
A TALE OF TWO MODELS
CONSTRUCTING EVASIVE ATTACKS ON EDGE MODELS

Wei Hao 1 Aahil Awatramani 2 Jiayang Hu 1 Chengzhi Mao 1 Pin-Chun Chen 1 Eyal Cidon 3 † Asaf Cidon 1

Junfeng Yang 1

ABSTRACT
Full-precision deep learning models are typically too large or costly to deploy on edge devices. To accommodate
to the limited hardware resources, models are adapted to the edge using various edge-adaptation techniques,
such as quantization and pruning. While such techniques may have a negligible impact on top-line accuracy, the
adapted models exhibit subtle differences in output compared to the original model from which they are derived.
In this paper, we introduce a new evasive attack, DIVA, that exploits these differences in edge adaptation, by
adding adversarial noise to input data that maximizes the output difference between the original and adapted
model. Such an attack is particularly dangerous, because the malicious input will trick the adapted model running
on the edge, but will be virtually undetectable by the original model, which typically serves as the authoritative
model version, used for validation, debugging and retraining. We compare DIVA to a state-of-the-art attack, PGD,
and show that DIVA is only 1.7–3.6% worse on attacking the adapted model but 1.9–4.2× more likely not to be
detected by the the original model under a whitebox and semi-blackbox setting, compared to PGD.

1 INTRODUCTION

Deep learning (DL) models are increasingly being deployed
in large-scale applications on millions of edge devices, such
as phones and cameras. Notable real-world edge deploy-
ments include language translation (Good, 2015), object
detection (Ahmadyan & Hou, 2020), face recognition (fd-,
2017) and ad recommendations (Wu et al., 2019). The com-
mon lifecycle of edge-distributed DL models is to assemble
a large dataset, and train the model on a powerful set of
servers, using DL accelerators (e.g., GPUs, TPUs). After
the model has been trained, it is typically pushed to a set of
edge devices, where it will conduct inference (Guo et al.,
2021; tfl, 2021; Wu et al., 2019). Edge devices are resource
constrained compared to the servers used to train the model:
they have weaker accelerators, less DRAM, limited power
and energy constraints. Therefore, the model needs to be
adapted to run on these devices.

To adapt models to resource-constrained edge devices, sev-
eral techniques are commonly used, including quantization,
distillation and pruning (Deng et al., 2020). Such techniques
shrink the size and representation of the original model. For
example, quantization converts the floating-point represen-

1Columbia University 2Cornell University 3Meta †This research
was done independently of Meta. Correspondence to: Wei Hao
<wh2473@columbia.edu>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

tation of the original model to a more compact form, such
as int8 or int4, which reduces the computational complexity,
the amount of memory, and the energy spent when con-
ducting inference. While quantization generally reduces the
accuracy of the model, on average, its effect is relatively
modest; in our experiments the the adapted int8 version
achieves at least 96% of the accuracy of the original model
on average across three standard computer vision models.
However, despite the small differences in top-line accuracy,
the models are not identical, and may return slightly differ-
ent results for a particular input.

Our key observation is that subtle differences between the
edge-adapted and the original models can be exploited by an
attacker. We propose DIVA (DIfferential eVasive Attack),
an attack against computer vision models, which causes
the edge-adapted model to mispredict, while remaining vir-
tually undetectable to the original model. In large-scale
production environments, ML operators run thousands of
slightly-different adapted models on tens of thousands of
device models (Wu et al., 2019). Such an attack would
make it very difficult for the operator to detect and debug,
because when validating the input against their authoritative
original model they would not detect the input as malicious.
Therefore, the operator may assume that no attack occurred
until the attackers have subverted a significant portion of the
edge devices. Even if the operator detected it, it would be
expensive and time-consuming to debug the root cause and
understand which edge models it affects.

ar
X

iv
:2

20
4.

10
93

3v
1

 [
cs

.C
R

]
 2

2
A

pr
 2

02
2

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

DIVA constructs an attack image (indistinguishable to a hu-
man from the original image), with the goal of maximizing
the prediction loss of the adapted model, while minimizing
the prediction loss of the original model. DIVA uses simple
iterative optimization methods, such as stochastic gradient
descent, to efficiently construct the attack image. This al-
lows DIVA to create an input that would cause the adapted
model to mispredict, while causing minimal changes to
the prediction of the original model. We initially design
DIVA assuming a whitebox setting, where the attacker has
access both to the original and the adapted model. We
leverage differential testing (McKeeman, 1998; Pei et al.,
2017), a powerful technique for detecting deviations of two
implementations of the same functionality to generate ad-
versarial samples. Compared to searching through a vast
space of possible behaviors of one model, DIVA focuses
on a much smaller space of deviations of two very similar
models, and is therefore very effective at generating success-
ful attacks. We show DIVA generalizes across two popular
edge-adaptation techniques: quantization and pruning.

Since it may be much easier for the attacker to obtain access
to the adapted model, which could be running on any edge
device (e.g., phone, camera), rather than the original model,
which might be stored in a more secure location (e.g., in the
cloud), we also create a semi-blackbox attack for quantized
models that requires only the adapted model. To this end, we
reconstruct a full-precision surrogate model that shares the
same architecture with the adapted model, by teaching the
surrogate model to imitate the adapted model via knowledge
distillation (Ba & Caruana, 2014; Polino et al., 2018). We
then generate the adversarial attack on this surrogate model
along with the adapted model and evaluate its efficacy on
the original full-precision and the adapted models. Finally,
we test DIVA in a blackbox setting where the hacker does
not have access to the parameters of the adapted model as
well and tries to reconstruct both a surrogate full-precision
and a surrogate adapted model via knowledge distillation
followed by adaptation.

Our evaluation shows that both whitebox and semi-blackbox
DIVA significantly outperform a state-of-the-art attack,
PGD (Madry et al., 2018), in causing the adapted model
to mispredict while not affecting the original model. The
whitebox DIVA attack is able to cause the adapted model to
mispredict and original model to predict correctly 92.3–97%
for quantization and 98–100% for pruning, across three ar-
chitectures (ResNet, MobileNet, DenseNet) on ImageNet,
while the semi-blackbox DIVA attack does so with a success
rate of 71.1–96.2%. Even fully blackbox DIVA outperforms
PGD, albeit with a lower success rate of 30.3–77.2%. Fur-
thermore, despite the constraint not to affect the original
model, DIVA is only up to 3.6% worse than PGD in mis-
leading the edge models. Therefore, from the attacker’s
standpoint, there is very little cost in using DIVA compared

to an attack that targets solely edge models.

Finally, to showcase a real-world attack scenario, we demon-
strate how DIVA can be used to attack a face recognition
model that would be running on a security camera or a
phone. Similar to the ImageNet experiment, the whitebox
DIVA attack achieves a 98% success rate here.

We make the following contributions:
1. We present a new vulnerability introduced by the

widespread use of model adaptation, which causes slight
variations between the models trained on the server and
conducting inference on the edge.

2. DIVA is a new attack that targets adapted computer vi-
sion models running on edge devices, which is virtually-
undetected by validation on the original model. We
show that adding this evasive property to adverserial
attacks comes at a low cost for the attacker.

3. DIVA is effective even in a semi-blackbox setting where
the attacker can only access the adapted model. We de-
sign a novel attack where the attacker tries to reconstruct
the original model using distillation learning, and is able
to successfully attack the adapted model relatively un-
detected.

4. We show DIVA can be used in a realistic scenario of a
face recognition model deployed on an edge device.

2 BACKGROUND AND CLOSELY RELATED
WORK

This section presents a primer on model quantization, prun-
ing and distillation (§2.1), surveys the latest adversarial at-
tacks against DL models (§2.2) and defenses (§2.3), and in-
troduces differential testing and its application to DL (§2.4),
which uses techniques relevant to our work.

2.1 Quantization, Pruning and Distillation

Basic quantization. DL models are trained using a floating
point representation with 32 or 64 bits (fp-, 2021; nvi, 2021).
These floating point representations are typically supported
by server-based accelerators (nvi, 2021; Rocki et al., 2020).
When deployed to edge devices, models are often quantized
in order to reduce their resource consumption. Quantization
reduces the size of the model and its resource consumption
when conducting inference, by representing the model using
a smaller number of bits for each number (e.g., 8 bits instead
of 32). This typically requires changing the representation
from a floating point to an integer. While quantization
reduces the compute, memory, and energy footprint, as well
as the latency of inference (Cai et al., 2017; Han et al., 2016;
Lin et al., 2016), it also reduces the model’s accuracy.

Quantization-aware training. Quantization-aware train-
ing (QAT) (Jacob et al., 2018) is a technique that improves

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

the accuracy of the adapted model by introducing quanti-
zation noise during the training of the model. In QAT the
base model training is still done in full precision. During
the forward pass, weights and data are adapted to a lower
precision (e.g., from float32 to int8) and increased back to
the original precision, in the backpropagation the gradients
are applied to the weights via straight-through estimators
(Bengio et al., 2013). This forces the base model to learn
weights that are more robust to the quantization error.

Pruning. Pruning is a technique that zeros out model
weights that are insignificant and barely used during the
training process to achieve sparsity. A sparse model has
the advantages of easier compression, smaller model size
and higher inference speed, resulting in a smaller and faster
neural network. This technique is being used for vision and
translation models, and is being evaluated in other scenarios,
such as speech applications (Zhu & Gupta, 2018).

Model distillation. Another common technique to reduce
model size, is model distillation (Ba & Caruana, 2014; Hin-
ton et al., 2015; Polino et al., 2018). Distillation reduces
the model size by training a smaller model (student model)
that learns to match the output of a larger model (teacher
model), given the same inputs. After training, the student
model captures almost the same information as the teacher
model but with fewer parameters.

2.2 Adversarial Attacks Against DL Models

A plethora of research is devoted to creating adversarial at-
tacks against DL models (Shan et al., 2020; Nasr et al., 2021;
Lovisotto et al., 2021; Hussain et al., 2021; Wu et al., 2021;
Mao et al., 2019; Gu & Rigazio, 2014; Goodfellow et al.,
2015; Carlini & Wagner, 2017b; Papernot et al., 2016c;
Carlini & Wagner, 2017a; Papernot et al., 2016b; Tramèr
et al., 2018). The basic idea is to find a small, human-
imperceptible perturbation under some bound (e.g., `∞-
norm), such that when the perturbation is added to the input
sample, the model mispredicts. Depending on the under-
lying threat model, adversarial attacks can be whitebox
(attackers have full access to model parameters) or blackbox
(attackers have no access to model parameters).

Whitebox attacks. In a whitebox attack setting, attackers
have access to the model’s parameters. An attacker can use
those to create a perturbation that maximizes the following
loss function for a particular input and label:

A = argmax
A≤ε

L(θ, x+A, y) (1)

where L is the loss function, θ the model parameters, and
A an adversarial perturbation constructed for input x with
label y under perturbation bound A ≤ ε.

While Equation 1 can be solved using an expensive
method (box-constrained L-BFGS) (Szegedy et al., 2014), a

much more efficient method with linear complexity is the
commonly-used Fast Gradient Sign Method (FGSM) (Good-
fellow et al., 2015), in which an input is distorted by adding
small perturbations ε with opposite signs to the gradients.
By making the signs of the input perturbation opposite to the
gradient, each dimension of the input will enlarge the error
by ε, and a high-dimensional input leads to a large accumu-
lative error. Specifically, FGSM generates an adversarial
sample x̂ with (∇x is derivative to x):

x̂ = x+ ε ∗ sign (∇xL (θ, x, y)) (2)

R+FGSM (Tramèr et al., 2018) is an enhancement to FGSM
that adds random perturbations to the noise in addition to
the gradient maximization. Projected Gradient Descent
(PGD) (Madry et al., 2018) further improves the attack by
iteratively maximizing the loss

x̂t+1 = Clipx,ε{x̂t + α sign(∇xL(θ, x, y))} (3)

where Clipx,ε is a projection function to the region defined
by input x and perturbation bound ε in the input space
and initially x̂0 = x. The idea in PGD is to convert the
one-step FGSM attack into multiple steps. In step t + 1,
FGSM is applied to step t’s adversarial sample x̂t with a
step perturbation size of α, and the result is projected back
to the overall perturbation bound ε. PGD is thus determined
by three parameters: the number of steps t, the step size
α, and the perturbation strength ε. PGD is one of the state-
of-the-art adversarial attacks, and we use it as the primary
baseline in our evaluation (§5). We also evaluate other
baseline methods: Momentum PGD (Dong et al., 2017)
and CW (Carlini & Wagner, 2017b) attacks, which perform
worse than PGD (§5.4).

Blackbox attacks. Unlike whitebox attacks which allow
full access to the model parameters in order to calculate gra-
dients, blackbox attacks allow no such access. Prior work
has demonstrated successful attacks in blackbox settings by
learning a surrogate model and then attacking it instead (Pa-
pernot et al., 2017). The insight is that adversarial attacks
target fundamental weaknesses in the learning method, and
are thus transferable from one model to another (Papernot
et al., 2016a).

Bit-Flip attack. Another form of attack is altering the
model in memory. The bit flip attack (Rakin et al., 2019) is
a general parameter attack that targets the weights of quan-
tized DNNs by bit-flipping their values in memory, based on
the idea that resource-limited platforms normally lack effec-
tive data integrity check mechanism. This attack is largely
orthogonal to the aforementioned attacks: it makes changes
to the device’s memory, while the later makes changes to
its input during the attack phase. Such an attack can be
mitigated by performing checksums. Moreover, attacks on

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

inputs can be targeted to a large group of devices, as they
do not require device infiltration.

Attacks against adapted models. Prior work on Defensive
Quantization applies the PGD attack to both the original and
the adapted models (Lin et al., 2019) and shows that with a
small perturbation bound, adapted models are more robust
than their original counterparts. However, once the pertur-
bation increases beyond a certain point, adapted models
exhibit larger errors and are less robust.

2.3 Robust Training

Much recent work defends against adversarial attacks via
robust training (Han et al., 2018; Hendrycks et al., 2019;
Wang et al., 2019; Wong et al., 2020). Robust training is
typically formulated as a minimax problem and optimizes
the model parameters to minimize the maximum loss an
attack can induce (Madry et al., 2018; Lanckriet et al., 2002):

min
θ

max
A≤ε

L(θ, x+A, y) (4)

This minimax method is considered a principled approach
with roots from robust optimization (Scarf, 1958). It has
been shown to boost model accuracy under attack by 28.6%
(Michel et al., 2021), achieving the state of the art. Robust
training is more expensive than regular training because
of the high cost of solving the minimax as opposed to the
minimization problem. Therefore it is typically only applied
to the original full-precision models on powerful servers.

2.4 Differential Testing

Our work on exploiting the differences between two ver-
sions of a model is inspired by differential testing, a popular
software testing method that detects the deviations between
two implementations of the same functionality. It feeds the
same input to the two implementations, observes the differ-
ences in the executions, and attempts to mutate the input to
cause to larger differences. It has been shown to effectively
detect many semantic bugs including SSL certification ver-
ification vulnerabilities (Chen & Su, 2015). The power of
differential testing lies in that it cross-checks two implemen-
tations, using each as the reference for the other. Compared
to the vast space of possible execution behaviors of one
implementation, the deviations of the two implementations
form a much smaller space.

A few prior systems applied differential testing to DL mod-
els (Pei et al., 2017; Guo et al., 2018; 2020). For instance,
DeepXplore (Pei et al., 2017) generates adversarial samples
with physically-realizable transformations (e.g., brightening
and rotation) by finding deviations of two DL models. It
formulates the problem as a joint optimization with several
constraints, including that the perturbations must map to
one of the transformations, and that the number of activated

neurons is maximized. Like these systems, we employ the
idea of differential testing but apply it to a different goal of
differentially-attacking the adapted model, while referenc-
ing the original model.

3 MOTIVATION

In this section we provide further motivation for DIVA. We
describe the attack scenario, and then motivate DIVA using
the example of quantization, a common edge-adaptation
technique. We demonstrate that while quantization has a
small impact on average accuracy, it causes bigger devi-
ations on individual inputs. Finally, we demonstrate that
existing attacks against quantized models also significantly
affect the prediction of the original model, and thus would
be easier to detect and debug when the original model un-
dergoes validation and debugging.

Attack scenario. Companies that deploy models on edge
devices need to deal with the huge diversity in hardware on
different phones, tablets and cameras. For example, Face-
book estimates that devices running its deep learning models
comprise over 2000 unique SoCs running on tens of thou-
sands of tablet and phone models. To accommodate such
a large set of devices, for each one of their full-precision
models, ML operators may need to create thousands of edge-
adapted models versions (Wu et al., 2019). Even worse,
since devices come online sporadically, some of the devices
may still be running older versions of the adapted models.
Due to the very large number of adapted models, and their
similarity in top-line accuracy to the original model, ML op-
erators typically only use the original version of the model
for validation and debugging, which is also the case in pop-
ular machine learning frameworks (Abadi et al., 2016; tfl,
2021; pyt, 2021).

Therefore, an attack that only targets a particular edge model,
but not the original model, would be harder to detect by the
operator, and even if it was detected, it would be expensive
to track down and debug. For example, in order to un-
derstand which devices and which model versions may be
vulnerable to a particular set of adversarial inputs, the ML
operator might have to sift through many adapted models
or, worse, re-generate all the adapted models for all model
versions on all possible edge devices, and manually run
inference for each one of these models on the adversarial
inputs. This process is time-consuming and expensive, and
before the operator pinpoints the root cause of the attack,
many edge devices may have been subverted.

We now provide motivation for how to construct such attacks
using the example of quantization.

The impact of quantization on accuracy. In general,
quantization has a relatively small impact on the average
accuracy. Table 1 compares the average accuracy of the

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

Original Quantized Original Correct & Original Incorrect & Total
Architecture Accuracy Accuracy Quantized Incorrect Quantized Correct Instability
ResNet50 72.1% 70.1% 1510 925 8.1%
MobileNet 69.1% 67.4% 1199 677 6.3%
DenseNet121 73.5% 71.0% 1567 816 7.9%

Table 1. Comparing accuracy between the original full-precision models and quantized models, and the number of samples that deviate in
both models. Instability is the total percentage of images that deviate between the models.

DIVA

Both Correct
Original Model Correct Quantized Incorrect
Both Incorrect
Original Model Incorrect Quantized Correct

PGD

Figure 1. Results of the PGD and DIVA attacks on the original
full-precision ResNet50 and its quantized version. PGD causes
both versions of the model to misclassify. On the other hand, DIVA
causes a misclassification only on the adapted version and mostly
does not affect the original version.

original floating-point model (fp32) to a model that uses
quantization-aware training (int8 precision) across three
different architectures. Across all three architectures, the
accuracy achieved by the quantized model is 96% or more
of the original model’s accuracy.

While quantization does not significantly affect the top-
line average accuracy, it introduces a subtle variance in
prediction for individual inputs. The table shows the num-
ber of deviations in predictions, where one model predicts
correctly and the other incorrectly. We also calculate the
instability (Cidon et al., 2021) across the two versions –
the percentage of total images where the models disagree.
Across all three architectures, the instability varies between
6.3–8.1%, which is higher than the top-line accuracy metric
on its own would suggest.

Baseline causes full-precision models to mispredict. Ad-
versarial attacks have been shown to be transferable from
one model to another (Papernot et al., 2016a). In other
words, an attack that affects one model is likely to impact
another. This means that if an attacker targets a quantized
model using a standard attack, it is likely to also affect
the original model. Indeed, Figure 1 shows the percent of
images that get classified correctly and incorrectly by the
original model and the quantized one when we apply PGD
on a quantized ResNet50. The results show that PGD also
effects the original model. Thus, since validation is typically
conducted on the original model, it is likelier that such an
attack would be detected. On the other hand, we will show

Figure 2. The decision boundaries of the adapted model in the
input space are coarser-grained than those of the original model.
DIVA leverages differential testing to locate the small deviations
along the boundaries.

that DIVA (§4), successfully attacks the quantized model,
but it has a much smaller effect on the original model, and
so it is likely to go undetected during validation.

4 DIFFERENTIAL EVASIVE ATTACK

This section describes the construction of DIVA, starting
from the intuition (§4.1), followed by the whitebox (§4.2),
semi-blackbox (§4.3) and blackbox attacks (§4.4).

4.1 Intuition for DIVA

DIVA targets the deviation of the adapted model from the
original model. The goal of DIVA is to be stealthy, because
the adversarial samples that it generates mislead only the
adapted model but otherwise behave correctly on the origi-
nal model, making it challenging for the machine learning
engineer to detect the attack during training and validation,
which is typically conducted on a server or cluster setting.
Even when detected, DIVA exposes vulnerabilities that are
sticky and difficult to debug and remedy, because virtually
all existing robust training techniques target original mod-
els and cannot directly apply to adapted models. While
robust training may conceivably be accommodated to work
with model adaptation, the model parameters are eventually
compressed, “coarsening” the decision boundaries in the
input space. The coarse-grained decision boundaries of the
adapted model always deviate slightly from the fine-grained
decision boundaries of the original model. However sub-
tle the deviations may be, DIVA is designed to effectively
locate them and exploit them to launch successful attacks.

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

Figure 2 shows how DIVA uses differential testing to locate
the subtle deviations. Given a sample, DIVA observes how
each of the two models compute the label for the sample. It
then calculates a small perturbation that keeps the original
model’s label unchanged but reduces the probability for the
adapted model to predict the same label. DIVA can jointly
consider both models’ probabilities and calculate the input
perturbation accordingly. It repeats this step multiple times
until it reaches one of the regions in the input space where
the adapted and original models deviate.

4.2 Whitebox DIVA Attack

In the whitebox DIVA attack, the attacker has full access
to both the original and adapted models. Similar to the
general whitebox adversarial attack, which we described in
Equation 1, the attacker can generate adversarial samples
by solving an optimization problem that generates additive
noise that maximizes the loss function. Unlike a standard
whitebox attack, in the case of DIVA the loss function must
jointly consider both the adapted and the original models,
as shown in the following equation:
LDIV A(θ, x, y) = modelorig (x) [y]− c ·modela (x) [y]

(5)

Here modelorig(x)[y] is the raw probability of input x for
label y in the original model’s prediction, and modela(x)[y]
is that for the adapted model. Hyperparameter c balances
the two probabilities, and is set by default to c = 1. c repre-
sents a trade off between how well DIVA evades the original
model and how well it attacks the adapted model. We further
study the effect of c in §5.3. Loss function LDIV A captures
the difference between the raw probabilities of the two mod-
els. θ may refer to the parameters of the original model, the
adapted model, or both, depending on how this loss function
is used. Plugging this loss function into Equation 1 yields
the following joint maximization problem:

A = argmax
A≤ε

LDIV A(θ, x+A, y) (6)

that can be solved using stochastic gradient descent or other
standard optimization techniques. Our design uses PGD to
solve the problem and generate adversarial perturbations.

Example. We highlight an example of how DIVA can be
used to trick an adapted model, depicted in Figure 3. In this
example, the adversarial noise (3b) is added to an image
(3a), to produce an attacked image (3c), which is indistin-
guishable to the human eye from the original image. The
attacked image does not affect the prediction of an original
ResNet50, which accurately predicts the object as a pineap-
ple, but causes adapted model (TensorFlow, int8), running
on a resource constrained device, to mispredict the image
as a cairn (man-made pile of stones).

How does the DIVA adversarial noise affect the learned
representations? To better understand how DIVA’s gener-

(a) Original image. (b) Attack noise. (c) Attacked image.

Figure 3. Attack against an adapted model running on edge device
that is undetected by the original model. With DIVA, a pineapple
is identified as a cairn by the adapted model (confidence 79.2%),
whereas the original model still recognizes the image as a pineapple
(confidence 76.1%). The original image is recognized by both the
original and the adapted models as a pineapple (confidence 100.0%
and 98.5%, respectively).

0 20 40 60
Principal Component 1

10

0

10

20

30

Pr
in

ci
pa

l C
om

po
ne

nt
 2

Adapted, Orig-Image, Label=Pred=0
Orig-Model, Orig-Image, Label=Pred=0
Adapted, Orig-Image, Label=Pred=2
Orig-Model, Orig-Image, Label=Pred=2
Adapted, Attack-Image, Label=0, Pred=2
Orig-Model, Attack-Image, Label=Pred=0

Figure 4. PCA visualization of representations learned by the orig-
inal and adapted models, using the two most-principal components
on MNIST. “Adapted, Orig-Image, Label=Pred=0” indicates the
representations learned by the adapted model on the digit ’0’ orig-
inal images. “Attack-Image” shows the representations on the
images with DIVA’s adversarial noise.

ated adversarial noise affects both the original and adapted
models, Figure 4 presents the Principal Component Analy-
sis (PCA) (Bair et al., 2006) of the representations learned
by ResNet50 on 1,000 samples that both the original and
adapted models classify as digit 0 and another 1,000 that
both classify as digit 2 from the MNIST hand-written digits
dataset (LeCun et al., 1998)1. We pick the activations from
the penultimate layer of ResNet50 as the representation of a
sample. We similarly analyze the representations after the
1,000 digit 0 images are attacked by DIVA, which causes
the adapted model to mispredict digit 2 while the original
model still predicts correctly.

There are several interesting details in the PCA figure. First,
even on the original images, there is a subtle difference in
the representations learned by the adapted and the original
model, in particular on digit 0 (the blue and orange dots in
the upper part of the graph, which belong to the adapted
and original models respectively). Second, the figure shows

1We use MNIST for PCA visualization because each digit has
many samples.

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

how DIVA shifts the representations both for the adapted
and original models. The purple crosses show how DIVA is
able to shift the images belonging to digit 0, from the upper
part of the graph to the bottom part. For the original model,
DIVA also shifts the points more towards to the bottom of
the graph, but less so than it does for the adapted model,
thus preserving the prediction of the correct label for most
of them.

4.3 Semi-blackbox DIVA Attack

In the semi-blackbox attack, the attacker has access to the
adapted model but not the original model. We assume it
is substantially easier for the attacker to obtain one of the
edge devices with the adapted model than hacking into
a server with the original model. Practically, an attacker
can obtain the adapted model from an edge device and
recover the differentiable quantization model by extracting
the zero points, scales and weights for each layer in the
downloaded model, and retain its accuracy without any
fine-tuning. However, without access to the original model
parameters and training data, the gradient calculations in
whitebox attack no longer apply.

Fortunately, attacks are frequently transferable (Papernot
et al., 2016a): adversarial samples generated for one model
often transfer to another model for a similar task. To launch
a semi-blackbox attack, we reconstruct a full-precision sur-
rogate model that behaves similarly as the original model
and apply LDIV A to generate adversarial samples for the
adapted and the surrogate model. Figure 5 shows the semi-
blackbox attack pipeline.

We reconstruct a surrogate model as follows. Based on
the adapted model, we create an architecture that matches
the adapted model. The surrogate model’s parameters are
initialized using the pretrained ImageNet parameters from
TensorFlow(ker, 2020) when possible or the parameters of
the adapted model.We then finetune the surrogate model
via knowledge distillation. Unlike typical knowledge dis-
tillation that trains a model with less precision using an
original model, we use knowledge distillation to create semi-
blackbox attack. In our case, DIVA treats the adapted model
as the teacher and the surrogate model as the student. We
train the surrogate model to minimize the loss between its
prediction and the label predicated by the adapted model
while minimizing the distillation loss (Hinton et al., 2015).

Surrogate Model

Original Model

Adapted Model

Adversarial Samples

Distillation

Adaptation

Whitebox DIVA

Figure 5. DIVA semi-blackbox attack pipeline. The dotted box
indicates components that the attacker has no access to.

4.4 Blackbox DIVA Attack

In the full blackbox setting, the attacker does not have access
to neither the entire full-precision model nor the parameters
of the adapted model. A fully-blackbox attack can be gener-
ated by reconstructing both a surrogate full-precision model,
described in §4.3, and a surrogate adapted model followed
by adaptation and fine-tuning. The blackbox attacks then
can be generated using the surrogate models and evaluated
on the original full-precision and original adapted model.

5 EVALUATION

This section presents an evaluation of DIVA. It first de-
scribes the experimental setup (§5.1), then the efficacy of
the DIVA whitebox, semi-blackbox and blackbox attacks
(§5.2), and of a defense method (§5.5), and finally show that
DIVA generalizes to pruning (§5.6).

5.1 Experimental Setup

Datasets. Our main dataset contains 50,000 images from
the ImageNet Object Localization Challenge of 2012-
2017 (ima, 2017). We randomly select 40% of the 50,000,
or 20,000, images from the dataset as our training dataset.
For the validation datasets, we randomly select 3,000 im-
ages from the remaining 30,000 images covering all 1,000
classes of ImageNet, with an average of three images per-
class. When selecting these 3,000 validation images, we en-
sure that they are correctly classified by all relevant models
and architectures. Eventually we created three sets of 3,000
validation images: one dataset for quantized whitebox/semi-
blackbox attacks, one for quantized blackbox attack, and
one for the attack on pruned models.

The semi-blackbox and blackbox attacks also require ad-
ditional data to train the surrogate models. Therefore, we
use 1% (12,811) images from the training dataset of the
same ImageNet challenge to train the surrogate models.
Since the semi-blackbox and blackbox attacks assume that
the attacker cannot access any training data of the original
model, we ensure that the 12,811 images have no overlap
with our main dataset by selecting the 50,000 images in our
main dataset from the validation dataset of the ImageNet
challenge.

Models. We use three architectures in the evaluation:
ResNet50, MobileNet and DenseNet121. For each one, we
create four models: the original model, the adapted model,
the surrogate original model for the semi-blackbox attack
and the surrogate adapted model for the blackbox attack.
We create the original models by downloading pre-trained
models from TensorFlow Keras Applications (ker, 2020)
and finetuning them on our training dataset of 20,000 im-
ages. We use pre-trained models instead of training from
scratch to save resources and ensure that the models evalu-

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

ResNet MobileNet DenseNet

Models

0

20

40

60

80

100

To
p-

1
Su

cc
es

s R
at

e
(%

)

PGD
Blackbox DIVA
Semi-blackbox DIVA
DIVA

(a) Top-1 success rate.

ResNet MobileNet DenseNet

Models

0

20

40

60

80

100

To
p-

5
Su

cc
es

s R
at

e
(%

)

(b) Top-5 success rate.

ResNet MobileNet DenseNet
Models

0

20

40

60

80

100

C
on

fid
en

ce
 D

el
ta

 (%
) Original Image

PGD
DIVA

(c) Confidence delta for top-1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Steps

0

16

33

50

66

83

100

To
p-

1
Su

cc
es

s R
at

e
(%

)

DIVA
PGD

(d) Top-1, varying attack steps.

Figure 6. Attacks on quantized models.

ated have state-of-the-art accuracy. The finetuning step is
necessary for model adaptation, in the case when the dataset
used for finetuning is a subset of the training dataset, not
a disjoint dataset. We validate that the generated original
models achieve the state-of-the-art accuracy.

We generate quantized models by first applying TensorFlow
Model Optimization tfmot’s quantize model (qua,
2020) on the original models using int8 quantization. We
then apply QAT to these models on our training dataset of
20,000 images. After two epochs of QAT, the quantized
models reach validation accuracy comparable to their corre-
sponding original models. We observe that more epochs do
not improve accuracy but worsen the stability between the
original and the adapted models. The surrogate models are
created by applying knowledge distillation and QAT with
the aforementioned 12,811 images.

We generate two types of pruned models on the three archi-
tectures: (1) by applying Keras weight pruning on original
models, and (2) by taking the pruned models and then quan-
tizing them using the same pipeline we used for quantized
models, while preserving the sparsity using tfmot. Both
types of models are then fine-tuned to reach their highest
accuracy on the dataset. After pruning, the model sizes were
compressed to one third of their original size.

Attack construction. In our experiments, we construct the
PGD attack targeting the adapted model as the baseline at-
tack. We choose ε = 8 for both baseline and DIVA attack,
as it has been shown that the perturbation of 8/255 is gener-
ally imperceptible to human eyes. We run both the baseline
and the DIVA attacks with a step size α = 1 (Lin et al.,
2019), and set the maximum number of steps t = 20. We do
not initialize the attack using random noise because random
start is less effective in a single run. Instead, we initialize
with a natural sample.

Success metrics. We define a successful attack as one
where both: (a) the attack did not cause the original model to
mispredict, i.e., if it correctly classified the original image,
it correctly classifies the perturbed one; and (b) the attack
caused the adapted model to mispredict, i.e., the adapted
model correctly classified the natural image, but incorrectly
classified the perturbed one. We define three metrics to

quantify DIVA’s efficacy. The first, which we refer to as top-
1 success rate, measures whether the attack caused the top-1
prediction of the adapted model to be incorrect. The second,
top-5 success rate, measures whether the attack caused the
adapted model’s top-1 prediction not to even appear in the
top-5 predicted classes of the original model.

We define a third metric, confidence delta, which measures
the difference between the confidence of the correct class
between the original model and the adapted model, on the
attacked image. For example, if the correct class in an
image is a pineapple, and the confidence of the original
model on the attacked image is 80%, while the confidence
of the adapted model on the attacked image is 20%, the
confidence delta will be equal to 60%. We additionally
measure DSSIM (Hore & Ziou, 2010), which quantifies the
similarity between two pictures from human’s perspective,
to examine whether the adversarial samples are similar to
their corresponding natural samples.

Machine. Experiments are conducted on a server with 4
Intel 20-core Xeon 6230 CPUs, 376 GB of RAM, and 8
Nvidia GeForce RTX 2080 Ti GPUs with 11 GB of memory.

5.2 DIVA with Quantization

DSSIM. We measure DSSIM among all generated adver-
sarial images on three model architectures comparing the
PGD baseline against DIVA. The resulting DSSIM for all
images are below 0.0092, which means that both the PGD
and DIVA attacks are imperceptible to humans.

Top-1 and Top-5. Figure 6 compares the performance of
DIVA with PGD, under the three architectures. Figure 6a
shows that DIVA significantly outperforms the baseline at-
tack method, PGD, both for the whitebox and semi-blackbox
scenarios. The whitebox attack is able to cause the adapted
model to misclassify the correct label, while maintaining the
original model’s correct classification, for 92.3–97% of the
validation dataset. PGD is also able to successfully attack
some of images, because in general the adapted model is
less robust to noise than the original model. However, its
attack success rate is much lower than DIVA: it achieves
a 30.2–50.9% top-1 success rate. As illustrated previously
in Figure 1, while the PGD baseline is able to cause the

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

adapted model to mispredict, the adversarial samples that it
generates also cause the original model to mispredict, a key
reason that it is substantially less effective than DIVA.

Figure 6d plots the top-1 success rates for PGD and DIVA
on ResNet50 as the number of attack steps increases. DIVA
outperforms PGD starting from step 1. PGD plateaus at
40.8% on step 7, whereas DIVA reaches 96.9% on step 11.
For the top-5 success rate, the differences are even more
stark, as DIVA in the whitebox setting is able to achieve a
2.6-4.2× higher top-5 success rate than PGD. As expected,
the semi-blackbox attack is less successful than the whitebox
one, since DIVA does not have access to the original original
model. However, it is still able to outperform PGD across
all the experiments. It has a high success rate especially for
the top-1 metric, successfully attacking 71.1-96.2% of the
images across the three models.

Blackbox DIVA does not perform as well as the semi-
blackbox version, resulting in a top-1 success rate of 30.3–
77.2%, which is higher than PGD’s. However the blackbox
attack’s top-5 success rate is 17.6–21%, which is lower than
PGD’s. Since the blackbox attack has to generate an extra
surrogate model compared to the semi-blackbox version, it
is harder for it to locate the decision boundaries. We further
noticed that the top-1 success rate for blackbox DIVA on
MobileNet is worse than the other two networks, when com-
paring the improvements with their PGD baselines. This is
because small under-parameterized neural networks often
generalize worse than larger networks (Novak et al., 2018),
leading to poor transferabilty of DIVA from the surrogate
models to original models.

Confidence delta. Figure 6c presents the average shift in
confidence for the correct label under the three models,
comparing DIVA (in a whitebox setting) to PGD. For each
model, we first compare the average confidence delta of
the original image, between the original model and the
adapted one. As expected, in all three models, there is a
relatively modest difference in the confidence delta solely
due to quantization (on average only 7.9%). As expected,
the attacks cause the confidence delta to shift more. For
PGD, the average confidence delta varies between 18.6–25%
across the three models. For DIVA, the average confidence
delta varies between 56.6–72.4%. The much higher shift
in confidence for the correct prediction explains why DIVA
has a much higher top-1 and top-5 success rate than PGD.

Attack speed. We measure the wall-clock time for both
PGD and DIVA with our experimental setup. They run at
almost the same speed of one second per step.

Evasion cost. We measure the cost of evading the original
model, by comparing the success of DIVA at attacking the
adapted model compared to PGD. Note that we generate the
adversarial samples using DIVA as usual, considering both

PGD DIVA
Architecture Attacking Quantized Attacking Quantized
ResNet50 98.7% 97.0%
MobileNet 98.7% 95.1%
DenseNet121 98.4% 96.7%

Table 2. Comparing attack success rate solely against adapted mod-
els. For pruning, DIVA and PGD both achieve 100%. For pruning
+ quantization, PGD has success rates of 98.4–99.7% and DIVA
98–99.7%.

0 0.001 0.01 0.1 1 5 10
Value of C

0%
20%
40%
60%
80%

100%

To
p-

1
Su

cc
es

s R
at

e
(%

)

DIVA on DenseNet
DIVA on ResNet
DIVA on MobileNet
PGD on DenseNet
PGD on ResNet
PGD on MobileNet

Figure 7. Whitebox DIVA with varying c.

the original and adapted models. However, to compute the
success rate, the only criterion is that an adversarial sample
misleads the adapted model. The results are presented in
Table 2, and show that, despite the constraint not to affect the
original models, DIVA achieves a very high attack success
rate on the quantized models, but falls slightly short of
PGD (1.7–3.6% less effective). When attacking the pruned
models, which we describe in more detail in §5.6, DIVA is
almost as effective as PGD and just falls negligibly short of
PGD in few cases (0.2–0.4% less effective).

5.3 Balancing Between Evading and Attacking

The hyper-parameter c is used to balance the effect of the
two loss terms in Equation 5. A small c focuses the attack
on not being detected by the original model, and a large c
focuses on attacking the adapted model.

Under the setting of quantization, we conduct an ablation
experiment for c = {0, 0.001, 0.1, 1, 5, 10} with whitebox
DIVA. Figure 7 shows the top-1 attack success rate reaches
a peak at {96.9%, 94.4%, 97.7%} when c = {10, 1, 0.1},
respectively for each network we study. The results show
that the attack achieves a relatively high success rate for the
studied models for c = [0.001, 1]. We set c = 1 by default
because it provides the highest average top-1 success across
the three model architectures.

The success rate on solely attacking the adapted model is
increased to {97.6%, 98%, 97.7%}, respectfully for each
model architecture when c = 10, compared to the numbers
in Table 2 when c = 1. The results show that the evasion
cost can be reduced by tuning c at the expense of a lower
average evasion success rate.

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

ResNet MobileNet DenseNet

Models

0

20

40

60

80

100
To

p-
1

Su
cc

es
s R

at
e

(%
)

(a) Top-1 success rate.

ResNet MobileNet DenseNet

Models

0

20

40

60

80

100

To
p-

5
Su

cc
es

s R
at

e
(%

)

(b) Top-5 success rate.

ResNet MobileNet DenseNet

Models

0

20

40

60

80

100

To
p-

1
Su

cc
es

s R
at

e
(%

)

(c) Top-1 success rate.

ResNet MobileNet DenseNet

Models

0

20

40

60

80

100

To
p-

5
Su

cc
es

s R
at

e
(%

)

(d) Top-5 success rate.

Figure 8. Attacks on pruned models. (a,b) Pruned models. (c,d) Pruned and quantized models.

5.4 Other Baseline Attacks

We also evaluated other baseline methods: the L∞ CW
attack (Carlini & Wagner, 2017b) and Momentum PGD
(Dong et al., 2017) attack, under the quantization setting
and the top-1 success criterion. We follow the same hyper-
parameter setup as the CW attack in Madry et al (Madry
et al., 2018). For Momentum PGD, we use a momentum
term of 0.5 in addition to the standard PGD attack as this
gives the best performance. Our results show that across the
three architectures, CW achieved an average success rate of
25.5% and Momentum PGD achieved 39.4%, both of which
are worse than PGD (40.6%).

5.5 Robust Training as a Defense

As explained in §2.3, robust training can effectively reduce
the success rates of adversarial attacks such as PGD. This
subsection compares the effectiveness of the PGD minimax
robust training on both PGD and DIVA.

Since the original PGD robust training code (Madry et al.,
2018; rob, 2021) is implemented in Pytorch, we ported
DIVA to Pytorch for fair comparison. We used the de-
fault hyperparameters used by the authors (rob, 2021)
(ε = 8/255 ≈ 0.03, an attack learning rate of 0.00375
with 20 attack steps without random start). We used the
pre-trained robust Resnet50 model in the library as the orig-
inal model and generated the corresponding adapted model
using the PyTorch-Quantization toolkit (pyt, 2021).

Our results show that when we use c = 5 in DIVA, it
improves the top-1 success rate from 10.5% to 12.8%, com-
pared to PGD. Meanwhile, the evasion cost of DIVA is as
similar as PGD, or even slightly better, resulting a robust
accuracy of 22.63% for PGD, and 21.77% for DIVA on
quantized model. We found the best c value for generating
the evasive attack under robust training is c = 1.5. This
value produces a 4% lower success rate on attacking the
adapted model, but the overall evasive attack success rate is
10.1% higher compared to PGD. Both the evasive attacks’
success rates for PGD and DIVA drop when they attack the
robust trained models. We think this is because the non-
overlapping area between the decision boundaries of the
adapted model and the original model becomes smaller, due

to the fact that they are both trained to cover the worst case
attacks.

5.6 DIVA against Pruning Adaptation

We evaluate whitebox DIVA on pruned models. Figure 8
shows that under both the top-1 and top-5 metrics, DIVA
achieves a success rate of 97.8% or higher in all cases and
always performs better than PGD. The top-1 success rates
of PGD and DIVA are much closer than they are in the
quantization setting potentially because pruning makes more
intrusive changes to the model weights than quantization.
The larger gap between the pruned and the original models,
exhibited by the high instability ranging from 17.1–33.5%
and the high confidence delta on the original images ranging
from 10–36.1%, allows PGD to attack the pruned models
without collaterally damaging the original models. However,
DIVA increases the confidence delta on the perturbed images
by 8.3–16% more than PGD. The top-5 success rates of
DIVA in most settings are significantly higher than PGD.

6 CASE STUDY: FACE RECOGNITION

We present the results of our case study that uses DIVA to
attack a face recognition model, whose quantized version
represents a model that would be running on an edge device
(e.g., security camera or phone). For example, DIVA causes
the model to misidentify Nicolas Cage as Jerry Seinfeld as
shown in Figure 9.

Dataset. Our dataset includes 11,640 images belonging to
150 people from the PubFig database (Kumar et al., 2009).
We pick the first 90% of the images from the dataset to
finetune our models. For the validation dataset, we randomly
select 450 images from the remaining 10% of the dataset
that both the full-precision and the adapted models classify
correctly. The validation dataset covers all 150 labels of our
dataset, with three images per class.

Models. We use the VGGFace model, which internally
employs ResNet50’s architecture, and evaluate it in the
whitebox setting. The original model is constructed via
finetuning a pre-trained model with initial full-precision
parameters trained on the VGGFace2 dataset (Cao et al.,
2017). We construct the QAT model by applying Tensor-

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

(a) Original image. (b) Attack noise. (c) Attacked image.

Figure 9. DIVA causes the adapted model to misidentify Nicolas
Cage as Jerry Seinfeld with 95.7% confidence, whereas the full-
precision model still recognizes the face as Nicolas Cage with
93.4% confidence. The original face is recognized by both models
as Nicolas Cage with 100% confidence.

PGD DIVA
0

20

40

60

80

100

To
p-

1
Su

cc
es

s R
at

e
(%

)

(a) Top-1
success rate.

PGD DIVA
0

20

40

60

80

100

To
p-

5
Su

cc
es

s R
at

e
(%

)

(b) Top-5
success rate.

Original
Image

PGD DIVA
0

20

40

60

80

100

C
on

fid
en

ce
 D

el
ta

 (%
)

(c) Confidence delta.

Figure 10. Attacks on the face recognition model.

Flow tfmot’s quantize model (qua, 2020) on the orig-
inal model. During QAT, we further finetune this model
using the same dataset. Finally, we convert the QAT model
to a real adapted int8 model with Tflite in order to evaluate it
on a resource-constrained device with AArch64 CPU, which
would represent the type of processor that might run on an
edge device, such as an iPhone (arm, 2017). Since Tflite
supports only inference and does not expose the gradients,
we use QAT’s gradients in constructing the DIVA attacks.

Evaluation. Figure 10 presents the results of the experi-
ment. On the surface, the original and adapted models have
very similar accuracy: the original model has an accuracy of
99.4%, while the adapted model has an accuracy of 99.0%.
However, the high success rates of DIVA indicate that these
models have many subtle differences. Similar to our results
on ImageNet, DIVA significantly outperforms PGD with the
face recognition task. DIVA is somewhat less successful in
the top-5 metric compared to the ImageNet models, likely
due to the fact that PubFig dataset contains only 150 classes
(i.e., people), compared to the 1,000-class ImageNet dataset.

Targeted attack. We construct a simple targeted attack that
attempts not only to fool the adapted model but also lead it
to predict a particular person or set of people. This entails
adding an additional loss term to our attack, which increases
the loss based on its distance away from a one-hot vector
with the value of 1 being at the position of the target class.
We evaluated the attack on 10 people and were able to target
the misclassification on average to a set of 8.3 people (out
of the 150 people in the dataset). We believe this attack can

be further fine-tuned and be made more accurate.

7 OTHER RELATED WORK

We covered the closely related work in §2. In this section,
we discuss more tangentially related work.

Quantization. Quantization of DNNs is a widely-used tech-
nique, in order to allow for efficient inference and to fit
larger models on resource constrained edge-device hard-
ware (Jacob et al., 2018; Cai et al., 2017; Han et al., 2016;
Lin et al., 2016). This work mostly focuses on minimizing
the accuracy degradation when compressing a model. Prior
work has also shown that even when accuracy is maintained
between source model and the quantized version, there is
still a prediction divergence between them that can cause
instability (Cidon et al., 2021). This forms the basis for
DIVA’s differential approach.

Model compression and robustness. Past work has stud-
ied the relationship between model compression and robust-
ness (Lin et al., 2019; Ye et al., 2019; Gui et al., 2019; Stutz
et al., 2021; Liebenwein et al., 2021). To the best of our
knowledge, all past work focused on robustness to tradi-
tional adversarial attacks and random noise. Unlike past
work, DIVA focuses on the prediction divergence between
the original model and its quantized version.

8 CONCLUSIONS

The deployment of DL models in large-scale settings on
tens of millions of edge devices creates new security vul-
nerabilities. This paper highlights a new differential attack,
DIVA, which exploits the subtle differences between the
edge-adapted versions of the models and the original server-
based model. DIVA constructs adversarial noise that maxi-
mizes the loss of the edge model while minimally affecting
the inference of the original model. This causes the edge
model to mispredict while significantly increasing the cost
of detection and debugging. We adapted this attack to a
setting where the attacker only has access to the edge model
but not the original model, and showed that it remains ef-
fective. We hope this work opens the door to a new line of
research on attacks and defenses that target the variations in
models deployed in production.

9 ACKNOWLEDGMENTS

We thank the reviewers for their comments. This work
was supported by a grant from the Columbia Center of AI
Technology in collaboration with Amazon, ONR grants
N00014-16-12263 and N00014-17-1-2788; NSF grants
CNS-2104292, CNS-1750558 and CNS-1564055; a Face-
book gift; a JP Morgan Faculty Research Award; and a DiDi
Faculty Research Award.

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

REFERENCES

iOS Device Compatibility Reference . https://develope
r.apple.com/library/archive/documentatio
n/DeviceInformation/Reference/iOSDeviceC
ompatibility/DeviceCompatibilityMatrix/D
eviceCompatibilityMatrix.html, 2017.

An On-device Deep Neural Network for Face Detection . https:
//machinelearning.apple.com/research/face-
detection, 2017.

ImageNet Object Localization Challenge. https://www.ka
ggle.com/c/imagenet-object-localization-
challenge, 2017.

Module: tf.keras.applications . https://www.tensorflow
.org/api docs/python/tf/keras/applicatio
ns, 2020.

tfmot quantize model. https://www.tensorflow.org/m
odel optimization/api docs/python/tfmot/q
uantization/keras/quantize model, 2020.

TensorFlow mixed precision. https://www.tensorflow.o
rg/guide/mixed precision, 2021.

Floating point and IEEE 754 compliance for NVIDIA GPUs. ht
tps://docs.nvidia.com/cuda/floating-poin
t/index.html, 2021.

PyTorch Quantization. https://pytorch.org/docs/sta
ble/quantization.html, 2021.

Robustness Package. https://github.com/MadryLab/
robustness, 2021.

TensorFlow Lite. https://www.tensorflow.org/lite/
guide, 2021.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. Ten-
sorflow: A system for large-scale machine learning. In 12th
USENIX symposium on operating systems design and imple-
mentation (OSDI 16), pp. 265–283, 2016.

Ahmadyan, A. and Hou, T. Real-Time 3D Object Detection on
Mobile Devices with MediaPipe. https://ai.googleb
log.com/2020/03/real-time-3d-object-dete
ction-on-mobile.html, 2020.

Ba, J. and Caruana, R. Do deep nets really need to be deep? In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and
Weinberger, K. Q. (eds.), Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada, pp. 2654–2662, 2014. URL https://procee
dings.neurips.cc/paper/2014/hash/ea8fcd9
2d59581717e06eb187f10666d-Abstract.html.

Bair, E., Hastie, T., Paul, D., and Tibshirani, R. Prediction by
supervised principal components. Journal of the American
Statistical Association, 101(473):119–137, 2006. doi: 10.1198/
016214505000000628.

Bengio, Y., Léonard, N., and Courville, A. C. Estimating or
propagating gradients through stochastic neurons for conditional
computation. CoRR, abs/1308.3432, 2013. URL http://ar
xiv.org/abs/1308.3432.

Cai, Z., He, X., Sun, J., and Vasconcelos, N. Deep learning with
low precision by half-wave gaussian quantization. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pp. 5406–5414.
IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.574.
URL https://doi.org/10.1109/CVPR.2017.574.

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., and Zisserman, A.
Vggface2: A dataset for recognising faces across pose and age.
CoRR, abs/1710.08092, 2017. URL http://arxiv.org/
abs/1710.08092.

Carlini, N. and Wagner, D. Adversarial examples are not easily
detected: Bypassing ten detection methods. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security,
AISec ’17, pp. 3–14, New York, NY, USA, 2017a. Association
for Computing Machinery. ISBN 9781450352024. doi: 10.114
5/3128572.3140444. URL https://doi.org/10.1145/
3128572.3140444.

Carlini, N. and Wagner, D. Towards evaluating the robustness of
neural networks. In 2017 IEEE Symposium on Security and
Privacy (S&P), pp. 39–57. IEEE, 2017b.

Chen, Y. and Su, Z. Guided differential testing of certificate valida-
tion in SSL/TLS implementations. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pp.
793–804, 2015.

Cidon, E., Pergament, E., Asgar, Z., Cidon, A., and Katti, S.
Characterizing and taming model instability across edge devices.
Proceedings of Machine Learning and Systems, 3, 2021.

Deng, L., Li, G., Han, S., Shi, L., and Xie, Y. Model compression
and hardware acceleration for neural networks: A comprehen-
sive survey. Proceedings of the IEEE, 108(4):485–532, 2020.

Dong, Y., Liao, F., Pang, T., Hu, X., and Zhu, J. Discovering
adversarial examples with momentum. CoRR, abs/1710.06081,
2017. URL http://arxiv.org/abs/1710.06081.

Good, O. How Google Translate squeezes deep learning onto
a phone. https://ai.googleblog.com/2015/07/
how-google-translate-squeezes-deep.html,
2015.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and
harnessing adversarial examples. In Bengio, Y. and LeCun, Y.
(eds.), 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, 2015. URL http://arxiv.org/
abs/1412.6572.

Gu, S. and Rigazio, L. Towards deep neural network architectures
robust to adversarial examples. arXiv preprint arXiv:1412.5068,
2014.

Gui, S., Wang, H., Yang, H., Yu, C., Wang, Z., and Liu, J. Model
compression with adversarial robustness: A unified optimization
framework. In Wallach, H. M., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 1283–1294,
2019. URL https://proceedings.neurips.cc/p
aper/2019/hash/2ca65f58e35d9ad45bf7f3ae5
cfd08f1-Abstract.html.

https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/DeviceCompatibilityMatrix/DeviceCompatibilityMatrix.html
https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/DeviceCompatibilityMatrix/DeviceCompatibilityMatrix.html
https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/DeviceCompatibilityMatrix/DeviceCompatibilityMatrix.html
https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/DeviceCompatibilityMatrix/DeviceCompatibilityMatrix.html
https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/DeviceCompatibilityMatrix/DeviceCompatibilityMatrix.html
https://machinelearning.apple.com/research/face-detection
https://machinelearning.apple.com/research/face-detection
https://machinelearning.apple.com/research/face-detection
https://www.kaggle.com/c/imagenet-object-localization-challenge
https://www.kaggle.com/c/imagenet-object-localization-challenge
https://www.kaggle.com/c/imagenet-object-localization-challenge
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/quantization/keras/quantize_model
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/quantization/keras/quantize_model
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/quantization/keras/quantize_model
https://www.tensorflow.org/guide/mixed_precision
https://www.tensorflow.org/guide/mixed_precision
https://docs.nvidia.com/cuda/floating-point/index.html
https://docs.nvidia.com/cuda/floating-point/index.html
https://docs.nvidia.com/cuda/floating-point/index.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
https://ai.googleblog.com/2020/03/real-time-3d-object-detection-on-mobile.html
https://ai.googleblog.com/2020/03/real-time-3d-object-detection-on-mobile.html
https://ai.googleblog.com/2020/03/real-time-3d-object-detection-on-mobile.html
https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://doi.org/10.1109/CVPR.2017.574
http://arxiv.org/abs/1710.08092
http://arxiv.org/abs/1710.08092
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1145/3128572.3140444
http://arxiv.org/abs/1710.06081
https://ai.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
https://ai.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://proceedings.neurips.cc/paper/2019/hash/2ca65f58e35d9ad45bf7f3ae5cfd08f1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2ca65f58e35d9ad45bf7f3ae5cfd08f1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2ca65f58e35d9ad45bf7f3ae5cfd08f1-Abstract.html

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

Guo, J., Jiang, Y., Zhao, Y., Chen, Q., and Sun, J. Dlfuzz: differ-
ential fuzzing testing of deep learning systems. In Proceedings
of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 739–743, 2018.

Guo, J., Zhao, Y., Jiang, Y., and Song, H. Coverage guided dif-
ferential adversarial testing of deep learning systems. IEEE
Transactions on Network Science and Engineering, 2020.

Guo, P., Hu, B., and Hu, W. Mistify: Automating DNN model
porting for on-device inference at the edge. In NSDI, pp. 705–
719, 2021.

Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang,
I., and Sugiyama, M. Co-teaching: Robust training of deep
neural networks with extremely noisy labels. arXiv preprint
arXiv:1804.06872, 2018.

Han, S., Mao, H., and Dally, W. J. Deep compression: Com-
pressing deep neural network with pruning, trained quantization
and huffman coding. In Bengio, Y. and LeCun, Y. (eds.), 4th
International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016. URL http://arxiv.org/abs/15
10.00149.

Hendrycks, D., Lee, K., and Mazeika, M. Using pre-training can
improve model robustness and uncertainty. In International Con-
ference on Machine Learning, pp. 2712–2721. PMLR, 2019.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

Hore, A. and Ziou, D. Image quality metrics: Psnr vs. ssim. In
2010 20th international conference on pattern recognition, pp.
2366–2369. IEEE, 2010.

Hussain, S., Neekhara, P., Dubnov, S., McAuley, J., and Koushan-
far, F. WaveGuard: Understanding and mitigating audio ad-
versarial examples. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, August 2021.
URL https://www.usenix.org/conference/usen
ixsecurity21/presentation/hussain.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A. G.,
Adam, H., and Kalenichenko, D. Quantization and training of
neural networks for efficient integer-arithmetic-only inference.
In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pp. 2704–2713. IEEE Computer Society, 2018. doi:
10.1109/CVPR.2018.00286. URL http://openaccess.t
hecvf.com/content cvpr 2018/html/Jacob Qua
ntization and Training CVPR 2018 paper.html.

Kumar, N., Berg, A. C., Belhumeur, P. N., and Nayar, S. K. At-
tribute and simile classifiers for face verification. In 2009 IEEE
12th International Conference on Computer Vision, pp. 365–
372, 2009. doi: 10.1109/ICCV.2009.5459250.

Lanckriet, G. R., Ghaoui, L. E., Bhattacharyya, C., and Jordan,
M. I. A robust minimax approach to classification. Journal of
Machine Learning Research, 3(Dec):555–582, 2002.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324, 1998.

Liebenwein, L., Baykal, C., Carter, B., Gifford, D., and Rus, D.
Lost in pruning: The effects of pruning neural networks beyond
test accuracy. Proceedings of Machine Learning and Systems,
3, 2021.

Lin, D. D., Talathi, S. S., and Annapureddy, V. S. Fixed point
quantization of deep convolutional networks. In Balcan, M. and
Weinberger, K. Q. (eds.), Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop
and Conference Proceedings, pp. 2849–2858. JMLR.org, 2016.
URL http://proceedings.mlr.press/v48/linb
16.html.

Lin, J., Gan, C., and Han, S. Defensive quantization: When
efficiency meets robustness. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=ryetZ20ctX.

Lovisotto, G., Turner, H., Sluganovic, I., Strohmeier, M., and Mar-
tinovic, I. SLAP: Improving physical adversarial examples with
short-lived adversarial perturbations. In 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Au-
gust 2021. URL https://www.usenix.org/confere
nce/usenixsecurity21/presentation/loviso
tto.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A.
Towards deep learning models resistant to adversarial attacks.
In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=rJzIBfZAb.

Mao, C., Zhong, Z., Yang, J., Vondrick, C., and Ray, B. Metric
learning for adversarial robustness. In Proceedings of the 33rd
Annual Conference on Neural Information Processing Systems
(NeurIPS), 2019.

McKeeman, W. M. Differential testing for software. Digital
Technical Journal, 10(1):100–107, 1998.

Michel, P., Hashimoto, T., and Neubig, G. Modeling the sec-
ond player in distributionally robust optimization. CoRR,
abs/2103.10282, 2021. URL https://arxiv.org/ab
s/2103.10282.

Nasr, M., Bahramali, A., and Houmansadr, A. Defeating DNN-
based traffic analysis systems in real-time with blind adversarial
perturbations. In 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, August 2021. URL https:
//www.usenix.org/conference/usenixsecuri
ty21/presentation/nasr.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and Sohl-
Dickstein, J. Sensitivity and generalization in neural networks:
an empirical study. In International Conference on Learning
Representations, 2018. URL https://openreview.net
/forum?id=HJC2SzZCW.

Papernot, N., McDaniel, P., and Goodfellow, I. Transferability in
machine learning: from phenomena to black-box attacks using
adversarial samples. arXiv preprint arXiv:1605.07277, 2016a.

http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://www.usenix.org/conference/usenixsecurity21/presentation/hussain
https://www.usenix.org/conference/usenixsecurity21/presentation/hussain
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://proceedings.mlr.press/v48/linb16.html
http://proceedings.mlr.press/v48/linb16.html
https://openreview.net/forum?id=ryetZ20ctX
https://openreview.net/forum?id=ryetZ20ctX
https://www.usenix.org/conference/usenixsecurity21/presentation/lovisotto
https://www.usenix.org/conference/usenixsecurity21/presentation/lovisotto
https://www.usenix.org/conference/usenixsecurity21/presentation/lovisotto
https://openreview.net/forum?id=rJzIBfZAb
https://arxiv.org/abs/2103.10282
https://arxiv.org/abs/2103.10282
https://www.usenix.org/conference/usenixsecurity21/presentation/nasr
https://www.usenix.org/conference/usenixsecurity21/presentation/nasr
https://www.usenix.org/conference/usenixsecurity21/presentation/nasr
https://openreview.net/forum?id=HJC2SzZCW
https://openreview.net/forum?id=HJC2SzZCW

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B.,
and Swami, A. The limitations of deep learning in adversarial
settings. In 2016 IEEE European symposium on security and
privacy (EuroS&P), pp. 372–387. IEEE, 2016b.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A. Dis-
tillation as a defense to adversarial perturbations against deep
neural networks. In 2016 IEEE Symposium on Security and
Privacy (SP), pp. 582–597, 2016c. doi: 10.1109/SP.2016.41.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B.,
and Swami, A. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia conference
on computer and communications security, pp. 506–519, 2017.

Pei, K., Cao, Y., Yang, J., and Jana, S. DeepXplore: Automated
whitebox testing of deep learning systems. In proceedings of
the 26th Symposium on Operating Systems Principles, pp. 1–18,
2017.

Polino, A., Pascanu, R., and Alistarh, D. Model compression via
distillation and quantization. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. Open-
Review.net, 2018. URL https://openreview.net/f
orum?id=S1XolQbRW.

Rakin, A. S., He, Z., and Fan, D. Bit-flip attack: Crushing neural
network with progressive bit search. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp.
1211–1220, 2019.

Rocki, K., Essendelft, D. V., Sharapov, I., Schreiber, R., Morrison,
M., Kibardin, V., Portnoy, A., Dietiker, J., Syamlal, M., and
James, M. Fast stencil-code computation on a wafer-scale pro-
cessor. In Cuicchi, C., Qualters, I., and Kramer, W. T. (eds.),
Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2020,
Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020,
pp. 58. IEEE/ACM, 2020. doi: 10.1109/SC41405.2020.00062.
URL https://doi.org/10.1109/SC41405.2020.0
0062.

Scarf, H. A min-max solution of an inventory problem. Studies in
the mathematical theory of inventory and production, 1958.

Shan, S., Wenger, E., Wang, B., Li, B., Zheng, H., and Zhao, B. Y.
Gotta catch’em all: Using honeypots to catch adversarial attacks
on neural networks. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pp.
67–83, 2020.

Stutz, D., Chandramoorthy, N., Hein, M., and Schiele, B. Bit error
robustness for energy-efficient dnn accelerators. In Fourth Con-
ference on Machine Learning and Systems. mlsys. org, 2021.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I. J., and Fergus, R. Intriguing properties of neural
networks. In Bengio, Y. and LeCun, Y. (eds.), 2nd International
Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014. URL http://arxiv.org/abs/1312.6199.

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I. J., Boneh,
D., and McDaniel, P. D. Ensemble adversarial training: Attacks
and defenses. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=
rkZvSe-RZ.

Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., and Bailey, J. Symmet-
ric cross entropy for robust learning with noisy labels. In Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 322–330, 2019.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than free: Re-
visiting adversarial training. arXiv preprint arXiv:2001.03994,
2020.

Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury, S., Dukhan,
M., Hazelwood, K., Isaac, E., Jia, Y., Jia, B., et al. Machine
learning at facebook: Understanding inference at the edge. In
2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 331–344. IEEE, 2019.

Wu, X., Guo, W., Wei, H., and Xing, X. Adversarial policy training
against deep reinforcement learning. In 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Au-
gust 2021. URL https://www.usenix.org/confere
nce/usenixsecurity21/presentation/wu-xian.

Ye, S., Xu, K., Liu, S., Cheng, H., Lambrechts, J.-H., Zhang,
H., Zhou, A., Ma, K., Wang, Y., and Lin, X. Adversarial
robustness vs. model compression, or both? In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

Zhu, M. and Gupta, S. To prune, or not to prune: Exploring the
efficacy of pruning for model compression. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop
Track Proceedings. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=Sy1iIDkPM.

https://openreview.net/forum?id=S1XolQbRW
https://openreview.net/forum?id=S1XolQbRW
https://doi.org/10.1109/SC41405.2020.00062
https://doi.org/10.1109/SC41405.2020.00062
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=rkZvSe-RZ
https://openreview.net/forum?id=rkZvSe-RZ
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-xian
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-xian
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

A ARTIFACT APPENDIX

A.1 Abstract

This artifact appendix helps readers to reproduce the main
experimental results in this paper. In this artifact evalu-
ation, we show (1) how to create dataset and models for
evasive attack evaluation. (2) how to perform DIVA in
white-box, semi-blackbox and blackbox setting and perform
PGD, Momentum PGD and CW attack as baselines. (3)
how to perform analysis on the attack results.

A.2 Artifact check-list (meta-information)
• Model: ResNet50, DenseNet121, MobileNet, VGGFACE

• Data set: ImageNet2012, PubFig, MNIST

• Run-time environment: Debian GNU/Linux (or equiva-
lent)

• Hardware: see §A.3.2

• Metrics: top-1, top-5 success rate, confidence score delta

• How much disk space required (approximately)?: 15MB
(code only)

• How much time is needed to prepare workflow using
single GPU (approximately)?: Model generation: 24hrs
for 15 models that needs training; Dataset: 6hrs

• How much time is needed to complete experiments
using single GPU (approximately)?: Attack: 3.5hrs each
in pruning setting, 10 hrs each in quantization setting;
evaluation for one attack: 10 hrs

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT

• Workflow framework used?: see §A.3.3

• Archived (provide DOI)?: 10.5281/zenodo.6084154

A.3 Description

A.3.1 How to access

• Github repository (https://github.com/WeiHao9
7/DIVA) contains latest codes to reproduce all experiment
results

• Zip file (https://drive.google.com/file/d/
1jy7AVFU8v8lbt8rcTWabV5-WLg9BjRcd/view)
contains code, weights and datasets that can be run indepen-
dently to reproduce the results from the case study (section
6) in this paper.

A.3.2 Hardware dependencies

• All experiments on ’server’ are conducted on a server with
four Intel 20-core Xeon 6230 CPUs, 376 GB of RAM, and
eight Nvidia GeForce RTX 2080 Ti GPUs each with 11 GB

memory.
• All experiments on ’edge’ are conducted on a cloudlab m400

machine with eight 64-bit ARMv8 (Atlas/A57) cores CPUs,
62GiB of RAM. The machine’s profile is ’ubuntu18-arm64-
retrowrite-CI-2’ running on node ms0633 in Utah (https:
//www.cloudlab.us/).

A.3.3 Software dependencies

• On server: jupyter notebook, numpy 1.19.5, tensorflow 2.4.1,
keras 2.4.3, tensorflowmodeloptimization, kerasvggface ,
matplotlib, livelossplot, spicy, PIL, tensorflow datasets,
scikit-learn, seaborn, pandas,torch, torchvision, GPUtil, dill,
tensorboardX, tables, dssim

• On edge: jupyter notebook, tflite-runtime

A.3.4 Datasets

We employ ImageNet, MNIST and PubFig in our ex-
periments. PubFig is included in the zip file. Ima-
geNet2012 has to be download manually from https://image-
net.org/challenges/LSVRC/2012/, the code parses it automatically.
MNIST is automatically loaded from TensorFlow Datasets by the
code.

A.4 Installation

All software dependencies can be installed using pip.
dssim package for image similarity analysis can be downloaded
from: https://github.com/kornelski/dssim

A.5 Experiment workflow

A.5.1 Quantization Experiments (§5.2–§5.4)

First, generate original full-precision, quantized and surrogate
full-precision, quantized models by following the workflow in
quantization/model generate*.ipynb. Next, generate the 3000 im-
ages datasets for attack evaluation by following quantization/-
generateImagePerClass.ipynb. Then, generate the DIVA and
baseline attacks by running quantization/*.py. See quantiza-
tion/README.md for more details.

A.5.2 Pruning Experiments (§5.6)

First, generate pruned models by following the workflow in prun-
ing/ModelGen.ipynb. Next, generate the 3000 images dataset
for attack evaluation by following pruning/generateImagePer-
Class.ipynb. Notice that this dataset is different from the datasets
in §A.5.1. Then, run attacking scripts under pruning/attacks. See
pruning/README.md for more details.

A.5.3 Case Study Experiments (§6)

Extract the zip file which contains code, weights, and data that can
be run independently to reproduce the result of this section.

• For untargeted attack: First, split PubFig dataset for model
training. Next, construct full-precision, QAT and tflite mod-
els and create the attacking dataset following FR server.ipynb
on the server. Then generate attacks following untarget-
ted/*.py scripts the server and load the results on the edge.
On the edge, run FR edge.ipynb to evaluate the final top-
1/top-5 success rate and the confidence delta on the generated

https://github.com/WeiHao97/DIVA
https://github.com/WeiHao97/DIVA
https://drive.google.com/file/d/1jy7AVFU8v8lbt8rcTWabV5-WLg9BjRcd/view
https://drive.google.com/file/d/1jy7AVFU8v8lbt8rcTWabV5-WLg9BjRcd/view
https://www.cloudlab.us/
https://www.cloudlab.us/
https://github.com/kornelski/dssim

A Tale of Two Models: Constructing Evasive Attacks on Edge Models

results.
• For targeted attack, run targetted.py to generate a dictionary

where its key is the person’s name and its value is an array
of successful attacks.

See DIVA/quantization/PubFig/README.md for more details

A.5.4 Attacks under Robust Model Experiments (§2.3)

First, load the robust-trained full-precision model from https:
//github.com/MadryLab/robustness and create the
robust-trained quantized model. Then, generate the attack us-
ing PGD and DIVA functions on ImageNet Dataset. The whole
workflow including evaluation is included in robustness/notebook-
s/DIVA under robust trained model.ipynb.
See robustness/README.md for more details.

A.5.5 MNIST Experiments (Fig 4)

First, train model on the MNIST dataset by following the workflow
in quantization/Mnist/ModelGen.ipynb. Next, run DIVA attack by
following the workflow in quantization/Mnist/attacks.ipynb. Last,
generate visualization for attack results by running quantization/M-
nist/PCA TSNE.ipynb. See quantization/Mnist/README.md for
more details.

A.6 Evaluation and expected result

The top-1/top-5 success rates for section (§A.5.1–A.5.4) can be
found both in stdout and in the evaluation script for each exper-
iment. The confidence deltas, DSSIM and evasion cost analysis

are calculated in each evaluation script if they are evaluated in the
paper.
The top-1/top-5 success rates for §A.5.4 can be found in stdout
with the format:

• Total: {} Success: {} Q W:{} FP W:{} Robust acc: {}

success/total gives the success rate and Robust acc gives the ro-
bustness accuracy evaluated in the paper. Q W and FP W gives the
number of mis-predictions by the full-precision and the quantized
model after attack.

A.7 Experiment customization

Hyper-parameters can be customized:

• c: balancing the effect of attack on full-precision and quan-
tized model.

• grad iterations: number of attack steps
• step: step size of each attack step
• epsilon: bound for the attack
• number of training steps during model generation.

A.8 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-202001
02.html

• http://cTuning.org/ae/reviewing-2020010
2.html

• https://www.acm.org/publications/polic
ies/artifact-review-badging

https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
http://cTuning.org/ae/submission-20200102.html
http://cTuning.org/ae/submission-20200102.html
http://cTuning.org/ae/reviewing-20200102.html
http://cTuning.org/ae/reviewing-20200102.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

