
Overload Control for Scaling WeChat Microservices

Hao Zhou
Tencent Inc.

China
harveyzhou@tencent.com

Ming Chen
Tencent Inc.

China
mingchen@tencent.com

Qian Lin
National University of Singapore

Singapore
linqian@comp.nus.edu.sg

Yong Wang
Tencent Inc.

China
darwinwang@tencent.com

Xiaobin She
Tencent Inc.

China
stevenshe@tencent.com

Sifan Liu
Tencent Inc.

China
stephenliu@tencent.com

Rui Gu
Columbia University

New York, USA
ruigu@cs.columbia.edu

Beng Chin Ooi
National University of Singapore

Singapore
ooibc@comp.nus.edu.sg

Junfeng Yang
Columbia University

New York, USA
junfeng@cs.columbia.edu

ABSTRACT

E�ective overload control for large-scale online service system is
crucial for protecting the system backend from overload. Conven-
tionally, the design of overload control is ad-hoc for individual
service. However, service-speci�c overload control could be detri-
mental to the overall system due to intricate service dependencies
or �awed implementation of service. Service developers usually
have di�culty to accurately estimate the dynamics of actual work-
load during the development of service. Therefore, it is essential
to decouple the overload control from service logic. In this paper,
we propose DAGOR, an overload control scheme designed for the
account-oriented microservice architecture. DAGOR is service ag-
nostic and system-centric. It manages overload at the microservice
granule such that each microservice monitors its load status in real
time and triggers load shedding in a collaborative manner among
its relevant services when overload is detected. DAGOR has been
used in the WeChat backend for �ve years. Experimental results
show that DAGOR can bene�t high success rate of service even
when the system is experiencing overload, while ensuring fairness
in the overload control.

CCS CONCEPTS

• Information systems→Mobile information processing systems;
• Computing methodologies→ Self-organization;

KEYWORDS

overload control, service admission control, microservice architec-
ture, WeChat

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267823

ACM Reference Format:

Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui
Gu, Beng Chin Ooi, and Junfeng Yang. 2018. Overload Control for Scaling
WeChat Microservices. In SoCC ’18: ACM Symposium on Cloud Computing,

October 11–13, 2018, Carlsbad, CA, USA.ACM, NewYork, NY, USA, 13 pages.
https://doi.org/10.1145/3267809.3267823

1 INTRODUCTION

Overload control aims to mitigate service irresponsiveness when
system is experiencing overload. This is essential for large-scale
online applications that needs to enforce 24×7 service availability,
despite any unpredictable load surge. Although cloud computing
facilitates on-demand provisioning, it still cannot solve the prob-
lem of overload—service providers are restricted by the computing
resources they can a�ord from the cloud providers, and therefore
cloud providers need overload control for the cloud services they
provide.

Traditional overload control for simple service architecture pre-
sumes a small number of service components with trivial depen-
dencies. For a stand-alone service, overload control is primarily tar-
geted at the operating system, service runtime and applications [2,
24, 29]. For simple multi-tier services, a gateway at the service en-
try point monitors the load status of the whole system and rejects
client requests when necessary to prevent overloading, i.e., load
shedding [5, 7, 23].

However, modern online services become increasingly complex
in the architecture and dependency, far beyond what traditional
overload control was designed for. Modern online services usually
adopt the service-oriented architecture (SOA) [12], which divides
the conventional monolithic service architecture into sub-services
connected via network protocols. Microservice architecture, as a
specialization of SOA, often comprises hundreds to thousands of
sub-services, namely microservices, to support sophisticated appli-
cations [9, 21]. Each microservice runs with a set of processes on
one or multiple machines, and communicates with other microser-
vices through message passing. By decoupling the implementa-
tion and deployment of di�erent microservices, the microservice
architecture facilitates independent development and update for

https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhou et al.

each microservice, regardless of the underlying programming lan-
guage and framework. This yields the �exibility and productivity
for cross-team development of complex online applications.

Overload control for large-scale microservice systemmust cope
with the complexity and high dynamics of the system, which could
be very challenging in real practice. First, all the microservices
must be monitored. If any microservice is out of the scope of moni-
toring, potential overload may emerge at that spot and further rip-
ple through the related upstreammicroservices. As a consequence,
systemmay su�er from cascading overload and eventually get hung,
leading to high delay of the a�ected services. Nevertheless, it is ex-
tremely di�cult to rely on some designated microservices or ma-
chine quorum to monitor load status, since no microservice or ma-
chine owns the view of the fast evolving service deployment.

Second, it can be problematic to let microservices handle over-
load independently, due to the complexity of service dependency.
For example, suppose the processing of a client request relies on
K microservices, but all the required microservices are currently
overloaded and each of them rejects incoming requests indepen-
dently with a probability p. The expectation of the complete pro-
cessing of a client request is (1−p)K . If p is close to 1 or K is large,
the system throughput tends to vanish under such circumstance.
However, system overloading is not mitigated by the shed work-
load, since partial processing of the failed requests still consumes
the computational resources. This causes the system to transit into
a non-progressive status, which situation is hard to escape.

Third, overload control needs to adapt to the service changes,
workload dynamics and external environments. If each microser-
vice enforces a service-level agreement (SLA) for its upstream ser-
vices, it would drastically slow down the update progress of thismi-
croservice as well as its downstream services, defeating the key ad-
vantage of the microservice architecture. Similarly, if the microser-
vices have to exchange tons of messages to manage overload in
a cooperative manner, they may not be able to adapt to the load
surge, while the overload control messages may get discarded due
to system overload and even further deteriorate the system over-
load.

To address the above challenges, we propose an overload con-
trol scheme, called DAGOR, for a large-scale, account-oriented mi-
croservice architecture. The overall mechanism of DAGOR works
as follows.When a client request arrives at an entry service, it is as-
signed with a business priority and a user priority such that all its
subsequent triggered microservice requests are enforced to be con-
sistently admitted or rejected with respect to the same priorities.
Each microservice maintains its own priority thresholds for admit-
ting requests, and monitors its own load status by checking the
system-level resource indicator such as the average waiting time
of requests in the pending queue. Once overload is detected in a
microservice, the microservice adjusts its load shedding thresholds
using an adaptive algorithm that attempts to shed half of the load.
Meanwhile, the microservice also informs its immediate upstream
microservices about the threshold changes so that client requests
can be rejected in the early stage of the microservice pipeline.

DAGOR overload control employs only a small set of thresholds
andmarginal coordination amongmicroservices. Such lightweight

mechanism contributes to the e�ectiveness and e�ciency of over-
load handling. DAGOR is also service agnostic since it does not
require any service-speci�c information to conduct overload con-
trol. For instance, DAGOR has been deployed in the WeChat busi-
ness system to cater overload control for all microservices, in spite
of the diversity of business logic. Moreover, DAGOR is adaptive
with respect to service changes, workload dynamics and external
environments, making it friendly to the fast evolving microservice
system.

While the problem of shedding load inside a network path has
beenwidely studied in literature [8, 10, 15], this papermore focuses
on how to build a practical solution of overload control for an oper-
ational microservice system. The main contributions of this paper
are to (1) present the design of DAGOR, (2) share experiences of
operating overload control in the WeChat business system, and (3)
demonstrate the capability of DAGOR through experimental eval-
uation.

The rest of the paper is organized as follows. §2 introduces the
overall service architecture of WeChat backend as well as work-
load dynamics that it usually faces. §3 describes the overload sce-
narios under WeChat’s microservice architecture. §4 presents the
design of DAGOR overload control and its adoption in WeChat.
We conduct experiments in §5 to evaluate DAGOR, review related
work in §6, and �nally conclude the paper in §7.

2 BACKGROUND

As a background, we introduce the service architecture of WeChat
backend which is supporting more than 3000 mobile services, in-
cluding instant messaging, social networking, mobile payment and
third-party authorization.

2.1 Service Architecture of WeChat

The WeChat backend is constructed based on the microservice ar-
chitecture, in which common services recursively compose into
complex services with a wide range of functionality. The interre-
lation among di�erent services in WeChat can be modeled as a
directed acyclic graph (DAG), where a vertex represents a distinct
service and an edge indicates the call path between two services.
Speci�cally, we classify services into two categories: basic service
and leap service. The out-degree (i.e., number of outbound edges)
of a basic service in the service DAG is zero, whereas that of a leap
service is non-zero. In other words, a leap service can invoke other
services, either basic or leap, to trigger a downstream service task,
and any task is eventually sunk to a basic service which will not
further invoke any other services. Specially, a leap service with in-
degree (i.e., number of inbound edges) being zero in the service
DAG is referred as an entry service. The processing of any service
request raised by user always starts with an entry service and ends
with a basic service.

Figure 1 demonstrates the microservice architecture of WeChat
backend which is hierarchized into three layers. Hundreds of entry
services stay at the top layer. All the basic services are placed at
the bottom layer. The middle layer contains all the leap services
other than the entry ones. Every service task is constructed and
processed by going through the microservice architecture in a top-
downmanner. In particular, all the basic services are shared among

Overload Control for Scaling WeChat Microservices SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

...

...

Entry Leap Services

Shared Leap Services

Basic Services

Login Messaging Moments Payment

Group Chat Batching Notification

Account Profile Contacts Msg Inbox

...

Figure 1: WeChat’s microservice architecture.

all the leap services for invocation, and they are the end services
that serve the user-level purposes1. Moreover, a leap service in the
middle layer is shared by all the entry services as well as other leap
services. Most of the WeChat services belong to this layer.

For WeChat, the total amount of requests to the entry services
is normally 1010 ∼ 1011 on a daily basis. Each entry service request
subsequently triggers more requests to the collaborative microser-
vices to actualize the user-intended behavior. As a consequence,
the WeChat backend essentially needs to handle hundreds of mil-
lions of service requests per second, and system processing data at
such scale is obviously challenging.

2.2 Deployment of WeChat Services

WeChat’s microservice system accommodates more than 3000 ser-
vices running on over 20000 machines in the WeChat business sys-
tem, and these numbers keep increasing as WeChat is becoming
immensely popular. The microservice architecture allows di�erent
development teams to deploy and update their developed services
independently. As WeChat is ever actively evolving, its microser-
vice system has been undergoing fast iteration of service updates.
For instance, from March to May in 2018, WeChat’s microservice
system experienced almost a thousand changes per day on aver-
age. According to our experience of maintaining the WeChat back-
end, any centralized or SLA-based overload controlmechanism can
hardly a�ord to support such rapid service changes at large scale.

2.3 Dynamic Workload

Workload handled by the WeChat backend is always varying over
time, and the �uctuation pattern di�ers among diverse situations.
Typically, the request amount during peak hours is about 3 times
larger than the daily average. In occasional cases, such as during
the period of Chinese Lunar New Year, the peak amount of work-
load can rise up to around 10 times of the daily average. It is chal-
lenging to handle such dynamic workload with a wide gap of ser-
vice request amount. Although over-provisioning physicalmachines
can a�ord such huge workload �uctuation, the solution is obvi-
ously uneconomic. Instead, it is advisable and more practical by
carefully designing the overload control mechanism to adaptively
tolerate the workload �uctuation at system runtime.

1For example, the Account service maintains users’ login names and passwords, the
Pro�le service maintains users’ nicknames and other personal information, the Con-
tact service maintains a list of friends connected to the user, and the Message Inbox
service caches users’ incoming and outgoing messages.

Service

Service

Client

Service

Service

Client

Service

Service

Client

Service

(a) Form (b) Form (c) Form

Figure 2: Common overload scenarios.

3 OVERLOAD INWECHAT

System overload in the microservice architecture can result from
various causes. The most common ones include load surge, server
capacity degradation due to the change of service agreement, net-
work outage, changes of system con�guration, software bugs and
hardware failures. A typical overload scenario involves the over-
loaded services and the service requests along the associated call
path. In this section, we describe three basic forms of service over-
load that are complete and able to be used for composing other
complex forms of service overload. The three basic forms are illus-
trated in Figure 2, in which the overloaded services are labeled by
the attention sign and the associated requests along the call path
are denoted by arrows.

3.1 Overload Scenarios

In Form 1, as shown in Figure 2.a, overload occurs at serviceM . In
theWeChat business system, serviceM usually turns out to be a ba-
sic service. This is because basic services represent the sink nodes
in the service DAG of the microservice architecture, and therefore
they are the most active services. In Figure 2.a, the arrows indi-
cate a certain type of request that invokes service M through ser-
vice A. When service M is overloaded, all the requests sending to
service M get a�ected, resulting in delayed response or even re-
quest timeout. Even worse, upstream services (e.g., service A) of
the overloaded service are also a�ected, since they are pending
on the responses from the overloaded service. This leads to back-
ward propagation of overload from the overloaded service to its
upstream services.

While Form 1 is common in SOA, Form 2 and Form 3 are unique
to the large-scale microservice architecture2. Form 2, as shown in
Figure 2.b, is similar to Form 1 but involves more than one invo-
cation from service A to service M . Such multiple invocation may
be required according to the business logic. For example, in an en-
cryption/decryption application, service A may �rstly invoke ser-
vice M to decrypt some data, then manipulate the plain-text data
locally, and �nally invoke serviceM again to encrypt the resulting
data. We term the corresponding overload scenario as subsequent
overload, which is formally de�ned as follows.

De�nition 1 (SubsequentOverload). Subsequent overload refers
to the overload scenario such that there exist more than one over-
loaded services or the single overloaded service is invokedmultiple
times by the associated upstream services.

2Form 2 and Form 3 are in fact also common in GFS-like systems [13], where a big
�le is split into many chunks distributed over di�erent storage servers, and all the
chunks need to be retrieved to reconstruct the original �le.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhou et al.

In the scenario of subsequent overload, a service task instanti-
ated by the upstream service succeeds if and only if all its issued
requests get successful responses. Otherwise, processing of a ser-
vice task is considered failed if any of the service requests sent to
the overloaded service is not satis�ed. Obviously, both Form 2 (in
Figure 2.b) and Form 3 (in Figure 2.c) belong to subsequent over-
load. Subsequent overload in Form 2 is due to the consecutive invo-
cations to the single overloaded service, whereas subsequent over-
load in Form 3 is caused by the separate invocations to di�erent
overloaded services.

Subsequent overload raises challenges for e�ective overload con-
trol. Intuitively, performing load shedding at random when a ser-
vice becomes overloaded can sustain the system with a saturated
throughput. However, subsequent overload may greatly degrade
system throughput out of anticipation. This is due to the service
constraint of consecutive success of invoking the overloaded ser-
vice. For example, in Form 2 shown in Figure 2.b, suppose serviceA
invokes service M twice, and service M is con�gured with capac-
ity C and performs load shedding at randomwhen it is overloaded.
We further suppose the current workload feed rate to serviceM is
2C, and service M is only called by service A. As a consequence,
serviceM is expected to reject half of the incoming requests, infer-
ring the success rate of each serviceM invocation to be 50%. From
the perspective of service A, its success rate regarding the invoca-
tions to service M is 50% × 50% = 25%. In other words, with C
service A tasks issued, 2C requests are sent to service M and only
0.25C service A tasks eventually survive. In contrast, if the work-
load of service A is 0.5C, then service M is just saturated without
overload and thus the amount of successful serviceA tasks is 0.5C.
As can be seen, subsequent overload can lead to the success rate
of service A become very low if each service A task has to invoke
service M many times. The same argument also applies to Form 3
shown in Figure 2.c, with the only di�erence that the success rate
of service A relies on the product of request success rates of ser-
viceM and service N .

Among the above three basic forms of service overload, Form 1
and Form 2 dominate the overload cases in the WeChat business
system, whereas Form 3 appears to be relatively rare. Towards ef-
fective overload control, we emphasize that subsequent overload
must be properly handled to sustain the system throughput when
the runtime workload is heavy. Otherwise, simply adopting ran-
dom load shedding could lead to extremely low (e.g., close to zero)
request success rate at the client side when the requesting services
are overloaded. Such “service hang” has been observed in our pre-
vious experience of maintaining the WeChat backend, and it mo-
tivated us to investigate the design of overload control that �ts
WeChat’s microservice architecture.

3.2 Challenges of Overload Control at Scale

Comparing with traditional overload control for the web-oriented
three-tier architecture and SOA, overload control for WeChat’s mi-
croservice architecture has two unique challenges.

First, there is no single entry point for service requests sent to
the WeChat backend. This invalidates the conventional approach
of centralized loadmonitoring at a global entry point (e.g., the gate-
way). Moreover, a request may invoke many services through a

complex call path. Even for the same type of requests, the cor-
responding call paths could be quite di�erent, depending on the
request-speci�c data and service parameters. As a consequence,
when a particular service becomes overloaded, it is impossible to
precisely determine what kind of requests should be dropped in
order to mitigate the overload situation.

Second, evenwith decentralized overload control in a distributed
environment, excessive request aborts could not only waste the
computational resources but also a�ect user experience due to the
high latency of service response. Especially, the situation becomes
severe when subsequent overload happens. This calls for some
kind of coordination to manage load shedding properly, regarding
the request type, priority, call path and service properties. How-
ever, given the service DAG of the microservice architecture being
extremely complex and continuously evolving on the �y, the main-
tenance cost as well as system overhead for e�ective coordination
with respect to the overloaded services are considered too expen-
sive.

4 DAGOR OVERLOAD CONTROL

The overload control scheme designed for WeChat’s microservice
architecture is called DAGOR. Its design aims tomeet the following
requirements.

• Service Agnostic. DAGOR needs to be applicable to all kinds
of services in WeChat’s microservice architecture, including in-
ternal and external third-party services. To this end, DAGOR
should not rely on any service-speci�c information to perform
overload control. Such design consideration of being service ag-
nostic has two advantages. First, the overload control mecha-
nism can be highly scalable to support large amount of services
in the system, and meanwhile adapt to the dynamics of service
deployment. This is essential for the ever evolvingWeChat busi-
ness, as diverse services deployed in the WeChat business sys-
tem are frequently updated, e.g., new services going online, up-
grading existing services and adjusting service con�gurations.
Second, the semantics of overload control can be decoupled from
the business logic of services. As a consequence, improper con-
�guration of service does not a�ect the e�ectiveness of over-
load control. Conversely, overload detection can help �nd the
implicit �aw of service con�guration which causes service over-
load at runtime. This not only bene�ts service development and
debugging/tuning, but also improves system availability as well
as robustness.

• Independent but Collaborative. In the microservice architec-
ture, a service is usually deployed over a set of physical ma-
chines in order to achieve scalability and fault tolerance. In prac-
tice, workload distribution over the machines is hardly balanced,
and the load status of each machine may �uctuate dramatically
and frequently, with few common patterns shared among dif-
ferent machines. Therefore, overload control should run on the
granule of individual machine rather than at the global scale.
On the other hand, collaborative inter-machine overload con-
trol is also considered necessary for handling subsequent over-
load. The collaboration between di�erent machines needs to be
service-oriented so that the success rate of the upstream service

Overload Control for Scaling WeChat Microservices SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

can match the response rate of the overloaded service, in spite
of the occurrence of subsequent overload.

• E�cient and Fair. DAGOR should be able to sustain the best-
e�ort success rate of service when load shedding becomes in-
evitable due to overload. This infers that the computational re-
sources (i.e., CPU and I/O) wasted on the failed service tasks are
minimized. Note that those immediately aborted tasks cost little
computation and consequentially yield the resource for other
useful processing; in contrast, tasks that are partially processed
but eventually get abortedwaste the computation spent on them.
Therefore, the e�ciency of overload control refers to how the
mechanism can minimize the waste of computational resources
spent on the partial processing of service tasks. Moreover, when
a service gets overloaded, its upstream services should be able
to sustain roughly the same saturated throughput despite how
many invocations an upstream service task makes to the over-
loaded service. This re�ects the fairness of the overload control.

4.1 Overload Detection

DAGOR adopts decentralized overload control at the server gran-
ule and thus each server monitors its load status to detect potential
overload in time. For load monitoring towards overload detection
in a single server, a wide range of performance metrics have been
studied in literature, including throughput, latency, CPU utiliza-
tion, packet rate, number of pending requests, request processing
time, etc. [20, 25, 31]. DAGOR by design uses the average waiting
time of requests in the pending queue (or queuing time for short) to
to pro�le the load status of a server. The queuing time of a request
is measured by the time di�erence between the request arrival and
its processing being started at the server.

The rationale of monitoring the queuing time for overload de-
tection is not so obvious at the �rst sight. One immediate question
is: Why not consider using the response time3 instead? We argue
that the queuing time can be more accurate to re�ect the load sta-
tus than the response time. Comparing with the queuing time, the
response time additionally counts the request processing time. In
particular, the time for processing a basic service request is purely
determined by the local processing, whereas the processing time
for a leap service request further involves the cost of processing the
downstream service requests. This results in the measurement of
response time being recursive along the service call path, making
the metric failed to individually re�ect the load status of a service
or a server. In contrast, the queuing time is only a�ected by the
capability of local processing of a server. When a server becomes
overloaded due to resource exhaustion, the queuing time rises pro-
portional to the excess workload. On the other hand, the queuing
time would stay at a low level if the server has abundant resources
to consume the incoming requests. Even if the downstream server
may respond slowly, queuing time of the upstream server is not
a�ected as long as it has su�cient resource to accommodate the
pending service tasks, though its response time does rise according
to the slow response of the downstream services. In other words,
the response time of a server increases whenever the response time
of its downstream servers increases, even though the server itself

3Response time is de�ned as the time di�erence between the request arriving at the
server and the corresponding response sent out from the server.

is not overloaded. This provides a strong evidence that the queu-
ing time can re�ect the actual load status of a server, whereas the
response time is prone to false positives of overload.

Another question is:Why is not CPU utilization used as an over-
load indicator? It is true that high CPU utilization in a server in-
dicates that the server is handling high load. However, high load
does not necessarily infer overload. As long as the server can han-
dle requests in a timely manner (e.g., as re�ected by the low queu-
ing time), it is not considered to be overloaded, even if its CPU
utilization stays high.

Load monitoring of DAGOR is window-based, and the window
constraint is compounded of a �xed time interval and a maximum
number of requests within the time interval. In the WeChat busi-
ness system, each server refreshes its monitoring status of the av-
erage request queuing time every second or every 2000 requests,
whenever either criteria is met. Such compounded constraint en-
sures that the monitoring can immediately catch up with the load
changes in spite of the workload dynamics. For overload detec-
tion, given the default timeout of each service task being 500 ms in
WeChat, the threshold of the average request queuing time to indi-
cate server overload is set to 20 ms. Such empirical con�gurations
have been applied in the WeChat business system for more than
�ve years with its e�ectiveness proven by the system robustness
with respect to WeChat business activities.

4.2 Service Admission Control

Once overload is detected, the corresponding overload control is
based on service admission control. DAGOR contains a bundle of
service admission control strategies. We �rst introduce two types
of the priority-based admission control adopted in DAGOR over-
load control, and then extend the technique to further support
adaptive and collaborative admission control.

4.2.1 Business-oriented Admission Control. WeChat services are
internally prioritized based on their business signi�cance and im-
pact on user experience, so are the corresponding service requests.
For example, the Login request is of the highest priority, because
user cannot interact with other services until he/she completes a
successful login. Another example is that the WeChat Pay request
has higher priority than the Instant Messaging request. This is be-
cause users tend to be sensitive to their money-related interactions
such as mobile payment, while they are usually able to accept a
certain degree of delay or inconsistency in the messaging service.
The operation log ofWeChat shows that whenWeChat Pay and In-
stant Messaging experience a similar period of service unavailabil-
ity, user’s complaint against the WeChat Pay service is 100 times
more than that against the Instant Messaging service. Similar sit-
uation also applies to Instant Messaging versus Moments, as user
expects more timely delivery of content with Instant Messaging
than with Moments.

Business-oriented admission control in DAGOR is to assign a
business priority to each user request and enforce all its subse-
quent requests inherit the same business priority. When a service
becomes overloaded, its load shedding routine will give priority
to discarding low-priority requests, yielding resources for high-
priority requests. The business priority of a user request as well
as its subsequent requests along the call path is determined by the

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhou et al.

Login

Payment

Send text message

Send image message

..
.

Moments post

Send video message

Moments refreshing, Create group chat, ...

P
ri
o
ri
ty

d
e
cr
e
a
se
s

Figure 3:Hash table storing the business priorities of actions

to perform in the WeChat entry services.

type of action to perform in the entry service. As there exist hun-
dreds of entry services in WeChat’s microservice architecture, the
number of di�erent actions to perform in the entry services is of
hundreds. The business priorities are prede�ned and stored in a
hash table, which is replicated to all the WeChat backend servers
that host the entry services. An item in the hash table records the
mapping from an action ID (representing a distinct type of action)
to a priority value. Figure 3 illustrates the logical structure of the
action-priority hash table. Note that the hash table does not con-
tain all types of actions. By default, action types that are missing
in the hash table correspond to the lowest priority. Only those in-
tentionally prioritized action types are recorded in the hash table,
with smaller priority value indicating higher priority of the action.
This results in the hash table containing only a few tens of entries.
Since the set of prioritized actions to perform in the entry service
are empirically stable, the hash table remains compact with rare
changes despite the rapid evolution of WeChat business.

Whenever a service request triggers a subsequent request to the
downstream service, the business priority value is copied to the
downstream request. By recursion, service requests belonging to
the same call path share an identical business priority. This is based
on the presumption that the success of any service request relies
on the conjunctive success of all its subsequent requests to the
downstream services. As the business priority is independent to
the business logic of any service, DAGOR’s service admission con-
trol based on the business priority is service agnostic. Moreover,
the above business-oriented admission control is easy to maintain,
especially for the complex and highly dynamic microservice archi-
tecture such as the WeChat backend. On the one hand, the assign-
ment of business priority is done in the entry services by referring
to the action-priority hash table, which is seldom changed over
time4. This makes the strategy of business priority assignment rel-
atively stable. On the other hand, the dynamics of WeChat’s mi-
croservice architecture are generally re�ected in the changes of
basic services and leap services other than the entry services. Since
the business priorities of requests to these frequently changing ser-
vices are inherited from the upstream service requests, developers

4The action-priority hash table may be modi�ed on the �y for performance tuning or
ad-hoc service support. But this happens very rarely in the WeChat business system,
e.g., once or twice per year.

of these services can simply apply the functionality of business-
oriented admission control as a black box without concerning the
setting of business priority5.

4.2.2 User-oriented Admission Control. The aforementioned strat-
egy of business-oriented admission control constrains the decision
of dropping a request to be determined by the business priority of
the request. In other words, for load shedding upon service over-
load, the business-oriented admission control presumes requests
with the same business priority are either all discarded or all con-
sumed by the service. However, partially discarding requests with
respect to the same business priority in an overloaded service is
sometimes inevitable. Such inevitability emerges when the admis-
sion level of business priority of the overloaded service is �uctuat-
ing around its “ideal optimality”. To elaborate, let us consider the
following scenario where load shedding in an overloaded service
is solely based on the business-oriented admission control. Sup-
pose the current admission level of business priority is τ but the
service is still overloaded. Then the admission level is adjusted to
τ − 1, i.e., all requests with business priority value greater than
or equal to τ are discarded by the service. However, system soon
detects that the service is underloaded with such admission level.
As a consequence, the admission level is set back to τ , and then
the service quickly becomes overloaded again. The above scenario
continues to repeat. As a result, the related requests with business
priority equal to τ are in fact partially discarded by the service in
the above scenario.

Partially discarding requests with the same business priority
could bring on issue caused by subsequent overload, because these
requests are actually discarded at random under such situation.
To tackle this issue, we propose the user-oriented admission con-
trol as a compensation for the business-oriented admission control.
User-oriented admission control in DAGOR is based on the user
priority. The user priority is dynamically generated by the entry
service through a hash function that takes the user ID as an argu-
ment. Each entry service changes its hash function every hour. As a
consequence, requests from the same user are likely to be assigned
to the same user priority within one hour, but di�erent user prior-
ities across hours. The rationality for the above strategy of user
priority generation is twofold. On the one hand, the one-hour pe-
riod of hash function alternation allows user to obtain a relatively
consistent quality of service for a long period of time. On the other
hand, the alternation of hash function takes into account the fair-
ness among users, as high priorities are granted to di�erent users
over hours of the day. Like the business priority, the user priority
is also bound to all the service requests belonging to the same call
path.

The strategy of user-oriented admission control cooperateswith
the business-oriented admission control. For requests with busi-
ness priority equal to the admission level of business priority of
the overloaded service, the corresponding load shedding opera-
tion gives priority to the ones with high user priority. By doing
so, once a request from service A to the overloaded serviceM gets

5We used to additionally provide APIs for service developer to adjust the business
priority of request speci�cally for the service. However, the solution turned out to be
not only extremely di�cult to manage among di�erent development teams, but also
error-prone with respect to the overload control. Consequently, we deprecated the
APIs for setting service-speci�c business priority in the WeChat business system.

Overload Control for Scaling WeChat Microservices SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 4: The compound admission level.

a successful response, the subsequent request from service A to
service M is very likely to also get a successful response. This re-
solves the issue caused by subsequent overload of Form 2 as shown
in Figure 2.b. Moreover, subsequent overload of Form 3 as shown
in Figure 2.c can also be properly handled in a similar way. Sup-
pose the upstream service A invokes two overloaded dependent
services, i.e., service M and service N , in order. If the admission
levels regarding the business and user priorities of service M are
more restricted than that of service N , then subsequent overload
can be eliminated in Form 3. This is because a request being admit-
ted by service M implies the admission of the subsequent request
to service N , due to the relaxed admission levels. Such condition of
admission levels between the dependent services in Form 3 usually
holds in the WeChat business system, as the preceding service is
prone to more severe overload.

Session-orientedAdmission Control. Other than the user-oriented
admission control, we have ever proposed the session-oriented ad-
mission control to address the same issue caused by solely apply-
ing the business-oriented admission control. The session-oriented
admission control is based on the session priority, whose genera-
tion as well as functionality are similar to that of the user prior-
ity as described before. The only di�erence is that the hash func-
tion of generating the session priority alternatively takes the ses-
sion ID as an argument. A session ID is assigned to a user upon
his/her successful login, which indicates the start of a user session.
A session generally ends with a con�rmed logout performed by
the user. When the same user performs another login after his/her
prior logout, another session is created with a di�erent session
ID and thus a new session priority is generated accordingly, even
though the hash function remains unchanged. In terms of over-
load control in DAGOR, the session-oriented admission control is
as e�ective as the user-oriented admission control. But our oper-
ational experience with the WeChat business system shows that
the session-oriented admission control tends to degrade user ex-
perience. This is due to the natural user behavior where WeChat
users often prefer to logout and immediately login again when-
ever they encounter service unavailability in the app. The same
phenomenon also frequently arises in other mobile apps. Through
the logout and immediate login, user obtains a refreshed session
ID. As a consequence, the session-oriented admission control as-
signs the user a new session priority, which could be high enough
to grant his/her service requests in the overloaded service back-
end. Gradually, the user may �gure out the “trick” that enables
him/her to escape from service unavailability via re-login. When
a trick is repeatedly validated to be e�ective, it tends to become
a user habit. However, such trick does not help mitigate the ac-
tual service overload occurring at the system backend. Moreover,
it would introduce extra user requests due to the misleading logout

and login, further deteriorating the overload situation and thus
eventually a�ecting the user experience of the majority of users.
In contrast, user’s instant re-login does not a�ect his/her user pri-
ority in the user-oriented admission control. Hence, we prefer the
user-oriented admission control over the session-oriented one in
DAGOR overload control.

4.2.3 Adaptive Admission Control. Load status in themicroservice
system is always dynamically changing. A service becomes sensi-
tive to the change of its load status when it is overloaded, since the
corresponding load shedding strategy is dependent on the volume
of the excess workload. Therefore, the priority-based admission
levels should be able to adapt to the load status towards e�ective
load shedding with minimized impact on the quality of the overall
service. When the overload situation is severe, the admission lev-
els should be restricted to reject more incoming requests; on the
contrary, the admission levels should be relaxed when the over-
load situation becomes mild. In the complex microservice architec-
ture, the adjustment of admission levels of the overloaded services
needs to be automatic and adaptive. This calls for the necessity of
adaptive admission control in the overload control of DAGOR.

DAGOR adjusts the admission levels of the overloaded services
with respect to their individual load status. As illustrated in Figure 4,
DAGOR uses the compound admission level which is composed of
the business and user priorities. Each admission level of business
priority is attached with 128 admission levels of user priority. Let
B andU denote the business priority and the user priority respec-
tively, and the compound admission level is denoted by (B, U). A
cursor, denoted by an arrow in Figure 4, indicates the current ad-
mission level6 to be (2, 3), which is interpreted as all the requests
with B > 2 and the requests with B = 2 but U > 3 will be shed
by the overloaded service. Moving the cursor leftwards represents
raising the admission level, i.e., restricting the business and user
priorities.

As mentioned in §4.2.1, DAGOR maintains tens of distinct ad-
mission levels of business priority. With each admission level of
business priority attached with 128 admission levels of user prior-
ity, the resulting amount of the compound admission levels is tens
of thousands. Adjustment of the compound admission level is at
the granule of user priority. To search for the appropriate admis-
sion level according to the load status, a naive approach is by trying
each admission level one by one starting from the lowest, i.e., mov-
ing the cursor from the far right to the left in Figure 4. Note that
for each setting of the admission level, server has to take a while to
validate its e�ectiveness, since the load status is aggregated within
a certain time interval. As the incoming requests are unlikely to be
distributed evenly over the admission levels, such naive approach
tends to be awkward to �nd the right setting. This is because every
adjustment of admission level in the naive approach, i.e., moving
the cursor leftwards by one user priority, exerts marginal impact
on the overload situation but takes time to validate its su�ciency.
Therefore, by scanning the admission levels in the naive way, the
adjustment of admission level can hardly meet the real-time re-
quirement for the adaptive admission control. An immediate im-
provement based on the above naive approach is to perform binary

6If not speci�ed, we refer the admission level to the compound admission level in the
rest of the paper

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhou et al.

Algorithm 1: Adaptive admission control.

Global: max. admission level of business priority Bmax

Global: max. admission level of user priority Umax

Global: admitted request counters C[Bmax][Umax]

Global: incoming request counter N

Procedure ResetHistogram():

N ← 0

foreach c ∈ C do c ← 0

Input: service request r
Procedure UpdateHistogram(r):

N ← N + 1

if r is admitted then C[r .B][r .U] ← C[r .B][r .U] + 1

Input: boolean �ag foverload indicating overload
Output: compound admission level
Procedure CalculateAdmissionLevel(foverload):

Nexp ← N

if foverload = true then Nexp ← (1 − α) · Nexp

else Nexp ← (1 + β) · Nexp

(B∗, U∗) ← (0, 0)

Npre�x ← 0

for B ← 1 to Bmax do

for U ← 1 to Umax do

Npre�x ← Npre�x +C[B][U]

if Npre�x > Nexp then return (B∗, U∗)

else (B∗, U∗) ← (B, U)

return (B∗, U∗)

search instead of linear scan. This makes the search complexity
reduces from O(n) to O(logn) where n represents the number of
compound admission levels in total. Regarding the actual amount
of admission levels in WeChat is at the scale of 104, the O(logn)
search involves about a dozen trials of the adjustment of admission
level, which is still considered away from e�ciency.

Towards adaptive admission control with e�ciency, DAGOR ex-
ploits a histogram of requests to quickly �gure out the appropriate
setting of admission level with respect to the load status. The his-
togram helps to reveal the approximate distribution of requests
over the admission priorities. In particular, each server maintains
an array of counters, each of which corresponds to a compound ad-
mission level indexed by (B, U). Each counter counts the number
of the admitted requests associated with the corresponding busi-
ness and user priorities. DAGOR periodically adjusts the admission
level of load shedding as well as resets the counters, and the period
is consistent to thewindow size for overload detection as described
in §4.1, e.g., every second or every 2000 requests in the WeChat
business system. For each period, if overload is detected, the server
sets the expected amount of incoming requests in the next period
to be α (in percentage) less than that in the current period; other-
wise, the expectation of request amount in the subsequent period
is increased by β (in percentage). Empirically, we set α = 5% and
β = 1% in theWeChat business system. Given the expected amount
of requests, the admission level is calculated with respect to the
largest pre�x sum in the histogram not exceeding that amount. Let

B∗ andU∗ be the optimal settings of the admission levels of busi-
ness priority and user priority respectively. The optimal setting of
the compound admission level (B∗, U∗) is determined by the con-
straint such that the sum of counters with (B, U) ≤ (B∗, U∗)7 is
just not exceeding the expected amount. Algorithm 1 summaries
the procedures of adaptive admission control in DAGOR. Obvi-
ously, the above approach only involves a single trial of validation
per adjustment of the admission level. Hence, it is much more ef-
�cient than the aforementioned naive approaches, and can satisfy
the real-time requirement for the adaptive admission control.

4.2.4 Collaborative Admission Control. DAGOR enforces the over-
loaded server to perform load shedding based on the priority-based
admission control. Regarding message passing, a request that is
destined to be shed by the overloaded downstream server still has
to be sent from the upstream server, and the downstream server
subsequently sends the corresponding response back to the up-
stream server to inform the rejection of the request. Such round-
trip of message passing for unsuccessful request processing not
only wastes the network bandwidth but also consumes the tense
resource of the overloaded server, e.g., for serializing/deserializing
networkmessages. To save network bandwidth and reduce the bur-
den on the overloaded server to handle excessive requests, it is ad-
vised to reject the requests that are destined to be shed early at
the upstream server. To this end, DAGOR enables collaborative ad-
mission control between the overloaded server and its upstream
servers. In particular, a server piggybacks its current admission
level (B, U) to each response message that it sends to the up-
stream server. When the upstream server receives the response,
it learns the latest admission level of the downstream server. By
doing so, whenever the upstream server intends to send request to
the downstream server, it performs a local admission control on the
request according to the stored admission level of the downstream
server. As a consequence, requests destined to be rejected by the
downstream server tends to be shed early at the upstream server,
and requests actually sent out from the upstream server tends to
be admitted by the downstream server. Therefore, while the strat-
egy of admission control in a server is independently determined
by the server itself, the actual load shedding is performed by its re-
lated upstream servers. Such collaboration between the upstream
and downstream servers greatly bene�ts the improved e�ciency
of overload control in the microservice architecture.

4.3 Work�ow of Overload Control

Based on the aforementioned strategies of service admission con-
trol, we now depict the overall work�ow of DAGOR overload con-
trol as illustrated in Figure 5.

(1) When a user request arrives at the microservice system, it is
routed to the related entry service. The entry service assigns
the business and user priorities to the request, and all the sub-
sequent requests to the downstream services inherit the same
priorities which are encapsulated into the request header.

7For two admission levels (B1, U1) and (B2, U2), we have (B1, U1) < (B2, U2)
if B1 < B2 , or B1 = B2 but U1 < U2 .

Overload Control for Scaling WeChat Microservices SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Sub request

N
o
d
e

Service RequestUser ID

Entry

Service

Sub requestUser ID

N
o
d
e Leap

Service

Threshold Table

... ...

Node , Service

... ...

Admission

Control

User ID

Basic

Service

Admission

Control

Response

Figure 5: Work�ow of DAGOR overload control.

(2) Each service invokes one or more downstream services accord-
ing to the business logic. Service requests and responses are de-
livered through message passing.

(3) When a service receives a request, it performs the priority-based
admission control based on its current admission level. The ser-
vice periodically adjusts its admission level with respect to the
load status.When a service intends to send a subsequent request
to a downstream service, it performs the local admission control
based on the stored admission level of the downstream service.
The upstream service only sends out the requests that are admit-
ted by the local admission control.

(4) When a downstream service sends a response to an upstream
service, it piggybacks its current admission level to the response
message.

(5) When the upstream service received the response, it extracts the
information of admission level from the message and updates
the corresponding local record for the downstream service ac-
cordingly.

DAGOR satis�es all the requirements of overload control in the
microservice architecture as we proposed at the beginning of this
section. First, DAGOR is service agnostic, since the strategies of ser-
vice admission control are based on the business and user priorities
that are orthogonal to business logic. This makes DAGOR gener-
ally applicable to microservice systems. Second, service admission
control of DAGOR is independent but collaborative, as the admis-
sion levels are determined by the individual services and the admis-
sion control is collaboratively performed by the related upstream
services. This makes DAGOR highly scalable to be adopted for
the large-scale, timely evolving microservice architecture. Third,
DAGOR overload control is e�cient and fair. It can e�ectively elim-
inates the performance degradation due to subsequent overload,
since all the service requests belonging to the same call path share
the identical business and user priorities. This makes the upstream

service able to sustain its saturated throughput in spite of the over-
load situation of the downstream service.

5 EVALUATION

DAGOR has been fully implemented and deployed in the WeChat
business system for more than �ve years. It has greatly enhanced
the robustness of the WeChat service backend and helped WeChat
survive in various situations of high load operation, including those
in daily peak hours as well as the period of special events such as
the eve of Chinese Lunar New Year. In this section, we conduct
an experimental study to evaluate the design of DAGOR and com-
pare its e�ectiveness with state-of-the-art load management tech-
niques.

5.1 Experimental Setup

All experiments run on an in-house cluster, where each node is
equipped with an Intel Xeon E5-2698 @ 2.3 GHz CPU and 64 GB
DDR3 memory. All nodes in the cluster are connected via 10 Giga-
bit Ethernet.

Workloads. To evaluate DAGOR independently, we implement
a stress test framework that simulates the encryption service used
in theWeChat business system. Speci�cally, an encryption service,
denoted as M , is exclusively deployed over 3 servers and prone
to be overloaded with the saturated throughput being around 750
queries per second (QPS). A simple messaging service, denoted as
A, is deployed over another 3 servers to process the prede�ned
service tasks by invoking service M as many times as requested
by the workload. Workload is synthetically generated by 20 appli-
cation servers, which are responsible for generating service tasks
and never overloaded in the experiments. Each service task is pro-
grammed to invoke service M one or multiple times through ser-
vice A, and the success of the task is determined by the conjunc-
tive success of those invocations8. Let Mx denote the workload
consisting of tasks with x-invocation to service M . Four types of
workload, namelyM1,M2,M3 andM4, are used in the experi-
ments. Regarding the overload scenario,M1 corresponds to simple
overload, whileM2,M3 andM4 correspond to subsequent over-
load.

5.2 Overload Detection

We �rst evaluate DAGOR’s overload detection, which serves as
the entry point of overload control. In particular, we experimen-
tally verify DAGOR’s design choice of adopting the average re-
quest queuing time rather than response time as the indicator of
load status for overload detection, as discussed in §4.1. To this end,
we additionally implement a DAGOR variant whose overload de-
tection refers to the average response time of requests over the
monitoringwindow, i.e., every second or every 2000 requestswhen-
ever either is met. Let DAGORq (resp. DAGORr) be the DAGOR im-
plementations with overload detection based on the request queu-
ing time (resp. response time). We conduct experiments by run-
ning workloads ofM1 andM2 individually, varying the feed rate
from 250QPS to 1500QPS. Figure 6 shows the comparison between
DAGORq andDAGORr . For simple overload as in Figure 6.a, we set
the thresholds of average queuing time and response time to 20 ms

8In case of rejection, the same request of invocation will be resent up to three times.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhou et al.

 0

 20

 40

 60

 80

 100

 250
 500

 750
 1000

 1250

 1500

S
u

c
c
e

s
s
 R

a
te

 (
%

)

Feed Rate (QPS)

By Queuing Time (20 ms)

By Response Time (250 ms)

(a)M1

 0

 20

 40

 60

 80

 100

 250
 375

 500
 625

 750
 875

 1000

 1125

 1250

 1375

 1500

S
u
c
c
e
s
s
 R

a
te

 (
%

)

Feed Rate (QPS)

By Queuing Time (20 ms)

By Response Time (150 ms)

By Response Time (250 ms)

By Response Time (350 ms)

(b)M2

Figure 6: Overload detection by di�erent indicators of load pro�ling: queuing time vs. response time.

 0

 20

 40

 60

 80

 100

250
500

750
1000

1250
1500

1750
2000

2250
2500

2750

S
u

c
c
e

s
s
 R

a
te

 (
%

)

Feed Rate (QPS)

Optimal

DAGOR

CoDel

SEDA

Naive

(a)M1

 0

 20

 40

 60

 80

 100

250
500

750
1000

1250
1500

1750
2000

2250
2500

2750

S
u

c
c
e

s
s
 R

a
te

 (
%

)

Feed Rate (QPS)

Optimal

DAGOR

CoDel

SEDA

Naive

(b)M2

Figure 7: Overload control with increasing workload.

 0

 10

 20

 30

 40

 50

M
1

M
2

M
3

M
4

S
u
c
c
e
s
s
 R

a
te

 (
%

)

Workload

Optimal

DAGOR

CoDel

SEDA

Naive

Figure 8: Overload control with di�erent types of workload.

and 250 ms respectively. As can be seen from the results, DAGORr
starts load shedding when the feed rate reaches 630 QPS, whereas
DAGORq can postpone the load shedding until 750 QPS of the in-
put. This implies the load pro�ling based on the response time is
prone to false positives of overload. Figure 6.b further con�rms this

fact with subsequent overload involved, i.e., by running the M2

workload. In addition to the settings as in Figure 6.a, we also mea-
sure the curves of success rate for DAGORr with the threshold of
response time set to 150 ms and 350 ms in Figure 6.b. The results
show that DAGORr exhibits best performance when the thresh-
old of response time is set to 250 ms. However, the optimal con-
�guration of DAGORr is di�cult to tune in practice, since the re-
quest response time contains the request processing time which is
service-speci�c. In contrast, apart from the superior performance
of DAGORq , its con�guration is easy to be �ne-tuned because the
request queuing time is irrelevant to any service logic.

5.3 Service Admission Control

Next, we evaluate DAGOR’s service admission control for load
management. As described in §4.2, the basis of DAGOR’s service
admission control is based on priority, which is further devised
to be business-oriented and user-oriented. The business-oriented
admission control is commonly adopted in state-of-the-art load
management techniques [25, 32]. DAGOR is novel in its additional
use of user-oriented priority for �ne-grained load management

Overload Control for Scaling WeChat Microservices SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 0

 20

 40

 60

 80

 100

250 750 1250 1750 2250 2750

S
u
c
c
e
s
s
 R

a
te

 (
%

)

Feed Rate (QPS)

M
1

M
2

M
3

M
4

(a) CoDel

 0

 20

 40

 60

 80

 100

250 750 1250 1750 2250 2750

S
u
c
c
e
s
s
 R

a
te

 (
%

)

Feed Rate (QPS)

M
1

M
2

M
3

M
4

(b) DAGOR

Figure 9: Fairness of overload control.

towards improved end-to-end service quality. Moreover, DAGOR
overload control can adaptively adjust service admission levels in
a real-time manner through adaptive admission control, and opti-
mize the load shedding runtime with the adoption of collaborative
admission control. These distinct strategies distinguishes DAGOR
from existing techniques of loadmanagement bymechanism.Hence,
in order to verify the e�ectiveness of DAGOR’s innovation in terms
of service admission control, we compare DAGOR with state-of-
the-art techniques, i.e., CoDel [25] and SEDA [32], through experi-
mentswith business priority being �xed for all the generated query
requests. In addition, we also employ a naive approach of service
admission control such that the overloaded service M performs
load shedding at random. Such naive approach serves as the base-
line in the experiments.

Figure 7 demonstrates the comparison results by running work-
loads ofM1 andM2 respectively. Each �gure compares the suc-
cess rate of the upstream service requests with the adoption of dif-
ferent service admission control techniques. In addition, we also
depict the theoretically optimal success rate of the upstream ser-
vice when the corresponding downstream services are overloaded.
The optimal success rate is calculated by fsat/f , where fsat is the
maximum feed rate that makes the downstream service just satu-
rated, and f refers to the actual feed rate when the downstream
service is overloaded. As can be seen from Figure 7.a, all the over-
load control techniques perform roughly the same for simple over-
load (i.e.,M1). However, when subsequent overload is involved as
shown in Figure 7.b, DAGOR exhibits around 50% higher success
rate than CoDel and SEDA in the workload ofM2. Figure 8, mea-
sured by �xing the feed rate to 1500 QPS, further shows the greater
advantage of DAGOR with the increment of subsequent overload
in the workloads of M3 and M4. Moreover, the request success
rate contributed by DAGOR is close to the optimal in all the above
results. Such superior of DAGOR is due to its e�ective suppression
of subsequent overload through the priority-based admission con-
trol, especially the user-oriented strategy.

5.4 Fairness

Finally, we evaluate the fairness of overload control with respect
to di�erent overload situations. The fairness refers to whether the
overload control mechanism biased towards one or more speci�c
overload forms. To that end, we run mixed workload comprising
M1,M2,M3 andM4 requests with uniform distribution. The re-
quests are issued concurrently by the clients with the feed rate
varying from 250 to 2750 QPS. The business priority and user pri-
ority of each request are chosen at random in a �xed range. We
compare the fairness of request success rates between DAGOR and
CoDel, and the results shown in Figure 9. As can be seen, CoDel
favors simple overload (i.e., M1) over subsequent overload (e.g.,
M2,M3 andM4). Such bias of CoDel renders its overload control
dependent on the service work�ow, where the more complex logic
tends more likely to fail when the system is experiencing overload.
In contrast, DAGOR manifests roughly the same success rate for
di�erent types of requests. This is because the priority-based ad-
mission control of DAGOR greatly reduces the occurrence of sub-
sequent overload, in spite of the number of upstream invocations
to the overloaded downstream services.

6 RELATED WORK

Plenty of existing research of overload control has been devoted
to real-time databases [3, 14], stream processing systems [4, 19,
27, 28, 33] and sensor networks [30]. For networked services, tech-
niques of overload control have been mainly proposed in the con-
text of web services [11]. However, most of these techniques are
designed for the traditional monolithic service architecture and
they do not apply to modern large-scale online service systems
that are often built based on the SOA. To the best of our knowl-
edge, DAGOR is the �rst to speci�cally address the issue of over-
load control for large-scale microservice architectures. As the mi-
croservice architecture is generally deemed to belong to the fam-
ily of SOA, we closely review the emerging techniques of overload
control for SOA, which are built based on either admission con-
trol [5–7, 26, 31] or resource scheduling [1, 2, 18, 22, 24].

Controlling network �ow by capturing complex interactions of
modern cloud systems can mitigate the impact of system overload.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA H. Zhou et al.

Varys [8] employs the co�ow and task abstractions to schedule net-
work �ows towards reduction of task completion time. But it relies
on the prior knowledge of �ow sizes and meanwhile assumes the
availability of centralized �ow control. This renders the method
only applicable to limited size of cloud computing infrastructure.
Baraat [10] alternatively adopts a FIFO-like scheduling policy to
get rid of centralized control, but at the expense of performance.
Comparing with these co�ow-based control, DAGOR is not only
service agnostic but also independent of network �ow characteris-
tics. This makes DAGOR a non-invasive overload control suitable
for microservice architecture.

Cherkasova et al. [7] proposed the session-based admission con-
trol, which monitored the performance of web services by count-
ing the completed sessions. When the web services become over-
loaded, the admission control rejects requests for creating new ses-
sions. Chen et al. [5] further proposed theQoS-aware session-based
admission control by exploiting the dependencies of sessions to im-
prove the service quality during service overload. However, these
techniques favor long-lived sessions, making them unsuitable for
theWeChat applicationwhich incorporates tremendous short-lived
and medium-lived sessions. Di�erently, DAGOR’s admission con-
trol is user-oriented rather than session-oriented, and hence does
not bias any session-related property of the service for overload
control. Moreover, the above session-based techniques rely on a
centralized module for overload detection and overload control.
Such centralized module tends to become the system bottleneck,
resulting in limited scalability of the system. In contrast, DAGOR
by design is decentralized so that it is highly scalable to support
the large-scale microservice architecture.

Welsh et al. [31, 32] proposed the technique of staged overload
control, which partitioned the web services into stages with re-
spect to the service semantics and performed overload control for
each stage independently. Each stage is statically allocated with
a resource quota for load constraint. Although such mechanism
shares some similarity with DAGOR, its prerequisites of service
partitioning and static resource allocation render it inapplicable
to the complex, dynamic service architecture such as the WeChat
backend. In contrast, DAGOR is service agnostic, making it �exible
and highly adaptable to the continuously evolving microservice ar-
chitecture.

Network overload control targeting at reduced reponse time has
been well studied [16]. Our experience of operating WeChat busi-
ness system shows that latency-oriented overload control is hardly
e�ective when used for the large-scale microservice architecture.
This motivated us to employ queuing time for overload detection
in DAGOR. Moreover, techniques discussed in the THEMIS sys-
tem [17] inspire us to take fairness into account in the DAGOR
design.

7 CONCLUSION

This paper proposed the DAGOR overload control for themicroser-
vice architecture. DAGOR by design is service agnostic, indepen-
dent but collaborative, e�cient and fair. It is lightweight and gener-
ally applicable to the large-scale, timely evolving microservice sys-
tems, as well as friendly to cross-team agile development. We im-
plemented DAGOR in the WeChat service backend and have been

running it in the WeChat business system for more than �ve years.
Apart form its e�ectiveness proved in the WeChat practice, we be-
lieve DAGOR and its design principles are also insightful for other
microservice systems.

Lessons Learned. Having operated DAGOR as a production
service in the WeChat business backend for over �ve years, we
share lessons we have learned from our development experience
as well as design principles below:

• Overload control in the large-scalemicroservice architecturemust
be decentralized and autonomous in each service, rather than
counting on the centralized resource scheduling. This is essen-
tial for the overload control framework to scale with the ever
evolving microservice system.

• The algorithmic design of overload control should take into ac-
count a variety of feedback mechanisms, rather than relying
solely on the open-loop heuristics. A concrete example is the
strategy of collaborative admission control in DAGOR.

• An e�ective design of overload control is always derived from
the comprehensive pro�ling of the processing behavior in the
actual workload. This is the basis of DAGOR’s design choices of
using the request queuing time for overload detection as well
as devising the two-tier priority-based admission control to pre-
vent subsequent overload.

ACKNOWLEDGMENTS

Wewould like to thank the anonymous reviewers for their valuable
comments and constructive suggestions that helped improve the
paper.

REFERENCES
[1] V. A. F. Almeida and D. A. Menasce. 2002. Capacity planning an essential tool

for managing Web services. IT Professional 4, 4 (2002), 33–38.
[2] Gaurav Banga, Peter Druschel, and Je�rey C. Mogul. 1999. Resource Containers:

A New Facility for Resource Management in Server Systems. In Proceedings of
the USENIX Symposium onOperating Systems Design and Implementation (OSDI).

[3] Azer Bestavros and Sue Nagy. 1997. Admission Control and Overload Manage-
ment for Real-Time Database. In Real-Time Database Systems: Issues and Appli-
cations. 193–214.

[4] Sirish Chandrasekaran and Michael Franklin. 2004. Remembrance of Streams
Past: Overload-sensitive Management of Archived Streams. In Proceedings of the
International Conference on Very Large Data Bases (VLDB).

[5] Huamin Chen and P. Mohapatra. 2002. Session-based overload control in QoS-
aware Web servers. In Proceedings of the IEEE International Conference on Com-
puter Communications (INFOCOM).

[6] Xiangping Chen, Prasant Mohapatra, and Huamin Chen. 2001. An Admission
Control Scheme for Predictable Server Response Time for Web Accesses. In Pro-
ceedings of the International Conference on World Wide Web (WWW).

[7] L. Cherkasova and P. Phaal. 2002. Session-based admission control: a mecha-
nism for peak load management of commercial Web sites. IEEE Transactions on
Computers (TC) 51, 6 (2002), 669–685.

[8] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. E�cient Co�ow Sched-
uling with Varys. In Proceedings of the ACM SIGCOMM International Conference
on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nication (SIGCOMM).

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-
value Store. In Proceedings of the ACM Symposium on Operating Systems Princi-
ples (SOSP).

[10] Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron.
2014. Decentralized Task-aware Scheduling for Data Center Networks. In Pro-
ceedings of the ACM SIGCOMM International Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication (SIGCOMM).

Overload Control for Scaling WeChat Microservices SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

[11] Sameh Elnikety, Erich Nahum, John Tracey, and Willy Zwaenepoel. 2004. A
Method for Transparent Admission Control and Request Scheduling in e-
Commerce Web Sites. In Proceedings of the International Conference on World
Wide Web (WWW).

[12] Thomas Erl. 2005. Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall.

[13] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. 2003. The Google File
System. In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP).

[14] Jörgen Hansson, S. F. Andler, and Sang Hyuk Son. 1999. Value-driven multi-
class overloadmanagement. In International Conference on Real-Time Computing
Systems and Applications (RTCSA).

[15] Yuxiong He, Sameh Elnikety, James Larus, and Chenyu Yan. 2012. Zeta: Schedul-
ing Interactive Services with Partial Execution. In Proceedings of the ACM Sym-
posium on Cloud Computing (SoCC).

[16] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Ry-
balkin, and Chenyu Yan. 2013. Speeding Up Distributed Request-responseWork-
�ows. In Proceedings of the ACM SIGCOMM International Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM).

[17] Evangelia Kalyvianaki, Marco Fiscato, Theodoros Salonidis, and Peter Pietzuch.
2016. THEMIS: Fairness in Federated Stream Processing Under Overload. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD).

[18] K. Kant and Y. Won. 1999. Server capacity planning for Web tra�c workload.
IEEE Transactions on Knowledge and Data Engineering (TKDE) 11, 5 (1999), 731–
747.

[19] Qian Lin, Beng ChinOoi, ZhengkuiWang, and Cui Yu. 2015. Scalable Distributed
Stream Join Processing. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD).

[20] Ben Maurer. 2015. Fail at Scale. ACM Queue 13, 8 (2015), 30:30–30:46.
[21] Tony Mauro. 2015. Adopting Microservices at Net�ix: Lessons for Architectural

Design. https://tinyurl.com/htfezlj.
[22] Daniel A. Menasce and Virgilio Almeida. 2001. Capacity Planning for Web Ser-

vices: Metrics, Models, and Methods. Prentice Hall PTR.

[23] Pieter J. Meulenho�, Dennis R. Ostendorf, Miroslav Živković, Hendrik B.
Meeuwissen, and Bart M. Gijsen. 2009. Intelligent Overload Control for Compos-
ite Web Services. In Proceedings of the International Joint Conference on Service-
Oriented Computing (ICSOC-ServiceWave).

[24] Je�rey C. Mogul and K. K. Ramakrishnan. 1997. Eliminating Receive Livelock in
an Interrupt-driven Kernel. ACM Transactions on Computer Systems (TOCS) 15,
3 (1997), 217–252.

[25] Kathleen Nichols and Van Jacobson. 2012. Controlling Queue Delay. ACMQueue
10, 5 (2012), 20:20–20:34.

[26] Lalith Suresh, Peter Bodik, Ishai Menache, Marco Canini, and Florin Ciucu. 2017.
Distributed Resource Management Across Process Boundaries. In Proceedings of
the ACM Symposium on Cloud Computing (SoCC).

[27] Nesime Tatbul, Uǧur Çetintemel, and Stan Zdonik. 2007. Staying FIT: E�cient
Load Shedding Techniques for Distributed Stream Processing. In Proceedings of
the International Conference on Very Large Data Bases (VLDB).

[28] N. Tatbul and S. Zdonik. 2006. Dealing with Overload in Distributed Stream
Processing Systems. In 22nd International Conference on Data Engineering Work-
shops (ICDE Workshops).

[29] Thiemo Voigt, Renu Tewari, Douglas Freimuth, and Ashish Mehra. 2001. Kernel
Mechanisms for Service Di�erentiation in Overloaded Web Servers. In Proceed-
ings of the USENIX Annual Technical Conference (ATC).

[30] Chieh-Yih Wan, Shane B. Eisenman, Andrew T. Campbell, and Jon Crowcroft.
2007. Overload Tra�c Management for Sensor Networks. IEEE/ACM Transac-
tions on Networking (ToN) 3, 4 (2007).

[31] MattWelsh andDavid Culler. 2003. Adaptive Overload Control for Busy Internet
Servers. In Proceedings of the USENIX Symposium on Internet Technologies and
Systems (USITS).

[32] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architecture for
Well-conditioned, Scalable Internet Services. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP).

[33] Ying Xing, Jeong-Hyon Hwang, Uǧur Çetintemel, and Stan Zdonik. 2006. Pro-
viding Resiliency to Load Variations in Distributed Stream Processing. In Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB).

https://tinyurl.com/htfezlj

	Abstract
	1 Introduction
	2 Background
	2.1 Service Architecture of WeChat
	2.2 Deployment of WeChat Services
	2.3 Dynamic Workload

	3 Overload in WeChat
	3.1 Overload Scenarios
	3.2 Challenges of Overload Control at Scale

	4 DAGOR Overload Control
	4.1 Overload Detection
	4.2 Service Admission Control
	4.3 Workflow of Overload Control

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overload Detection
	5.3 Service Admission Control
	5.4 Fairness

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

