel
output. We define the loss for the final task as follows:

‘Ct(xa Y) =L (CH’ © FG(X)a y) ) (3)

Adversarial Attack. To fool the model’s prediction, the
adversarial attack finds additive perturbations  to the image
such that the loss of the task (Equation 15) is maximized.

X, = argmax L;(X,,y), s.t

Xa

l[%a — XHq <e, @

where the perturbation vector § = x, — x has a ¢ norm
bound that is smaller than €, keeping the perturbation invisi-
ble to humans.

Equivariance Recalibration Defense. Given an input im-
age, we can calculate the equivariant loss Lg,,;. As shown
in Figure 2, the representations are non-equivariant when
the input x, is adversarially perturbed, i.e., the term L.y
is low. We will find an intervention to recalibrate the input
image x, such that we can improve the feature equivari-
ance of the image. To do this, we optimize a vector r by
maximizing the equivariance objective:

r = argmax Legui(Xq +1), st |[rflg < e, ()
r

where ¢, defines the bound of our reverse attack r. The
additive intervention r will modify the adversarial image x,
such that it restores the equivariance in feature space.

We optimize the above objective via projected gradient de-
scent to repair the input. To avoid the optimization converg-
ing to a local optimal, we first perform SGLD (Welling &
Teh, 2011) to get a good Bayesian posterior distribution of
the solution (Wang et al., 2019). To avoid sampling from the
posterior distribution of SGLD and improve the inference
speed, we then use maximum a posterior (MAP) estima-
tion to find a single solution. Empirically, we add Gaussian
noise to the gradient when optimizing and linearly anneal
the noise level to zero. We show the optimization proce-
dure in Algorithm 1. We use the same optimizer for the
invariance objective and compare.

In contrast to Mao et al. (2021); Shi et al. (2020), we do not
need to pre-train another network for the self-supervision
task offline. In addition, equivariance in the feature space
provides a dense constraint because, by projecting the trans-
formation back to the original space, we can match each
element in the feature space. Image-level self-supervision
tasks, such as contrastive loss and rotation prediction, do
not have this dense supervision advantage.

Adaptive Attack I. We now analyze our methods’ robust-
ness when the attacker knows our defense strategy and takes
our defense into consideration. Following the defense-aware
attack setup in (Mao et al., 2021), the adaptive attacker can
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Figure 3. Adversarial robustness under an increased number of
constraints through equivariance at inference time.

maximize the following equation:
‘Cl (Xa7 Yy, )‘s) = ‘Ct (Xaa Y) + Aecequi (Xa)- (6)

where the first term fools the final task, and the second
term optimizes for equivariance. A larger \. allows the
adversarial budget to focus more on respecting the feature
equivariance, which reduces the defense capability of our
defense. However, with a fixed adversarial budget, increas-
ing \. also reduces the attack efficiency for the final task.
Our defense creates a lose-lose situation for the attacker. If
they consider our defense, they hurt the attack efficiency for
the final task. If they ignore our defense, our defense will
fix the attack.

Adaptive Attack II. The above adaptive attack avoids the
unstable gradient from the iterative optimization with a La-
grangian regularization term. Another way to bypass such
defense is through BPDA (Athalye et al., 2018). Specifi-
cally, the equivariance recalibration process formulated in
Eq. 5 can be treated as a preprocessor h(-) that is employed
at test time, where h(x,) = x, + r. Given a pre-trained
classifier f(-), this method can be formulated as f(h(zx)).
The proposed process h(-) may cause exploding or vanish-
ing gradients. According to (Athalye et al., 2018; Croce
et al., 2022), we can use BPDA to approximate h(-), where
an identity function is used for the backward pass of the
restored images. While this method may make the backward
gradient inaccurate, it avoids differentiation through the in-
ner optimization procedure, which often leads to vanished
or exploded gradients.

3.3. Theoretical Results for Adversarial Robustness
with Multiple Constraints

One major advantage of equivariance is that it allows dense
constraints through the inverse transformation. We show
theoretical insights for why using a dense intrinsic constraint
rather than a single intrinsic constraint. Existing methods
restore the input image to respect a single self-supervision
label y(sl). With a dense intrinsic constraint, the defense



Robust Perception through Equivariance

model can predict with a set of fine-grained self-supervision
signals. y(*), where i = 1,2,..., K. In our case, each
y((lsi) is the predicted self-supervision value under adversar-
ial attack, and each y(%¢) is the predicted self-supervision
value in our feature map after equivariance transformation.
Following (Mao et al., 2021), we propose the following

lemma:

Lemma 3.1. The
versarial attack is

standard
equivalent

classifier under ad-
to predicting with

P(Y|X,, gl g le2) gl ), and our approach is equiv-

alent to predicting with P(Y |X, y(51), y(52) . y(s8)),

By adjusting the input image such that it satisfies a set of
denser constraints, the predicted task Y uses both the in-
formation from the image and the intrinsic equivariance
structure. We now show that by restoring the dense con-
straints in our visual representation, from an information
perspective, the upper bound can be strictly improved than
just restoring the structure from a single self-supervision
task (Mao et al., 2021; Shi et al., 2020).

Theorem 3.2. Assume the classifier operates better than
chance and instances in the dataset are uniformly dis-
tributed over n categories. Let the prediction accu-
racy bounds be P(Y\y((fl), y((z‘”), ...,yés’“)7Xa) € [bo, co),
P(Y|y),X,) € [bi,c1], P(Y|yls) yt2) X,) €
[b, Cal, ..., and P(Y |y, ys2) . y(s6) X)) € [by, cx).
If the conditional mutual information 1(Y;Y9|X,) > 0
and 1(Y;YC)|X,, Y®)) > 0 where i # j, we have
bo < by < ...<bpandcy < c1 < ¢ < ... < ¢, which
means our approach strictly improves the upper bound for
classification accuracy.

In words, the adversarial perturbation X, corrupts the
shared information between the label Y (our target task)
and the equivariance structure Y *¢ (self-supervised task).
Theorem 3.2 shows that by recovering information from
more Y %/, the task performance can be improved.

Directly increasing the number of invariance objectives is
a straightforward baseline to increase the number of con-
straints. However, this can be limited because 1) each in-
variance objective only adds one constraint, which is less
efficient, and 2) invariance cannot be directly applied to
many transformations, such as resizing and rotation, due to
the mismatch in fine-grained representation, where equiv-
ariance can. In contrast to invariance, dense equivariance
allows us add one constraint on each element in the feature
map', which can increase constraints orders of magnitude
faster with a more diverse set of transformations, providing
an efficient way to apply multiple constraints. By subsam-
pling different number of constraints from equivariance,
Figure 3 validates the trend of improving robustness as the
number of constraints increases.

'A 100 by 100 feature map would provide 10000 constraints

The adaptive attack needs to respect the information in Y %%,
which itself limits the ability of the attacker, as the attacker
performs a multitask optimization which is harder (Mao
et al., 2020). The adaptive attacker predicts the task condi-
tioned on the right set of self-supervision label Y ®/, which
fulfills our Theorem 3.2 and improves robustness.

4. Experiments

Our experiments evaluate the adversarial robustness on four
datasets: ImageNet (Deng et al., 2009), Cityscapes (Cordts
et al., 2016), PASCAL-VOC (Everingham et al., 2010), and
MS-COCO (Lin et al., 2014). We use up to 6 different strong
attacks, including Houdini, adaptive attack, and BPDA to
evaluate the robustness. We first show that our equivariance-
based defense improves the robustness of the state-of-the-art
adversarially trained robust models. We then show that even
on the standard models without defense training, adding
test-time equivariance can improve their robustness.

4.1. Dataset and Tasks

ImageNet (Deng et al., 2009) contains 1000 categories. Due
to its large size, we randomly sample 2% of data for eval-
uation. Cityscapes (Cordts et al., 2016) is a urban driving
scene dataset. We study the semantic segmentation task. Fol-
lowing (Mao et al., 2020), we resize the image to 680 x 340
for fast inference. We use pretrained dilated residual net-
work (DRN) for segmentation. PASCAL-VOC (Everingham
et al., 2010) is a dataset for semantic segmentation task.
We resize images to 480 x 480. We use the pre-trained
DeepLabV3+ model. MS-COCO (Lin et al., 2014) is a
large-scale image dataset of common objects that supports
semantic segmentation and instance segmentation task. For
semantic segmentation, we resize the images to 400 x 400.
We use pretrained DeeplabV3 and MaskRCNN for semantic
segmentation and instance segmentation, respectively.

4.2. Attack Methods

IFGSM (seg) (Arnab et al., 2018) was used to evaluate the
robustness of segmentation models with multiple steps of
the fast gradient sign method. PGD (Madry et al., 2017)
is a standard iterative-based adversarial attack, which per-
forms gradient ascent and projects the attack vector inside
the defined p norm ball. MIM (Dong et al., 2018) adds a mo-
mentum term to the gradient ascent of PGD attack, which
is a stronger attack that can get out of local optima. Hou-
dini (Cisse et al., 2017a) is the state-of-the-art adversarial
attack for decreasing the mIoU score of semantic segmen-
tation. It proposes a surrogate objective function that can
be optimized on the mloU score directly. Adaptive Attack
(AA) (Mao et al., 2021) is the standard defense-aware attack
for inference time defense method, where the adaptive at-
tack knows our defense algorithm, and optimizes the attack
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Table 1. Classification accuracy on ImageNet and segmentation mloU on Cityscapes dataset on adversarially trained models with
€ = 4/255. Using equivariance improves robustness more than other methods.

ImageNet; Adversarially Pretrained Model (Wong et al., 2020); Classification Accuracy

Evaluation Method | Vanilla | Random | Rotation | Contrastive ‘ Invariance ‘ Equivariance (Ours)
Clean 51.5 494 49.5 49.2 48.8 49.3
PGD 26.5 28.0 28.2 29.3 28.6 32.2
CW 26.6 28.3 28.6 29.8 322 32.2
AA 26.5 28.0 28.2 29.3 28.6 32.2
BPDA 26.5 28.0 27.9 28.8 28.9 30.4

Cityscape; Adversarially Trained DRN-22-d; Segmentation MIoU
Evaluation Method | Vanilla | Random | Rotation | Contrastive | Invariance Equivariance (Ours)
Clean 53.23 52.96 51.72 53.00 49.04 48.74
IFGSM (seg) 33.06 33.21 33.47 33.59 32.36 34.04
PGD 26.61 27.04 27.68 28.14 27.74 29.65
MIM 26.59 27.06 27.72 28.24 27.76 29.56
Houdini 23.47 24.07 25.56 26.61 26.97 29.80
AA 26.61 27.04 27.68 28.14 27.74 29.63
BPDA 26.61 27.00 26.37 28.50 23.31 29.83

vector to respect equivariance while fooling the final task.
Since the attack already respects and adapts to equivariance,
our defense has less space to improve by further optimizing
for equivariance. BPDA (Athalye et al., 2018; Croce et al.,
2022) is an adaptive attack for input purification. In our
case, we forward the adapted images in the forward pass
and straight-through the gradient from our adapted image to
the input image.

4.3. Baselines

We compare our method with the vanilla feed-forward in-
ference and four existing inference-time defense methods.
Random defense (Kumar et al., 2020) defends adversarial
attack by adding random noise to the input, which is used
as a baseline in (Mao et al., 2021). Rotation defense (Shi
et al., 2020) purifies the adversarial examples by restor-
ing the performance of the rotation task at inference time,
which can recover the image information that relates to ro-
tation. However, the information related to rotation may
be misleading due to the illusion issue (ill), which limits
its power for complex tasks. Contrastive defense (Mao
et al., 2021) restores the intrinsic structure of the image
using SimCLR (Chen et al., 2020) objective at inference
time, which achieves state-of-the-art adversarial robustness
on image recognition tasks. Contrastive learning requires
images to be object-centric, which may not be true on the
segmentation and detection dataset where multiple objects
appear in the same image. Invariance defense follows the
same setup as our equivariance experiment but replaces the
equivariance loss with the invariance loss. To obtain several
constrants from invariance, we use the same diversified set
of transformations as the equivariance setup. We propose

this baseline to study the importance of using equivariance
to apply multiple constraints.

4.4. Implementation details

‘We choose the number of transformations to be X = 8,
which empirically can be fit into a 2080Ti GPU with batch
size 1. To increase the constraints obtained from equivari-
ance, we empirically use a diversified set of transformations,
which includes four resizing transformations ranging from
0.3 to 2 times of size change; one color jittering transfor-
mation; one horizontal flip transformation; and two rotation
transformations between -15 to 15 degrees. For transforma-
tions that cause part of the original image not in the view,
we only consider the overlapped region when calculating
the loss. Ablation study for the effect of each transforma-
tion is shown in Section 4.7. We use steps 1" = 20 for all
our defense tasks. Since after the spatial transformations,
the invariance objective cannot be performed in the dense
feature space due to the position mismatch, we apply an
average pooling for all the features and then compute the
invariance loss.

4.5. Results on Adversarial Trained Models

Adversarial training is the standard way to defend against ad-
versarial examples. We first validate whether our proposed
approach can further improve the robustness of adversarially
trained models. For ImageNet, we use the adversarial pre-
trained model with € = 4/255 from (Wong et al., 2020). We
set the defense vector bound to be ¢, = 2¢. With the state-
of-the-art contrastive learning method (Mao et al., 2021),
we improve robustness accuracy by 3 points to the Vanilla
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Table 2. Semantic segmentation mloU on Cityscapes, PASCAL VOC, and MSCOCO dataset. All models are not adversarially trained.
Under different types of attack bounded by Lo, = 4/255, our method consistently outperforms other defense methods.

Cityscape; Pretrained DRN-22-d Model; Segmentation MIoU

Evaluation Method | Vanilla ‘ Random | Rotation | Contrastive | Invariance | Equivariance (Ours)
Clean 58.29 52.38 34.30 37.22 33.84 37.95

PGD 1.31 1.47 13.20 8.44 14.49 30.76

MIM 1.40 1.49 13.80 8.13 14.57 30.10
Houdini 0.00 0.21 16.31 10.12 14.16 30.52

AA 1.31 1.47 13.20 8.44 14.49 30.28

BPDA 1.31 1.47 6.20 4.78 6.82 11.64

PASCAL VOC dataset; Pretrained DeepLabV3; Segmentation MIoU

Evaluation Method | Vanilla | Random | Rotation | Contrastive | Invariance | Equivariance (Ours)
Clean 69.52 68.96 28.63 66.92 63.64 56.58

PGD 6.46 6.52 6.91 18.72 39.07 43.51

MIM 5.63 5.74 6.35 18.25 37.43 41.56
Houdini 0.02 0.08 6.14 19.11 31.30 52.26

BPDA 6.46 6.46 8.23 5.45 15.15 25.68

MSCOCO dataset; Pretrained DeeplabV3-resnet50; Segmentation MIoU

Evaluation Method | Vanilla | Random | Rotation | Contrastive | Invariance | Equivariance (Ours)
Clean 63.02 62.97 60.92 57.28 43.07 44.71

PGD 2.62 2.65 5.79 14.75 23.92 24.51

MIM 2.71 2.52 5.66 13.61 20.53 21.30
Houdini 0.05 0.10 4.78 22.69 36.94 37.33

BPDA 2.62 2.63 1.15 2.35 17.13 18.69

MaskRCNN; Instance Segmentation maskAP

Evaluation Method | Vanilla | Random | Rotation | Contrastive | Invariance | Equivariance (Ours)
Clean 34.5 33.6 31.2 29.7 14.3 23.4

PGD 0.0 1.6 2.6 8.9 12.9 21.3

MIM 0.0 1.6 2.7 9.1 13.2 21.2

BPDA 0.0 0.0 0.3 1.7 8.7 9.9

defended model. Adaptive attack (AA) poses a lose-lose
situation and does not further decrease the robustness accu-
racy, which is consistent with the observation of (Mao et al.,
2021). With the strongest adaptive attack BPDA (Croce
et al., 2022), it drops 0.5 points. > Using the equivariance
objective, under both standard attack and the adaptive attack
BPDA, it improves robustness more than the other methods.
Even though BPDA decreases equivariance defense by 1.8
points, equivariance still improves robustness by 3.9 points
than not using it.

On Cityscapes, we downsample the image from 2048 x
1024 to 680 x 340 to reduce computation, which follows the
setup of (Mao et al., 2020). We adversarially train a segmen-

2Recent work (Croce et al., 2022) uses a batch size of 50 for
contrastive loss, which is a weaker defense due to the small batch
size. Here, we use the original batch size of 400 setup as (Mao
et al., 2021), which provides a stronger defense due to the large
batch size, where we see robust accuracy improved than Vanilla.

tation model and evaluate it in Table 1, which is measured
with mean Intersection over Union (mloU) for semantic seg-
mentation. We set the defense vector bound to be €, = 2.5¢.
For the standard attack, Houdini reduces the robustness ac-
curacy the most, where using equivariance constraints at test
time can recover 6 points of performance. Using the adap-
tive attack (Mao et al., 2021), the robust accuracy of equiv-
ariance only drops by 0.2 points. Using the BPDA adaptive
attack, the robustness of the invariance-based method drops
4 points, which suggests that invariance relies mostly on
obfuscated gradients and it is not an effective constraint to
maintain at inference time for segmentation. In contrast,
BPDA cannot undermine the equivariance-based model’s
robustness. On the adversarially trained model, equivari-
ance consistently outperforms all other test-time defenses,
which demonstrates that equivariance is a better intrinsic
structure to respect during inference time.
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Table 3. Segmentation mloU with targeted attack on Cityscapes. We use the DRN-22-d backbone. Restoring the equivariance moves the
predicted segmentation map to the groundtruth.

mloU to Attack Target | mloU to Groundtruth 1
Evaluation Method | Vanilla ‘ Invariance ‘ Equivariance (Ours) H Vanilla ‘ Invariance ‘ Equivariance (Ours)
PGD 68.03 12.92 14.96 10.08 25.10 30.01
MIM 71.49 13.78 12.63 9.78 23.11 28.51
Houdini 54.49 12.83 16.80 17.17 24.56 30.26
BPDA 68.03 25.64 25.82 10.08 17.73 20.14

ion g o F o g (x)

Final

Original

Targeted
Adversarial
Attack

4.6. Results on Non-Adversarial Trained Models

We have shown that equivariance improves the robustness
of adversarially trained models. However, most pretrained
models are not adversarially defended. We thus study
whether our method can also improve standard models’ ro-
bustness.

CityScapes Semantic Segmentation. In Table 2, we first
conduct five types of attacks for the DRN-22-d segmentation
model. We use 20 steps of defense, i.e., K = 20, and use
a step size of 7 = 2¢,, and set the defense vector bound
to be €, = 1.5e. While the strongest Houdini attack can
reduce the mloU score to 0, our defense can restore the
mloU score by over 30 points. For the adaptive attack, we
search the optimal \. that reduces the robust performance
the most and find A\, = 1000 produces the most effective
attack, which still cannot bypass our defense. For baselines,
we find A\, = 0 produces the most effective attack. We find
for standard backbones that are not adversarially trained,
BPDA is the most effective attack, we thus only evaluate
on BPDA on the following datasets. We run 10 steps of
BPDA with 20 steps of reversal in the inner loop, which is
a totally of 200 backward steps. Under the BPDA attack,
equivariance-based defense is still more effective than other
methods, including the invariance-based method.

PASCAL VOC Semantic Segmentation. We show results
in Table 2. We use the pretrained DeepLabV3 (Chen et al.,
2018; 2017) model. We use K = 20 and step size n = 2¢,,
and €, = 1.5¢e. Our approach can significantly improve the
robustness compared with other methods.

MSCOCO Semantic Segmentation. We show results in
Table 2. We use the pretrained DeepLabV3 (Chen et al.,

Prediction gz’1 o Fogy(x)

Figure 4. Our method improves robustness under
targeted adversarial attacks (Random Sample). By
adding targeted adversarial attacks, the model fails
to predict the bicycle on the road and instead pre-
dicts a sidewalk. In the middle row, the attacked
model’s representation produces different segmen-
tation maps under different transformations, sug-
gesting that the model is no longer equivariant. By
restoring the equivariance, we correct the model
prediction.

2018; 2017) model. On COCO, we use K = 2 and step size
1N = 2€,, €, = 1.25¢. Using equivariance outperforms other
test-time defense methods.

Instance Segmentation. Our defense can also secure the
more challenging instance segmentation model. In Table 2,
our method improves instance segmentation maskAP by up
to 21 points, which demonstrates that our method can be
applied to a large number of vision applications.

Targeted Attack. The above attacks are untargeted. We
also analyze whether our conclusion holds under targeted
attacks, where the attacker needs to fool the model to predict
a specific target. In Table 3, the targeted attack successfully
misleads the model to predict the target, and our equivari-
ance defense corrects the prediction to be the ground truth.
Equivariance improves up to 10 points on the mIoU metric.
We show visualizations in Figure 4.

4.7. Analysis

Equivariance Measurement. We calculate the equivari-
ance value measured by Equation 2 for clean images, ad-
versarial attacked images, and our defended images. We
show the numerical results in Table 5. While adversarial
attacks corrupt the equivariance of the image, as shown by
the lowered value in the table, our method is able to restore
it. Visualizations in Figure 2 also show our method clearly
restores the equivariance under attack.

Ablation Study for Equivariance Transformations. In
Table 6, we study the impact of using different transforma-
tions in our equivariance defense. We find transformations,
which the model should be equivariant to but, in fact, does
not due to attacks, are the most effective ones in improving
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| Vanilla | Random | Rotation | Contrastive | Invariance | Equivariance (Ours)

Running Time (sec/sample) 0.016 0.016 0.322 0.152 1.632 1.653
Memory Usage (GB) 0.391 0.391 3.102 0.731 10.049 10.357

Table 4. Running time and GPU memory usage for MS COCO semantic segmentation task. We evaluate on a single A6000 GPU.

Dataset Equivariance defense vector bound €,, = 4/255
ImageNet | Cityscapes | PASAL VOC | COCO Accuracy i=0 | i=l | =2 | =4 | i=6 | i=8 | i=I0
Clean Images 0.539 0.694 0.900 0.901 Clean 5323 | 53.24 | 53.09 | 52.38 | 50.62 | 48.84 | 48.74
Attacked Images 0.538 0.448 0.642 0.774 Robustness | 26.61 27.03 | 27.57 | 2853 | 29.22 | 29.57 | 29.83
Restored Images 0.581 0.713 0.921 0.914

Table 5. Measurement for equivariance on clean images, attacked
images, and our restored images. A high score indicates better
equivariance. Adversarial attack corrupts the equivariance. Our
method restores the equivariance back to the same level as the
clean images.

Table 7. Trading-off Robustness vs. Clean Accuracy on Cityscape
using our equivariance method under BPDA attack. If clean per-
formance is important, we can simply decrease the defense vector
bound to increase the clean accuracy.

Transformations of Equivariance Method
Loss Flip | Resize | Rotation< 15° | Rotation> 90° Rotation | Contrastive | Invariance | Equivariance (Ours)
Invariance 9.56 9.90 9.75 9.60 Inference (sec) 0.016 0.016 0.016 0.016
Equivariance | 20.50 26.00 17.03 8.61 Detection (sec) 0.048 0.049 0.147 0.169
Defense (sec) 0.306 0.136 1.616 1.637

Table 6. The impact of using different transformations on the per-
formance of our method. We show results from a standard segmen-
tation model on Cityscape.

robustness. For example, flipping and resizing are most
effective for our studied semantic segmentation. Rotation
below 15 degrees helps robustness more than rotation larger
than 90 degrees. Large rotation performs worse because
segmentation models are not equivariant to large rotation,
even on clean data, which reduces the effectiveness of our
approach. In Section 4.4, we empirically choose the com-
bination of transformations that produces good empirical
results for our approach.

The Trade-off between Robustness and Clean Accuracy.
In Table 7, we show that increasing the bound ¢, for the
defense vector creates a trade-off between clean accuracy
and robust accuracy. Specifically, bound €, = 1/255 is
a sweet spot, where one can increase robustness by 0.4
without any loss of clean accuracy. Our method allows
dynamically conducting trade-off between robustness and
clean accuracy by controlling the additive vector’s bound.

Runtime Analysis and GPU Memory Usage. In Table 4,
we show the running time and GPU memory usage on our
studied methods. While our method leads to longer running
time and larger GPU memory usage, we believe this is a
necessary trade-off to achieve the best robustness. In many
important applications, sacrificing accuracy or robustness
for the sake of reducing running time/memory usage would
be counterproductive. To mitigate this, we also propose
to first detect adversarial examples, then only perform our
test-time adaptation for the detected adversarial ones.

Detecting Adversarial Samples. A straightforward way to
speed up our inference and improve the accuracy on clean
samples, is to first detect adversarial samples, and only run

Table 8. Running time for different methods on vanilla feedforward
inference (Inference), detecting adversarial samples (Detection),
and our test-time defense (defense).

our algorithm on the adversarial samples. Table 8 reports the
time running on COCO images with a single A6000 GPU,
which shows that detection is less expensive compared to
our defense and can be used to reduce our computational
cost. Since test-time optimization on clean examples de-
crease clean performance, we can also increase the clean
accuracy by first detecting the adversarial examples. In
Appendix A.3.1, we show that we can increase clean per-
formance by only performing test-time optimization on the
detected adversaries.

5. Conclusion

Robust perception under adversarial attacks has been an
open challenge. We find that equivariance can be a desired
structure to maintain at inference time because it can provide
dense structural constraints on a fine-grained level. By
dynamically restoring equivariance at inference, we show
significant improvement in adversarial robustness across
three datasets. Our work hints toward a new direction that
uses the right structural information at inference time to
improve robustness.
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A. Appendix.
A.1. Theoretical Results for Adversarial Robustness

We now show detailed proof for Lemma 1 and theorem 2.

Lemma A.l. The standard classifier under adversarial attack is equivalent to predicting with
P(Y|X,, yt(lsl), yt(lSQ), vy yg‘;’“)), and our approach is equivalent to predicting with P(Y |X 4,y y(52) . y(sx)),

Proof. For the standard classifier under attack, we know that P(yésl), yc({”), e y,(f"‘) |X = x,) = 1. Thus we know the
standard classifier under adversarial attack is equivalent to
P(lelel) = Z P(yé51>7y(<LS2>7~-'7yt<15k)‘x:XG)P(Y|yC(lSI)7yc(LS2)7"'ayé5k>ax:xa)

y$D (720 Ly o)

.....

= P(Y‘yg51>7yt<7.52)7 “'7yt(15k)7x = Xa)‘

Our algorithm finds a new input image xgﬁx that

argmaxP(X<") — x(n)\X - Xa)P(y(Sl), y(sz)7 - y(Sk)|X("> - X(n))

x(n)

= argmax P(X(z) = x(”)\X = xq,y" ", 2, ...,y<sk)).

x(n)

Our algorithm first estimate xr(ggx with adversarial image x, and self-supervised label y(*). We then predict the la-

bel Y using our new image x\nax. Thus, our approach in fact estimates P(Y|X™ = x{)P(X™ = x{|X =

Xq,y), y52)  y(+)) Note the following holds:

P(Y|X = x4, 5,y yW)
= Z P(Y‘X("))P(x("”X _ Xa’y(sl)’y(sQ)7 ...,y(sk))

x(n)
~ POYIX®) = ) PXO) = 0, X = 0,y 5,y ),
Thus our approach is equivalent to estimating P(Y |X = x,, yo1) yls2) y(s’v)). [
We use the maximum a posteriori (MAP) estimation xgﬂx to approximate the sum over X (™ because: (1) sampling a

large number of X (™) is computationally expensive; (2) our results show that random sampling is ineffective; (3) our MAP
estimate naturally produces a denoised image that can be useful for other downstream tasks.

Theorem A.2. Assume the classifier operates better than chance and instances in the dataset are uniformly distributed over
n categories. Let the prediction accuracy bounds be P(Y|y$™,yS2, ..., y$  X,) € [bo, col, P(Y |y, X,) € [b1, 1),
P(Y |yt y2) X,) € [by, 2, ..., and P(Y |y), y2) . y) X)) € [by, ci. If the conditional mutual information
I(Y;y(si) Xa) > 0and I(Y;y(si) Xa,y(sj)) > 0 wherei # j, we have by < by < ... <bpandcy < ¢1 < 3 < ... < ¢y,
which means our approach strictly improves the bound for classification accuracy.

Proof. Tt I(Y;y®)|X =x,) > 0,and I(Y;y®)|X,,y)) > 0 where i # j, then it is straight-forward that:

(Y5900 02y X)) > T(Y 3y, X,) > (Y548, X,) = 1(Y; Xa).
I(Y; 900 yt2) Ly X)) > 1Y 5980, 82yl X)) = 1Y X,).

We let the predicted label be ?, we assume there are n categories, and let the lower bound for prediction accuracy to be
Pr(Y =Y) >1—¢, Wedefine H(¢,) = —¢ploge, — (1 — €,)log(1 — €,). Using the Fano’s Inequality, we have

H(Y|X,) < H(ep) + ¢ - log(n — 1) )
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—€p -log(n —1) < H(ep) — H(Y|X,) (3)
We add H(Y) to both side
H(Y) — ¢ -log(n—1) < H(ep) +1(Y; Xa) ©)
because I(Y;X,) = H(Y) — H(Y|X,).
Then we get
H(ep) +€plog(n —1) > —I(Y;X,) + H(Y) (10)

Now we define a new function G(e,) = H (ep,) + €log(n —1). Given that in the classification task, the number of categories
n > 2. We know log(n — 1) > 0. Given that the entropy function H (¢,) first increase and then decrease, the function G(e,)
should also first increase, peak at some point, and then decrease.

We calculate the ¢, for the peak value via calculating the first order derivative G’(¢,) = 0. By solving this, we have:

p=1-1 (11)
which shows that the function G(e,,) is monotonically increasing when ¢, € [0,1 — 1].

Given that we know, the base classifier already achieves accuracy better than random guessing, thus the given classifier
satisfies €, € [0,1 — 1].

Now, the function G(¢,) = H(¢,,) + €,log(n — 1) is a monotonically increasing function in our studied region, which has
the inverse function G~1.

By rewritting the equation 10 We then have

Gley) > ~1(Y;X,) + H(Y) (12)

We apply the inverse function G~ to both side:

e > G H=1(Y;X,) + H(Y)) (13)

1—e <1-GH(=I(Y;X,) + H(Y)) (14)

Note that (1 — €,) is our defined accuracy. Similarly, we have:
l—e <er=1-Q ' (—I(Y;X,) + H(Y)),
L—6 <2 =1-Q ' (~I(Y:y"*), Xo) + H(Y)),

1- €p <cp = 1- Q—l(_I(Y;y(Sﬂ’y(sz)’ "'7y(8k)7Xa) + H(Y))7

where the upper bound is a function of the mutual information. Since H(Y) is a constant, a larger mutual information will
strictly increase the bound. Thus, ¢y < ¢1 < ¢c2 < ... < ck.

In addition, the lower bound will not get worse given the additional information. Thus by < b; < ... < by and.
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A.2. Detection

Anomaly detection, also referred to as novelty detection or outlier detection, predicts the data when the model is uncertain
about a deviated model. (Ruff et al., 2018) conducts anomaly detection by training a binary classifier on in-distribution and
collected out-of-distribution data, however, it is hard to foresee the out-of-distribution data. (Hendrycks et al., 2019; Gidaris
et al., 2018; Tack et al., 2020) need to train the model with self-supervision first and then perform OOD detection using the
performance of the self-supervision task. In this paper, we will focus on the training-free method that uses sensitivity to
estimate the uncertainty of the model (Mi et al., 2022).

A.2.1. EQUIVARIANCE FOR ANOMALY DETECTION

Let y be the ground-truth category labels for x. Let the network that uses the feature h for final task prediction to be Cy-.
For prediction, neural networks learn to predict the category ¥ = Cy/ o Fy(x) by minimizing the loss L(y,y) between the
predictions and the ground truth. For example, for semantic segmentation, L is cross-entropy for each pixel output; for
depth prediction, L is an L1 loss for each depth pixel prediction. We define the loss for the final task as follows:

Lt(x7y) :L(CQ’OFG(X)7Y)> (15)

As shown in Figure 6, ??, and 7, when the model is uncertain about the input and makes the wrong prediction, it is often less
equivariant. Work (Tack et al., 2020; Hendrycks et al., 2019) has shown that self-supervision tasks perform worse when the
model is uncertain. Thus, we propose to use the equivariance of the output y = Cjyps o Fp(x) for anomaly detection. We
calculate the variance of the output after transformations g;:

tput -1 2

LI =" |lg; " 0 Cor 0 Fyo gi(x) — Cor 0 Fy(x)||?, (16)
i

where we use Cyr o Fy(x) as the surrogate mean prediction. Here larger variance indicates less equivariance and therefore

higher probability that x is an out-of-sample data point (see details in sec:theory,no).

A.2.2. THEORETICAL RESULTS FOR ANOMALY DETECTION WITH MULTIPLE CONSTRAINTS

Below we provide theoretical analysis on why the equivariant loss can be used for anomaly detection. For each pixel in an
image, we denote as X and Y the input pixel and target label. We use Zy = Fp(X)and Z = g~ ! o Fp o g(X) to denote the
model predictions of the original and transformed input, respectively, where g and Fy are the associated pixel operations for
g and Fy. Correspondingly e = |Zy — Y| is the error of the model’s prediction for the pixel. Note that g(-) and g—(-) are
equivariant transformations. There can be multiple equivariant transformations g;(-) for the same input pixel X, leading to
different model predictions. For the same input pixel X, we then denote as (X ) = E5[Z|X] and o(X)? = V;[Z| X] the
mean and variance of the model predictions over different equivariant transformations. Here, o (X) measures the sensitivity
of the model for the input pixel X; below we use a shorthand o for o(X') when the context is clear. Following (Mi et al.,
2022), we now introduce our model-agnostic assumptions below.

Assumption A.3 (Heterogeneous Perturbation). ¢; = Zot;(i’;(()x) ~ N(0,1). That is, the model prediction given the
original input X behaves like a random Gaussian draw from the model predictions produced by different equivariant
transformations.

Assumption A.4 (Random Bias). ¢ =Y — u(X) ~ N(0, B?). That is, the bias of the model prediction behaves like
Gaussian noise with bounded variance B2.

Assuming each image contains n input pixels, { X} ;, we have the corresponding target labels {Y;}?_,, errors {e;} ,,
and sensitivity {o;}_,. We denote as & = % >, € the average error of an image. As is usually the case, we further assume
the errors are bounded, i.e., a < e; < b. Our goal is to bound the average pixel error € for an image using the image’s
computed uncertainty (sensitivity) score {o; }7_,. With the assumptions above, we have:

Theorem A.5 (Estimator for €). With probability at least 6, one can estimate the average error € for an image using
\/%E[O’B] with the following guarantee:

- 2 b— 1
e~ /2E[os)| < 52y /n L,
where og £ \/o2 + B2 is the smoothed version of the uncertainty (sensitivity) o and B is a constant from Assumption A.4.
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Figure 5. Using equivariance can detect both dataset shifting and corruption shifting.

Table 9. AUROC (multiplied by 100) of anomaly detection on corrupted images. Our equivariance method achieves better detection
efficiency over 15 types of corruptions.

Cityscape
Model Gauss Shot Impul\Defoc Glass Motion Zoom\Snow Frost Fog Bright\Cont Elast Pixel JPEG
Rot (Hendrycks et al., 2019)| 57 54 49 | 43 55 35 44 | 39 64 51 46 |52 42 44 59
CSI (Tack et al., 2020) 67 67 62 | 65 62 57 64 |45 55 63 63 |65 55 53 54
Inv 99 99 99 | 100 94 8 80 | 8 95 93 86 |98 52 98 100
Ours 100 100 100 | 100 99 98 99 | 100 100 98 94 [100 77 99 100
PASCAL VOC
Model Gauss Shot Impul|Defoc Glass Motion Zoom|Snow Frost Fog Bright|Cont Elast Pixel JPEG
Rot (Hendrycks etal., 2019)| 37 39 39 | 55 53 54 54 |43 49 55 51 |55 50 52 50
CSI (Tack et al., 2020) 49 51 50 | 55 55 58 54 |61 58 58 52 |72 53 54 54
Inv 99 99 99 | 66 21 36 37 |70 74 68 54 |66 45 35 40
Ours 98 98 98 | 96 95 91 93 |8 86 81 60 |92 70 8 75
MSCOCO
Model Gauss Shot Impul|Defoc Glass Motion Zoom|Snow Frost Fog Bright|Cont Elast Pixel JPEG
Rot (Hendrycks etal.,2019)] 95 95 95 | 93 93 93 93 |93 94 93 93 |93 93 93 92
CSI (Tack et al., 2020) 8 8 8 | 76 79 71 75 |42 47 44 77 |22 84 82 85
Inv 98 98 98 | 96 97 96 96 |98 98 97 98 |98 97 97 97
Ours 98 98 98 | 98 98 98 98 | 98 98 98 98 |98 98 98 98

Estimated Average Error for Anomaly Detection. We can see that \/gE [cB] can be a good estimate for the average
error for an image, and that this estimate gets more accurate as n gets larger. Therefore, it can be used directly for anomaly

. . 2 . . . . . . .
detection; larger \/;]E[O’B] indicates a potentially larger error, meaning that the image is more likely to be an anomaly.

Note that the expectation E[o ] is over the space of pixels in all images governed by the assumptions above, not over the
pixels in a specific image. In practice, we estimate E[o ] by averaging over the pixel-level sensitivity in an image, i.e.,

L3, V/o? + B2, leading to Eqn. 16.

Extension to the Multivariate Case. Theorem A.6 assumes one scalar output for each pixel in an image; this is directly
applicable for dense regression tasks, e.g., depth estimation. For dense classification tasks, e.g., segmentation, the label for
each pixel is represented by a one-hot vector. Fortunately, Theorem A.6 can be naturally extended to the multivariate case,
and therefore works for both regression and classification tasks. Note that in classification tasks, x(X ) and o(X) are both
real-valued vectors where all entries in a vector sums up to 1, while Y and Z; are both one-hot vectors (vectors with one
entry equal to 1 and others equal to 0); therefore the two mild assumptions above are still reasonable.

Rotation Contrast Invariance Equivariance

Model ‘ CI VO CO|Cl VO CO|Cl VO CO|Cl VO CO Table 10. AUROC for out of dstribution detection. The
a1 - 56 51 _ 7 5 _ % 9 - 98 o1 rows are the source data that the models have been
VO 67 - 61 | 54 - 85 | 95 - 91 | 71 - 88 trained on. The columns are the data where the OOD
Cco 72 93 - |6 83 - |51 96 - |55 99 - are sampled from.
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A.2.3. ROBUSTNESS ON ANOMALY DETECTION

Dataset and Tasks. We conduct anomaly detection experiments with 15 common corruptions (Hendrycks & Dietterich,
2019) on Cityscapes, PASCAL VOC, and MSCOCO. We also study whether using equivariance can detect examples from a
different dataset.

Baselines. CSI (Tack et al., 2020) uses contrastive loss as indicator for novelty detection. Hendrycks et al. (Hendrycks et al.,
2019) (Rot) uses rotation task’s performance for detection. Invariance (Inv) uses the consistency between different views
of the same image for anomaly detection, which uses the same setup as our equivariance method except for the reversed
transformation g~ in feature space.

Results. We show visualization of the task in Figure 5. Table 9 shows the detection performance on corrupted images.
Our approach in general improves the AUROC score over the baselines, achieving up to 15 AUROC points improvement,
which demonstrates the corruption detection of our approach. We show results on detecting dataset shifting in Table 10. We
denote Cityscapes, PASCAL VOC, and COCO as CI, VO, and CO, respectively. Each row indicates the source model that
we trained on, and each column is the OOD sampled to detect. Our method in general achieves better out-of-distribution
detection efficiency over the existing approaches.

A.2.4. THEORETICAL RESULTS FOR ANOMALY DETECTION

In the main paper, we provide theoretical analysis on why the equivariant loss can be used for anomaly detection. We now
show detailed proof for our Theorem 1.

Theorem A.6 (Estimator for €). With probability at least §, one can estimate the average error € for an image using
\/%E[O’B] with the following guarantee:

|ef\/7Ech In $

where o £ /o2 + B2.

Proof. By the law of total expectation, we have

Ele]

[elo] = EcE[loer — e2|o]
[IN(0, 0 + B?)||o]

E,[\/0? + B?]

]E[UB]a

E,
E,

I
ﬁﬁ

L

where o £ \/o2 + B2. Defining the total error for an image of n pixels S,, = >_ir_, e; and by Hoeffding’s inequality, we
then have

2

P(IS, — EIS.]| > 1) < exp(— ).

7)

where

E[S,] =" Ele = ny/2Elos]. (18)

Combining Eqn. 18 and Eqn. 17, we have

‘6_\/7EUB|> ) < exp(— (1,2,1)2)

where € is the average error of an image. Setting § = exp(—n(b%m), we then have that with probability at least J,

e~/ 2Efos]| < b2\ /in }
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Method
Vanilla | Random | Rotation | Contrastive | Invariance | Equivariance (Ours)
Cityscape 58.29 55.33 49.82 50.85 36.94 51.13
Pascal 69.52 69.24 49.07 68.22 66.58 63.05
COCO 63.02 63.03 61.69 56.76 56.06 58.71
COCO Instance 34.5 33.6 333 29.8 26.7 345

Table 11. Clean accuracy by first detecting adversarial example. By avoiding running test-time optimization on clean examples, we can
largely improve clean accuracy.

A.3. Additional Analysis
A.3.1. PRESERVING CLEAN ACCURACY BY DETECTING FIRST

In deploying our defense, one can further preserve the accuracy on clean images by a detect-then-defend algorithm described
below. Based on our findings that clean images and attacked images have a large difference in the average equivariance
score (Table 5), we can set a threshold value to determine whether or not deploy our defense for a potentially attacked image
based on its equivariance score. Experimental results are reported below in Table 11. As shown in the table, clean accuracy
can be preserved to a large degree without significant reduction in defense performance.

A.3.2. ABLATION STUDIES ON OPTIMIZER

In the paper, we use the SGLD optimizer which add noise during optimization. We compare the performance of using
SGLD and SGD optimizer without noise for our defense in the Table 12 below. While our method is both effective with
both optimization algorithm, SGLD achieves higher robustness.

MS COCO
Equivariance SGLD ‘ Equivariance SGD

PGD | 24.51 \ 16.68

Table 12. Effect of optimizer

A.3.3. RUNTIME ANALYSIS

We report inference speed of our defense in Table 13. It is worth noting that if we deploy detection first, as mentioned in
section A.3.1, the defense will skip the majority of clean images and will not have a large effect on runtime. For attacked
images, our algorithm is 40 times slower due to the test-time optimization. Given the rare cases of adversarial examples, this
delay is reasonable. We can spend more time on the hard adversarial examples, as there is no point of making the wrong
predictions only to make it fast.

MS COCO
Vanilla | Equivariance
runtime (s) | 0.046 | 1.699

Table 13. Runtime analysis. Results are measured on a single A6000 GPU, averaged across 100 examples.

B. Visualization

We show additional visualization on the equivarance of representation when the input suffers from natural corruptions. In
Figure 6 and 7,we show random visualizations on Cityscapes and PASCAL VOC.
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Prediction g loFo 8 (x)

Final Prediction F(x) Prediction g o F o g,(x)

Brightness
Corruption

Glass Blur
Corruption

Frost
Corruption

Figure 6. Examples showing equivariance on clean image and corrupted images on Cityscapes dataset. Clean image is equivariant. Images
under corruption are not equivariant, allowing us to detect corruption using equivariance measurement.

Prediction g]_1 o Fog/(x) Prediction gz_l o Fogy(x)

Image Final Prediction F(x)

person , person person

motorcycle motorcycle motorcycle

Motion Blur
Corruption

Figure 7. Examples showing equivariance on clean image and a random corrupted image on COCO dataset. Clean image is equivariant.
Images under corruption are not equivariant, allowing us to detect corruption using equivariance measurement.
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