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Abstract
Software applications run on a variety of platforms (filesystems,
virtual slices, mobile hardware, etc.) that do not provide 100%
uptime. As such, these applications may crash at any unfortunate
moment losing volatile data and, when re-launched, they must be
able to correctly recover from potentially inconsistent states left on
persistent storage. From a verification perspective, crash recovery
bugs can be particularly frustrating because, even when it has been
formally proved for a program that it satisfies a property, the proof
is foiled by these external events that crash and restart the program.

In this paper we first provide a hierarchical formal model of
what it means for a program to be crash recoverable. Our model
captures the recoverability of many real world programs, includ-
ing those in our evaluation which use sophisticated recovery algo-
rithms such as shadow paging and write-ahead logging. Next, we
introduce a novel technique capable of automatically proving that
a program correctly recovers from a crash via a reduction to reach-
ability. Our technique takes an input control-flow automaton and
transforms it into an encoding that blends the capture of snapshots
of pre-crash states into a symbolic search for a proof that recovery
terminates and every recovered execution simulates some crash-
free execution. Our encoding is designed to enable one to apply
existing abstraction techniques in order to do the work that is nec-
essary to prove recoverability.

We have implemented our technique in a tool called ELEVEN82,
capable of analyzing C programs to detect recoverability bugs or
prove their absence. We have applied our tool to benchmark ex-
amples drawn from industrial file systems and databases, includ-
ing GDBM, LevelDB, LMDB, PostgreSQL, SQLite, VMware and
ZooKeeper. Within minutes, our tool is able to discover bugs or
prove that these fragments are crash recoverable.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking; Correct-
ness proofs; Reliability; D.4.5 [Operating Systems]: Reliability—
Verification; F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages—
Program analysis

General Terms Verification, Theory, Reliability

Keywords Crash recovery, formal verification, program analysis

1. Introduction
Storage systems such as file systems, databases, and version control
store valuable user data, so their correctness is paramount. A major
issue that these systems must handle is crash-recovery: the machine
may crash at any unfortunate moment, regardless of what operation
is in flight and what data is being mutated. A storage system must
correctly recover from these potentially very broken states and
retain as much useful data as possible. These kinds of bugs can
be particularly frustrating because, even when it has been formally
proved for a program P that P ⊧ ϕ, the proof is foiled by these
external events that crash and restart the program. Some recent
efforts [7, 8, 19, 26] notwithstanding, this space remains largely
unexplored: little backbone has been developed for understanding
what it means for a program to correctly recover from a crash from
a verification perspective.

The first part of this paper provides a hierarchical specification
of crash recoverability. The idea is that, after a crash, a re-executed
program should behave the “same” as the original uncrashed pro-
gram from an initial state. More precisely, a proof of recoverability
means that, after a crash, the program eventually will reach a state
that is observationally equivalent to (simulates) some state that was
visited before the crash (i.e. in the trace’s prefix). We formalize this
notion of recoverability, which is general enough for proving cor-
rectness of programs that use real-world durability protocols.

Next, we introduce a novel technique capable of automatically
discovering proofs of crash recoverability of unmodified programs.
Our core algorithmic technique is to reduce the crash recoverability
problem to reachability. For an input program A described as a
control-flow automaton [24], we describe a novel transformation
into an encoding A(○)

E
such that

∃D.ADE cannot reach error ⇒ A is crash recoverable

where D is an indexed set of termination arguments. The encoding
AD
E

symbolically tracks snapshots of pre-crash states and, after a
crash, attempts to align the crashed program with one of these pre-
viously saved uncrashed program snapshots in order to show simu-
lation. AD

E
reaches error if either (i) recovery does not terminate

or (ii) recovery does not lead to a state that is observationally equiv-
alent to some state in the pre-crash prefix. In this way, a proof of
automaton non-reachability entails a proof of recoverability. Thus,
we can leverage existing abstraction techniques (interpolation, ab-
straction refinement, termination argument refinement, etc.) to au-
tomatically reason about the recoverability of a program.

We have implemented this technique in a tool called ELEVEN82*

that is able to prove recoverability of C/C++ programs. While our
formal definition of recoverability is over arbitrary transition sys-
tems, our implementation is based on control-flow automata [24],
as they have been successful at verification of industrial pro-
grams [5]. Our tool is able to prove recoverability for programs
that implement complex filesystem algorithms such as write-ahead
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logging [25] and shadow paging [20]. We have applied our imple-
mentation to benchmark examples (based on Fig. 4 of [27]) taken
from several industrial databases, virtual machine monitors, and
distributed consensus servers including GDBM, LevelDB, LMDB,
PostgreSQL, SQLite, VMware and ZooKeeper. Our tool is able to
automatically discover (known) recoverability bugs or prove recov-
erability of these examples, and it is typically able to do so within
a minute or two.

In summary, our principal contributions are:

• A hierarchical inductive/co-inductive definition of crash recov-
erability (from N− to ∞−recoverability) (Sections 3 and 4).

• A novel technique for automatically proving recoverability via
a reduction to reachability (Section 5) and a soundness proof
thereof (Section 6).

• An implementation (Section 8) called ELEVEN82, the first tool
capable of automatically proving recoverability of programs.

• An experimental validation on two recovery paradigms and
several examples taken from real systems (Section 9).

Limitations. Our automated technique is able to prove that a pro-
gram correctly recovers from at least one crash. Our theoretical de-
velopment outlines a stronger hierarchy of recoverability proper-
ties, including N -recoverability and ∞-recoverability. Techniques
for proving these higher-order recoverability properties are left for
future work. Our model also does not directly capture recovery that
leads to states that are outside the trace prefix but it may be possible
to model such examples by modifying the program.

2. Recoverability and Storage Systems
The problem of crash-recovery in storage systems, for example, is
fundamentally rooted in their hierarchical design. Magnetic disks
are durable: data stored on disks persist across power cycles. How-
ever, disks are orders of magnitude slower than volatile memory.
Thus, storage systems strive to keep data in memory as long as pos-
sible for speed, before they have to flush the data to disk. In addi-
tion, the disk durability interface is quite limited, typically provid-
ing only two primitives: (1) a primitive that guarantees the atomic
write of a disk sector at the moment of a power failure and (2) a wait
primitive that returns only after a given section is written durably to
disk. Yet atop this limited interface storage systems must provide
rich, intuitive abstractions such as files, directories, and transac-
tions. Storage applications in turn build more complex functional-
ity on top of them, and must correctly use the abstractions to sync
data to disk. These implementations have complex designs so as to
carefully write out the modified disk sectors in appropriate orders
and, consequently, provide ad hoc or poor crash-recovery guaran-
tees and are ripe with bugs [16, 23, 27, 33–36].

Systems researchers and practitioners have long fought this
crash-recovery challenge. They have created techniques such as
shadow paging [20], write-ahead logging in ARIES [25], and soft
updates [18], for safely persisting data on disk. These techniques
have been adapted and used in the Linux ext3/ext4 file systems [32].

Testing. The systems community has also developed testing tools
for crash-recovery. FiSC [34, 35] and eXplode [33, 36] systemati-
cally enumerate through many possible crash scenarios and check
that a system correctly recovers from each of them The core ideas
in these systems are borrowed from model checking except that
they check code directly without requiring a formal specification
of a checked system. While this practical design enables FiSC and
eXplode to find many serious errors in real-world storage systems,
it also limits their rigor and guarantee. SQCK [23] advocates the
idea that file system recovery utilities should be implemented using
declarative languages. Alice [27] extracts applications’ durability
update protocols by running the applications and simulating many

different crash scenarios. Results from Alice show that different file
systems provide very different durability guarantees and that many
serious data-loss errors are considered “unfixable” by developers.

Formal Methods. The critical nature of file system warrants for-
mal analysis of their implementations.

Concurrent with our work, Chen et al. [7] describe their ef-
forts developing the first verified filesystem, and a specification
logic called Crash Hoare Logic (CHL). Their work, like ours, is
concerned with the recoverability problem and, in particular, for
filesystems with asynchronous disk operations. From a broad per-
spective, our works are complementary: Chen et al. focus on verify-
ing the filesystem, while our work is aimed at verifying user-level
programs, with the assumption that the underlying filesystem has
already been verified. From a technical perspective, the main dif-
ference is that we focus on automation while they focus on proof
modularity/reusability. Our work is fully automatic: users do not
need to provide specifications nor write any proofs. By contrast,
Chen et al. require user-provided CHL specifications and do not
have fully-automated proofs. The user needs to be involved in com-
pleting the proof obligations. In an earlier short paper from (mostly)
the same authors [8] they discuss several ways of specifying crash
recoverability properties but, again, do not provide any techniques
for automatically verifying recoverability.

Ntzik et al. [26] describe a novel program logic for expressing
crash recoverability, in which the volatile and persistent (durable)
state are tracked separately. Unlike any prior work, their logic
even has support for concurrency. Their work does not discuss
automation and, thus, many of the distinctions of our work to Chen
et al. mentioned above also distinguish us from Ntzik et al.

Finally, Gardner et al. [19] describe a logic for reasoning about
tree structures, such as the POSIX file system and Ridge et al. [30]
provide a specification of the POSIX filesystem. These works are
orthogonal to ours; while they do not directly pertain to proving
crash recovery, they provide a rigorous separation between appli-
cations and OS implementations.

In recent years, techniques have emerged for proving tempo-
ral properties of imperative programs (or automata derived there-
from) [4, 12–14, 17]. While there is some similarity (i.e. mix of
safety and liveness), to our knowledge recoverability cannot be ex-
pressed in temporal logic (not even with auxiliary variables). Sim-
ulation has been reduced to safety in other contexts such as SMV’s
refinement layer proofs [10] and Mocha’s simulation proofs [1].
Our transformation produces an encoding that has two copies of the
program in synchrony, baring some similarity to self-composition
in information flow security [3, 31].

The fundamental distinction between volatile and persistent
storage means that recoverability is a concern even in the absence
of concurrency. That is, the recoverability problem here is orthogo-
nal to the atomicity problem in concurrency and the fault tolerance
problem [6, 29].

Challenges. Storage systems have some of the most complex
code for implementing recovery features that are crucial for func-
tionality and performance. These features present many open chal-
lenges for formal verification. First, to verify a program, one needs
to have the code of the program. This most basic scope question is
difficult for a storage system because crash recovery often involves
operations done by multiple programs (such as the filesystem re-
covery utility fsck). In addition, since crashes are user-visible
events, the recovery can involve users and administrators. All of
these operations must be modeled.

Second, storage systems typically adopt a multi-layered design
that includes (from bottom to top): disks whose firmware can have
400K lines of code [2], device-specific disk drivers in the OS,
generic block device drivers to abstract over disks, file systems,
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generic virtual file system layers to abstract over file systems, and
storage applications such as MySQL. It is already challenging to
verify that an individual layer is crash recoverable. For end-to-end
crash recoverability, we have to verify recovery of the entire storage
stack. Work on formalizing these layers (e.g. CertiKOS [21]) does
not currently address the crash recoverability problem.

Third, for performance, storage systems heavily use delayed
writes that reach disks asynchronously. For instance, Linux ext3
file system flushes out modified file data every 30 seconds, and its
write-ahead log every 5 seconds. If a crash happens before these
timers are fired, the file system is permitted to lose data. Thus, the
specification language and proof system for crash recoverability
must allow reasoning over time.

Finally, storage systems heavily rely on concurrency for perfor-
mance. While currency is already a notoriously difficult problem
for verification, the problem is even more challenging when com-
bined with crash recoverability. Existing concurrency verification
approaches are not immediately applicable because invariants that
hold without crashes may no longer hold.

3. Examples and Program Model
We now introduce our treatment of the crash recoverability problem
with a few examples, given in Figure 1. In later sections we will
formalize recoverability and give our reduction to reachability.

3.1 What Is a Crash?
We work with programs that run on some platform which, at some
nondeterministic point, may crash the execution. Consider the dia-
gram of program locations in Example 1 in Figure 1. The first exe-
cution (in blue) begins at node 0, proceeds through node 1 to node
2. At this point, the environment/platform crashes the program, and
the program is restarted for a second execution (in green). To make
things more concrete, one might think of a personal computer and
the following events:

1. Boot machine
2. Establish program environment } Initial state

3. Execute the program
4. Crash mid-execution }Crash
5. Re-Boot machine
6. Execute recovery script
7. Establish program environment

⎫⎪⎪
⎬
⎪⎪⎭

Recovery

8. Re-execute the program
(perhaps from a checkpoint)

We will consider the first two events to establish the initial state
(as in other verification contexts). The crash is some kind of exter-
nal event and, for concreteness, we will say that it havocs volatile
storage, but maintains persistent storage (the formalism does not
require this definition of a crash). After a crash, there is a recovery
process which involves re-establishing a (potentially new) initial
state, perhaps with the help of a recovery script. Finally, the pro-
gram is re-executed. In practice, a storage application may come
with a program for normal operation and a recovery utility for re-
covering from crashes. Moreover, some recovery operations are
done manually by administrators. In this paper, we combine these
separate elements into one program for clarity.

Consider the code in Figure 1, Example 1. This is a simplified
example of a command-line tool that manipulates the filesystem us-
ing standard POSIX operations: open, read, rename, etc. Initially
we will assume that the file input is on disk. After opening input,
it reads data into a buffer. Imagine that, at this point, it crashes and
is re-executed from the beginning. In this example there should be
no problem re-executing the program, largely because the program
is read-only with respect to persistent storage: it does not modify
the filesystem. The re-execution behaves exactly the same as the

original execution, had it not crashed (we will assume there are no
other programs modifying the filesystem).

But what happens if the program does modify persistent stor-
age? Consider Example 2 which, after opening the input file, cre-
ates an output file and writes a byte to it. The second open op-
eration has the O CREAT flag, telling the OS to create the file if it
does not exist, and open it for write only (for now, assume that the
gray O TRUNC flag is not used). The first new subtlety here is that,
for performance, this program does not use synchronous file system
operations: operations open, write, rename, etc. may not imme-
diately make it to disk. These operations return to the user and then
later are asynchronously written from the system libraries down to
the disk. Although this does improve performance in most cases, it
means that the user program is “out of sync” with the file system.
We can model this behavior as a cross-product between the pro-
gram code and the internal filesystem operations which nondeter-
minisitically writes data from memory to disk. (We omit illustration
of this cross-product to keep these examples concise.)

Returning to Example 2, if the program crashes on Line 3, the
disk will be left in one of three possible states: output does not
exist, output exists but is empty, or output exists and contains a
single byte. Taking the second or third case, we can visualize what
happens with the Example 2 diagram: after the crash, the program
is re-executed in a state that is not exactly the same as the initial
state because output will exist on disk. When re-executed, how
can we say that the program behaves correctly? This leads us to a
working hypothesis of this paper:

Recovered programs should not introduce behaviors that
were not present in the original (uncrashed) program.

With the possibility of crashes comes the possibility that new be-
haviors will be introduced during re-execution. Programs that are
able to properly recover from a crash need to account for these new
situations that may arise: when the program is re-executed, some
operations will have become persistent and volatile data will be
lost. By including the O TRUNC flag in Example 2, we make the
program crash recoverable: when re-executed, the program over-
writes the incomplete modifications from the first execution.

Informally, we might think of the trace semantics [[P ]] of a
program P , and use P̂ to indicate a program that is identical to
P except that it may crash (at any point) and be re-executed.
We would like to show that [[P̂ ]] ⊆ [[P ]] modulo a simulation
relation. In particular, we will search for observational equivalence.
The ⪰ symbols in Example 2 illustrate the simulation relation
that we would like to find. A key benefit of this approach to
crash recoverability is that we can use the original program as the
specification for how the program should behave in the context of
crashes.

Non-determinism. Consider Example 3 in Figure 1. Here, after
the output file is opened, the program nondeterministically de-
cides whether to write A or B to output. Perhaps the first execu-
tion will go from Line 2 to Line 3, whereas the re-execution will
go to Line 4. Certainly this should be acceptable, but adds another
subtlety: the re-execution of the program need not simulate the first
execution but, rather, may simulate some other feasible execution
of the original program.

3.2 Recovery Scripts
Thus far, we have considered examples that merely involved re-
execution of the program. The last two examples increase the ex-
pressiveness of the recovery process.

While the previous examples were written to carefully tolerate
unfinished changes to persistent storage, another route is for the
recovery script to restore it to the initial state (or similar thereto).
In Example 4, we have changed the program, so that it performs
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Example 2: Simulation

in = open(input)
read(in,buf);
CRASH
...

4
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in = open(input)
out = open(output,O_CREAT
       |O_WRONLY|O_TRUNC)
write(out,”A”)
CRASH
...
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Example 3: Nondeterminism
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in = open(input)
out = open(output,O_CREAT
       |O_WRONLY|O_TRUNC)
if(rand()) {
  write(out,”A”);
  CRASH
} else {
  write(out,”B”);
}
...
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Example 4: Recovery Scripts

5

2’

1’

0’

4’

5’

in = open(input)
out = creat(output)

if(rand()) {
   write(out,”A”);
   CRASH; RECOVER()
} else {
   write(out,”B”);
...
_____________________
RECOVER() {
  if(exists(output)) 
    unlink(output);
}
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Example 5: Recovery Checkpoints
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out = creat(output)
write(out,”pre”);
fsync_commit(out); 
chkpt:
if(rand()) {
  CRASH; RECOVER()
  ...
} else {
  ...
_____________________
RECOVER() {
  if(committed) {
    out=open(output);
    goto chkpt;
} }

C
R
A
S
H

10

0

1

2

3

0

1

2

3

4

0

1

2

3

4

5

0

1

2

3

4

5

10

0

1

2

3

4

5

10

{ disk(output) }

4

First ExecutionFirst Execution

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

≿

Figure 1. Examples of programs that crash and (possibly) recover.

the creat(output) operation rather than using open. This is
acceptable because there is also a recovery script that, after a crash,
removes the output file if it exists on disk. Without the recovery
script, this program would not be crash recoverable.

But do we always have to recover to the initial state? No: filesys-
tems and databases would be horribly inefficient if they always re-
turned to a start state after a crash. Instead, we would like to support
checkpoints, as illustrated in Example 5. POSIX-like filesystems
offer an operation called fsync which can be used to force opera-
tions to disk. These operations are like barriers: they ensure order-
ing constraints. fsync(f) blocks the program until all operations
on file f have been written to persistent storage.

This facility is helpful in establishing a checkpoint, as shown
on Line 2. This command fsync commit is pseudo-code for atom-
ically performing the fsync and setting a flag committed to true.
If the program crashes after a checkpoint (e.g. on Line 4), the recov-
ery script can restore to the checkpoint rather than the beginning of
the program. In this example, the RECOVER script checks whether
committed is true, opens the output, and resumes to Line 3.

3.3 General Form
This final Example 5 nearly illustrated the most general form
of programs in our setting. Recoverability proofs will have the
following form for each trace:

σ''

σ
1

σ
n σ'

crash
σ
k

σ
k

≲

σ
0

σ'
k

σ'
k

≲

recovery

This diagram illustrates a trace of a system that begins at an initial
state σ0, steps through σ1 and so on, via σk to σn. At σn, a special
crash transition occurs, taking the system to some σ′, from which
point recovery is needed. The recovery, if correct, eventually leads

to some state σk that is observationally equivalent to (i.e. simulates)
a state σk that was in the trace prefix before the crash occurred.
Hence forward, the system behaves as it would if it had not crashed.
We found that this definition was suitable to cover a wide variety
of examples taken from the industrial systems that we considered.

There is yet another complication: what happens if there are
multiple crashes? In particular, what happens if the recovery script
crashes? In the next section we give a specification of recoverability
that encompasses all of these issues.

4. Specifying Crash Recoverability
We now establish preliminary definitions and then define a hierar-
chy of crash recoverability.

States and transition systems. A labeled transition system M =
(Σ,Λ,Γ, σ0) is over state space Σ, labels Λ, transitions Γ ⊆ Σ×Λ×

Σ, and initial state σ0. We denote a single transition as σ
λ
Ð→ σ′. A

trace π of machine M is a sequence σ0
λ0
Ð→ σ1

λ1
Ð→ σ2⋯ such that

∀i ≥ 0. σi
λi
Ð→ σi+1. We will use the notations σ0

λ0,λ1,...
ÐÐÐÐÐ→ ⋯ and

σ0
Λa
Ð→ ⋯ where Λa is a sequence of transitions, when we don’t

need to bind names to intermediate states. For convenience and
w.l.o.g., we will work only with infinite traces. We use the notation
Π(M,S) to mean the set of all traces of M from S, and we use
Π(M) to mean Π(M,{σ0}). We also will use the notation σ

λ
Ð→ π

when we want to talk about the prefix σ
λ
Ð→ of a trace σ

λ
Ð→ π. We

use π0 to denote the first state of π, and πn to be the nth suffix of π
(the latter binds tighter than the former in π0

n). As usual, we say that
a simulation relation is a relation ≾ on states, defined coinductively:

∀λ1. σ1
λ1
Ð→ σ′1. ∃λ2 σ

′

2. σ2
λ2
Ð→ σ′2 ∧ λ1

Λ
= λ2 ∧ σ′1 ≾ σ

′

2

σ1 ≾ σ2
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Later in this paper, we will describe our automatic technique in
which transitions will correspond to abstract method operations.
We will use arc labels λ1 and λ2 to denote operation executions,
and equality between λ1 and λ2, denoted Λ

=, when the results of
the operations are equivalent. We will work with transition systems
that have a special crash label λcrash ∈ Λ.

Recovery. A robust system will want to prepare for the possibility
that a crash may occur, so it will also have recovery labels that are,
for convenience, not disjoint from Λ. Recovery attempts to bring
the system back to a “normal state” σi. However, it may not bring
it back to exactly the same state that would have been reached.
Instead, it may bring the system back to a state σ′k that simulates
σk. For the purposes of this paper we focus on recovery that returns
the system to a state σ′k that simulates a state σk in the current
trace’s prefix before the λcrash transition. Formally, recovery RN
of a trace is defined inductively as:

R0(π)

σ
λ
Ð→ π0 RN(π)

RN(σ
λ
Ð→ π)

∃ k < n, j ≥ 0. π0
j ≾ σk ∧ RN−1(σ0

λ0⋯λk−1
ÐÐÐÐÐ→ πj)

RN(σ0
λ0⋯λn−1
ÐÐÐÐÐ→ σn

λcrash
ÐÐÐ→ π)

where, among the λ labels, only λcrash is a crash arc (π may have
crash arcs). The base case R0 indicates that π recovers from at
least 0 crashes, and thus has no premises. The second rule says that
σ

λ
Ð→ π recovers safely from N crashes, provided that λ is not a

crash, σ
λ
Ð→ π0, and the trace π recovers from N crashes. The third

rule allows us to derive RN from RN−1. We splice out a portion
of the trace that crashes σk

⋯

Ð→ and then recovers to a simular state
π0
j . This can be visualized as:

R
N

R
N-1 π

σ0 σn σ'
crash

σi

σ'i

≲

σ1

The crashed trace σ0, σ1, ..., σk, σn, ... is recovered, provided that
(i) the first element of π (i.e. σ′k) simulates σk, denoted π0 ≾ σk
and (ii) we can say that π has (N − 1) recovered.

This inductive definition applies when there are only finitely
many crashes. For example, if there are N crashes, the rule on the
right can be usedN times and then, with all crash arcs removed, the
rule on the left can be used. Note also that this definition permits
crashes that occur during recovery. The following co-inductive
variant can be used when there are infinitely many crashes:

σ
λ
Ð→ π0 R(π)

R(σ
λ
Ð→ π)

∃ k < n, j ≥ 0.π0
j ≾ σk ∧R(σ0

λ0⋯λk−1
ÐÐÐÐÐ→ πj)

R(σ0
λ0⋯λn−1
ÐÐÐÐÐ→ σn

λcrash
ÐÐÐ→ π)

Crashy programs have a “doomed” piece of computation: some
states are visited (above, σk, ..., σn, ..., π0

j−1) and then this com-
putation is erased. This is similar to the notion of zombie trans-
actions in a software or hardware transactional memory (TM). In
the TM community, it is recognized that there are cases (e.g. de-
pendent transactions [28]) when it is acceptable for a transaction to
observe the effects of a zombie transaction and yet also more rigor-
ous correctness criteria (e.g. opacity [22]) that forbid such things.
We believe a similar paradox exists here. Consider systems code
that is performing filesystem operations, mutating things such as
log files along the way. What happens if this code crashes? It is the
authors’ opinion that side-effects such as these log messages should

(morally) not be allowed. However, we also acknowledge that often
they are harmless.

With the above definitions of R and RN , we can define an
overall notion of crash recoverability of a transition system: labeled
transition system M is ∞-recoverable denoted R(M) provided
∀π ∈ Π(M) that R(π). M is N -recoverable denoted RN(M)
provided that ∀π ∈ Π(M). RN(π). For the rest of this paper
we focus on 1-recoverability; techniques for proving higher-order
recovery are left to future work.

5. Automation
We now give an automatic technique for discovering proofs of crash
recoverability by reducing the problem to automaton reachability.
We will describe a novel transformation of a given input program
automaton A, into a new automaton AD

E
which symbolically en-

codes the search for a proof that recovery terminates and that new
behaviors are not introduced.

5.1 Control-Flow Automata
We focus on programs described as control-flow automata (CFA) [24],
as they are quite general and have been used as the basis of tools
that are able to verify significant industrial examples [5].

Definition 5.1 (Control flow automaton [24]). A (deterministic)
control flow automaton A is a tuple ⟨Q, q0,X,Op,Ð↠⟩ where Q
is a finite set of control locations, q0 is the initial control location,
X is a finite set of typed variables, Op is a set of operations and
Ð↠⊆ Q × Op ×Q is a finite set of labeled edges.

We work with labels of the form Y = m(X) where Y ⊆ X is a
vector of variables returned from the execution of m. These are the
observations made by an operation, which we will later use in our
definition of observational equivalence. We define a valuation of
variables θ ∶ X → Val to be a mapping from variables names to
values. Let Θ be the set of all valuations. An m ∈ Op is a name of a
method call (operation). The notation exec(θi,m, θi+1, Y ) means
that executing method m, using the values given in θi, leads to
a new valuation θi+1, mapping variables X to new values, and
returning observations via variables Y . We assume that for every
θ1 ∈ Θ, and every m ∈ Op that exec(θ1,m, θ2, Y ) is computed in
finite time, and that θ2 ∈ Θ. One may discharge this assumption via
a termination analysis [15].

Arcs are required to be deterministic. This is not without loss of
generality. We support nondeterminism in our examples by sym-
bolically determinizing the input CFA: whenever there is a nonde-
terministic operation m, we can augment X with a fresh prophecy
variable ρ, and replace m with a version that consults ρ to re-
solve nondeterminism. Similar symbolic determinization is done
elsewhere [12].

A run of a CFA is an alternation of automaton states and val-
uations: r = q0, θ0, q1, θ1, q2, . . . such that ∀i ≥ 0. ∃m. qi

m
Ð↠

qi+1 ∧ exec(θi,m, θi+1, Y ). Again, for convenience, we assume
only infinite runs (this is not without loss of generality). We denote
as Π(A) the set of all runs ofA. We say that CFAA can reach au-
tomaton state q provided that ∃q0, θ0, q1, θ1, ... ∈ Π(A) such that
there is some i ≥ 0 such that qi = q.

For CFA A = ⟨Q, q0,Op,X,Op,Ð↠⟩, with valuation space Θ,
we define the induced trans. system Mq

A
= ⟨ΣA,ΛA,ΓA, σ

0
A
⟩ as:

ΣA = Q ×Θ,
ΛA = Op,

ΓA = {⟨q1, θ1⟩,m, ⟨q2, θ2⟩ ∣ q1
m
Ð↠ q2 ∧ exec(θ1,m, θ2, Y )},

σ0
A
= ⟨q, θ0⟩

We will simply write MA when we mean Mq0
A

. For a run r =
q0, θ0, q1, θ1, . . . of A, we define the induced trace to be πr ≡
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For an input CFA A = ⟨Q, q0,Op,X,Op,Ð↠⟩ with Qrcv ⊆ Q, and crash script crash, let CFA AD
E
≡ ⟨QE , q

0
E
,XE ,OpE ,Ð↠

E

⟩, where

QE = Q ∪ {qerr}⋃
(qi, ,qj)∈Ð↠{qij}

q0
E

= q0
XE = { CR} ∪ ‘X ∪X ∪⋃i ‘Xi⋃ X̃
Op
E

= (seeÐ↠
E

below)

Ð↠
E

= {qerr
true
ÐÐ↠
E

qerr} ∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃
(qi,m,qj)∈Ð↠ . qi

{¬ CR}Y ∶=m(X);‘Xi ∶=X
ÐÐÐÐÐÐÐÐÐÐÐÐÐ↠ qj (L1)

qi
{ CR}Y ∶=m(X);‘Y ∶=m(‘X);
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ↠ qij (L2)

qij
{Y =‘Y }
ÐÐÐÐ↠ qj and qij

{Y ≠‘Y }
ÐÐÐÐ↠ qerr (L3)

⋃qi∈Q,q̂k∈Qrcv . qi
crash(X); CR∶=true;‘X ∶=‘Xk;X̃ ∶=X
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ↠ q̂k (L4)

⋃q̂k,q̂k′ ∈Qrcv . q̂k
{(X̃,X)∉D}
ÐÐÐÐÐÐ↠ qerr and q̂k

X̃ ∶=X;Y ∶=m(X)
ÐÐÐÐÐÐÐÐÐ↠ q̂k′ and q̂k

Y ∶=m(X)
ÐÐÐÐÐ↠ q̂k′ (L5)

Figure 2. The formal transformation from input automaton A to AD
E

. Non-reachability of qerr entails crash recoverability of A.

⟨q0, θ0⟩,m0, ⟨q1, θ1⟩,m1, . . . where ∀i ≥ 0. ∃mi. qi
mi
ÐÐ↠ qi+1 ∧

exec(θi,mi, θi+1, Y ). Finally, for a run r we define N -recovery of
the runRN(r) to be N -recovery of the induced trace of r. That is:
RN(πr). Likewise forR.

As discussed earlier, our implementation works with pro-
grams that perform file operations (open, read, etc.) on an asyn-
chronous file system that may lazily shuffle these operations from
mem to disk. To this end, we construct a cross-product CFA
between an input program and the filesystem’s transition sys-
tem. This cross-product has built into it an implicit distinction
between volatile and persistent components of the state. That
is, the variables in X can be partitioned into Xv ⊎ Xp where:
Xv = {mem, x, y, z, ...} and Xp = {disk} where x, y, z are pro-
gram variables.

Recovery scripts. We will work with CFAs that have a certain
structure pertaining to recovery. When the CFA has recovery code
that is intended to recover to automaton state qk, then the crash
arc will lead to a special automaton state q̂k. (In implementations
this is tantamount to marking checkpoints.) From q̂k, recovery will
then, if it operates correctly, lead throughly recovery-oriented states
Qrcv ⊆ Q and eventually reach state qk ∈ (Q∖Qrcv). When we wish
to analyze an automaton that does not have this structure, we can
impose a trivial version of this structure that does no recovery by
adding a skip arc from q̂0 to q0.

5.2 The Algorithmic Reduction
Transformation of an input control-flow automaton A into a new
CFA AD

E
= E(A,crash,D) is given in Figure 2. It is designed

to reach qerr if it is possible for a post-crash recovery to diverge
or lead to a state that is not observationally equivalent to some
prefix state. Consequently, a (non)reachability proof forAD

E
entails

crash recoverability ofA.QE is given byQ but augmented with an
error state qerr and intermediate states qij , q0

E
is simply q0, and there

are several duplicate sets of variables for X: variables for per-node
snapshots ‘Xi, variables for a loaded snapshot ‘X and variables for
the termination check X̃ . Op

E
can be derived from the definition of

Ð↠
E

which, intuitively, involves the following:

1. Symbolic snapshots (L1): The transformation introduces a
command that captures a symbolic snapshot ‘Xj of X on each
arc entering each state qj (L1). These ‘Xj variables record the
state that was visited when a run passed through qi. Later, if re-
covery happens to return to qk, the values of ‘Xk can be loaded

into ‘X which will then be used as part of the mechanism for
ensuring observational equivalence.

2. Non-deterministic crash (L4): Crash arcs are introduced from
each qj to q̂k. A run of the CFA may nondeterministically
choose to take these arcs which execute the crash and begin
recovery from q̂k. At this point, flag CR is set and snapshot
‘Xk from recovery destination location qk is loaded into ‘X .
The unindexed variablesX are duplicated to X̃ for use in (L5).

3. Simulation check arcs (L2): On a run in which a crash has
occurred, we must make sure that the run of the automaton
over these crashed/recovered variables X simulates a crash-
free run of the automaton from qi whose saved state is recalled
into the ‘X variables. To this end, we create duplicate arcs,
guarded by { CR}, in which the op is performed on both the
crashed/recovered variables X and the loaded snapshot ‘X . An
arc is then added to a waypoint qij .

4. Error states for simulation violation (L3): We introduce arcs
from these waypoints qij to qerr whenever the return value Y of
performing m(X) is not equivalent to the return value ‘Y of
performing m(‘X) and arcs to qj otherwise.

5. Eventuality (L5): We ensure that recovery code eventually
leads to the destination with a known transformation [15] that
introduces another set of variables X̃ which may, at any non-
deterministic moment in time, be duplicated from X . An arc is
added to qerr whenever (X̃,X) is not in well-founded D.

The valuations arising from runs of AD
E

involve multiple com-
ponents (arising from the symbolic snapsots). We will use the
notation: [B, ‘θ, θ̃, θ, ‘θ0, ‘θ1, . . . ] where the first component is a
boolean value for CR, the second component is the valuation ‘θ
is used for the loaded snapshot ‘X variables, the third component
is the valuation θ̃ used for the X̃ termination variables, the fourth
component is the valuation θ used for the main X variables, and
the remaining components are the valuations of snapshot ‘Xj vari-
ables. Thus, a run rE of the encoded machine will be of form

rE = q0, [false,�,�, θ0,�,�, . . . ], (initial config.)
q1, [false,�,�, θ1, ‘θ0,�, . . . ],
q2, [false,�,�, θ2, ‘θ0, ‘θ1, . . . ],
. . .

6. Soundness
We now give some helper lemmas along with our soundness result.
We will abbreviate post-crash valuations, as [true, ‘θ, θ], focusing
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only on the restored snapshot ‘θ and the crashed/recovered θ, omit-
ting the other snapshots (note that the valuation θ̃ is needed for
Lemma 6.3 but, for simplicity, not displayed here).

Lemma 6.1. Every configuration of AD
E

has a successor.

Proof. By the axiom that every configuration of A has a successor
and by construction of AD

E
.

Lemma 6.2 (Simulation). For all A and corresponding encoding
AD
E

, if ∀rE beginning at config. ⟨q0, [true, ‘θ0, θ0]⟩ that rE cannot
reach qerr, then ⟨q0, ‘θ0⟩ ≾ ⟨q0, θ0⟩ where these induced states are
w.r.t. respective transition systems ‘M = ⟨Q × θ,Op,ΓA, ⟨q0, ‘θ0⟩⟩
and M = ⟨Q × θ,Op,ΓA, ⟨q0, θ0⟩⟩ both induced by A.

Proof. Let notation ⟨q, [ , , θ]⟩   qerr mean that qerr cannot be
reached in any run from ⟨q, [ , , θ]⟩. We prove the lemma by
coinduction with the following hypothesis:

∀q1 θ1 ‘θ1 m. q0
m
Ð↠ q1 ∧

⟨q1, [true, ‘θ1, θ1]⟩  qerr ⇒ ⟨q1, θ1⟩ ≾ ⟨q1, ‘θ1⟩
∀q0 ‘θ0 θ0. ⟨q0, [true, ‘θ0, θ0]⟩  qerr ⇒ ⟨q0, θ0⟩ ≾ ⟨q0, ‘θ0⟩

First we specialize ≾ for CFA-induced trans. systems:

∀m j θj . qi
m
Ð↠ qj ∧ exec(θi,m, θj , Y ).

∃‘θj . exec(‘θi,m, ‘θj , ‘Y ) ∧ Y = ‘Y ∧ ⟨qj , θj⟩ ≾ ⟨qj , ‘θj⟩

⟨qi, θi⟩ ≾ ⟨qi, ‘θi⟩

To see that this definition is guarded, recall our axioms that a
configuration ⟨q, θ⟩ always has a successor and that exec always
terminates and produces a valid θ′.

Now, letting i = 0, we have

∀m θj . q0
m
Ð↠ qj ∧ exec(θ0,m, θj , Y ).

∃‘θj . exec(‘θ0,m, ‘θj , ‘Y ) ∧ Y = ‘Y ∧ ⟨qj , θj⟩ ≾ ⟨qj , ‘θj⟩

⟨q0, θ0⟩ ≾ ⟨q0, ‘θ0⟩

Consider an arc q0
m
Ð↠ q1 in A. For this q0,m, q1 we know by

construction (L2, L3, L4) that AD
E

has the arcs:

q0
{ CR}Y =m(X);‘Y =m(‘X);
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ↠ q01, q01

Y =‘Y
ÐÐÐ↠ q1, q01

Y ≠‘Y
ÐÐÐ↠ qerr.

Since ⟨q0, [true, ‘θ0, θ0]⟩   qerr, and by Lemma 6.1, config-
uration ⟨q0, [true, ‘θ0, θ0]⟩ must have a successor (and a suc-
cessor’s successor), there must exist some θ1 and ‘θ1 such that
exec(θ0,m,Y, θ1) and exec(‘θ0,m, ‘Y, ‘θ1) and Y = ‘Y . More-
over,AD

E
can reach ⟨q1, [true, ‘θ1, θ1]⟩ and since ⟨q0, [true, ‘θ0, θ0]⟩

can’t reach qerr, neither qerr be reached from ⟨q1, [true, ‘θ1, θ1]⟩.
We now let j = 1 and apply the inductive hypothesis to this

q1, θ1, ‘θ1, obtaining that ⟨q1, ‘θ1⟩ ≾ ⟨q1, θ1⟩. Applying the defini-
tion of ≾, we obtain that ⟨q0, ‘θ0⟩ ≾ ⟨q0, θ0⟩.

Lemma 6.3 (Eventuality). If there exists D such that encoding
AD
E

= E(A,crash,D)   qerr, then for every q̂k ∈ Q. M q̂k
A

eventually reaches some ⟨q, θ⟩ where q ∉ Qrcv.

Proof. Straight-forward application of Thm 3 in [15].

Theorem 6.4 (Soundness). For CFAA and crash, if there existsD
such that encoding AD

E
= E(A,crash,D) cannot reach qerr then

A is 1-recoverable.

Proof. We must show that for all A and crash script crash, AD
E
=

⟨QE , q
0
E
,XE ,OpE ,Ð↠

E

⟩ and the transition system MA induced by

A, that

(C1) AD
E

cannot reach qerr

(C2) ∀q̂k ∈ Q. M
q̂k
A

eventually reaches some ⟨q, θ⟩
R1(MA)

(C2) is given by Lemma 6.3. Unfolding R1, we must show that
for every trace πr ∈ Π(MA), that R1(πr), where the trace πr is
induced by run r ofA. Pick such a given run r. If r does not involve
a crash, then the proof is trivial. Otherwise, the induced trace of a
run of A will be of the form:

⟨q0, θ0⟩,m0, . . . , ⟨qn, θn⟩, λcrash,
⟨qn+1, θn+1⟩,mn+1, . . . , ⟨qj , θj⟩, . . .

To deriveR1, we must show that:
1. There exists K ≤ n such that ...
2. ... there exists a J > n such that ⟨qJ , θJ⟩ ≾ ⟨qK , θK⟩.
(The requirement that R0 hold of the “snipped” trace is trivially
satisfied.) By construction of AD

E
, there is a corresponding run of

AD
E

with the following form, using the left column to indicate the
index number of the run:

0. ⟨q0, [false,�, θ0,{}]⟩,m0, (By L1)
1. ⟨q1, [false,�, θ1,{‘θ0}]⟩,m1,

. . . ,
n. ⟨qn, [false,�, θi,{‘θ0, . . . , ‘θn−1}]⟩,

crash(X);
CR:=true; ‘X ∶= ‘Xk, (By L5)

n + 1. ⟨q̂k, [true, ‘θk, θn+1,{}]⟩,
. . . , (Qrcv)

n + 1 +m. ⟨qk, [true, ‘θk, θn+1+m,{}]⟩,

We are given the value of K by the crash arc between n and n + 1,
which indicates the state we hope to recover to. So we can let
K = k. Since this run r contains a crash, there are finitely many
steps to this K in r and, by construction, finitely many steps to K
in the run of the encoding rE .

Now we must find J . In r, from ⟨qn, θn⟩ we go to ⟨q̂k, θn⟩.
Condition C2 ensures that from ⟨q̂k, θn⟩, run r reaches some
⟨qk, θn+1+m⟩ after some m (finitely many) steps. By construction
rE also reaches some configuration ⟨qk, [true, k, ‘θk, θn+1+m,{}]⟩
after m steps.

We let J = n + 1 +m. What remains to show is that ⟨qJ , θJ⟩ ≾
⟨qk, θk⟩. By condition C1, rE cannot reach qerr, and so from
⟨qk, [true, k, ‘θk, θn+1+m,{}]⟩ we cannot reach qerr. By Lemma 6.2,
⟨qk, θn+1+m⟩ ≾ ⟨qk, ‘θk⟩. Note that qJ = qk. Rewriting we obtain
⟨qJ , θJ⟩ ≾ ⟨qK , θK⟩.

7. A Complete Example
We will now describe our technique on a more realistic example
that is based on the useradd utility which adds a new user to a
UNIX-like system:

1 int fd = open("pw"); if(fd<0) return -1;
2 char *buf = read(fd);
3 close(fd);
4 if(¬strnstr(buf,"joe",3) {
5 d = readdir("/u");
6 int pw2 = creat("pw2");
7 append(pw2,buf);
8 append(pw2,"joe");
9 fsync(pw2);

10 close(pw2);
11 unlink("pw");
12 rename("pw2","pw");
13 mkdir("/u/joe");
14 }
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{fd ≥ 0}

buf = read(fd);

close(fd);

3

1

7

creat(pw2);
append(pw2,buf);
append(pw2,joe);
fsync(pw2);
close(pw2);

{j
o
e
 

∈
 
b
u
f

}

5

unlink(pw);

8
rename(pw2,pw);
mkdir(/u/joe);

9

10

R
E
C
O
V
E
R
:
 
s
k
i
p
;

crash()

3

1

7

creat( pw2);
append(pw2,buf);
append(pw2,joe);
fsync(pw2);
close(pw2);

5

rename(pw2,pw);
mkdir(/u/joe)

9

10

R
E
C
O
V
E
R
:
 
s
k
i
p
;

crash()

Version 1

Bad/unexpected Behavior:

Critical file “pw” could be erased.
New (faulty) behavior after crash+recover:
Transition to Location 2 

{fd ≥ 0}

buf = read(fd);

close(fd);

3

1

7

creat(pw2);
append(pw2,buf);
append(pw2,joe);
fsync(pw2);
close(pw2);

5

rename(pw2,pw);

9

10

psync(pw);

8’

0

fd = open(pw);

2

{fd < 0}

{fd ≥ 0}

buf = read(fd);

close(fd);

0

fd = open(pw);

0

fd = open(pw);

2

{fd < 0}

2

{fd < 0}

Version 2

Bad/unexpected Behavior:

Directory /u/joe exists when adding joe.
New (faulty) behavior after crash+recover:
readdir observes joe subdir in /u/

Version 3

Bad/unexpected Behavior:

None.

4

{joe ∉ buf}

d=readdir(/u);

4

{joe ∉ buf}

d=readdir(/u);

4

{joe ∉ buf}

d=readdir(/u);

mkdir(/u/joe);

{j
o
e
 

∈
 
b
u
f

}

{j
o
e
 

∈
 
b
u
f

}

Figure 3. A control-flow automaton for three versions of the example. In all versions, file pw should initially exist. Crash arcs are everywhere,
but only displayed when they are used to illustrate faulty behavior.

This utility modifies an important user/group configuration file: pw
(i.e. /etc/passwd), whose corruption can be extremely serious
and prevent users from logging in. This example checks whether
new user joe is in pw (Lines 1-4) and, if not, creates a copy of the
file (Line 6), appends a new entry (Lines 6-8), flushes the changes
to disk (Line 9) and then snaps the new file into place (Lines 11-
12). Finally, a directory is created for joe (Line 13). We elide
details about checking return values for errors and simplify some
operations. A control-flow automaton [24] representation of this
code is given in Figure 3, Version 1. We will refer to nodes as `0, `1,
etc. For now, disregard the large bold dashed arrow. Remember
that the file system operations may happen asynchronously, In the
above example, fsync before `7 ensures that all of the data has
been copied (read/written) from pw into pw2 and that joe has been
written to pw2.

Transformation. The transformation, when applied to the ex-
ample results in the automaton AD

E
, which is displayed in Fig-

ure 4. New code is highlighted in rounded-corner boxes and new
nodes/arcs are given by double lines. The transformation consists
of the following steps, where the enumeration numbers correspond
to the numbers in clouds in Figure 4:

1. At the entry arcs to each node, we create a symbolic snapshot
copy of the state by introducing a new set of duplicate variables
for that particular node. For the arc entering `0, for example, we
have added code that creates the 0th copy. This copy includes all
variables and, in fact, a deep snapshot of disk and mem which
we will refer to as disk0 and mem0.

2. We transform the recovery, denoted ⌊RECOVERi()⌋D using an
existing technique [15] that ensures RECOVERi() will terminate
by checking its inclusion in a given well-founded relation D
and, if the inclusion does not hold, takes an arc to error.

3. Our encoding introduces the possibility of a crash by adding
a nondeterministic outbound crash() arc from each program
node such as the double-line arrow from `1 to `0. crash()
havocs the unindexed variables fd,pw,buf, and mem, sets a
flag CR to true, and runs the recovery RECOVERi() that is
appropriate for recovering to `i.

4. These crash/recovery arcs also load symbolic snapshots, by
duplicating the appropriate snapshot into a set of pre-primed
variables. The 0th snapshot is loaded by the commands
‘pw=pw0;‘disk=disk0;‘mem=mem0;.

5. To encode the search for a simulation, operations are performed
on the original program variables (which represent traces that
have crashed and recovered) and, since CR is true, the pre-
primed variables as well (which represent a previously-saved
execution that did not involve a crash). Note that the command
‘open, for example, manipulates ‘disk and ‘mem rather than
disk and mem. Arcs to the error state are added and taken
whenever these operations return inequivalent values (e.g. if
‘fd≠fd).

There is a run r of this encoding AD
E

that can reach qerr. The run r
passes through `8, follows the CR arc, and then leads to a state at `0
in which pw is not on disk. All initial states of the original program
have pw on disk. Therefore in the next arc, as shown in Figure 4, fd
becomes -1, while ‘fd becomes a non-negative integer and so the
run goes to qerr since fd ≠ ‘fd.

Subsequent versions. In Version 2 of Figure 3, we have attempted
to correct the bug by removing the unlink before the rename
operation. In this case the program still may not recover correctly
from a crash. The rename operation switches a directory entry from
an old file to a new file. The problem is that, while rename happens
atomically with respect to all concurrent file operations, it is not
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{fd ≥ 0}

buf = read(fd);

close(fd);
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fd = open(pw,ρ);
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{fd < 0}

//Create 0th snapshot:
pw0=pw; mem0=mem;

disk0=disk;

//Load 0th snapshot:
‘pw=pw0; ‘mem=mem0;

‘disk=disk0;

// Execute uncrashed program 
// loaded from snapshot:
if(_CR){‘fd=‘open(‘pw,ρ);}

a

//Create 1st snapshot:
pw1=pw; mem1=mem;

disk1=disk; fd1=fd;

//Load 1st snapshot:
‘pw=pw1; ‘mem=mem1;

‘disk=disk1; ‘fd=fd1;

// Execute uncrashed program
if(_CR){‘buf = ‘read(‘fd);

    ‘close(‘fd);}

…

b

err

{_CR &&‘buf ≠ buf}

…

{!
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&&
 *

}

err

{_CR &&‘fd ≠ fd}
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}
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}

1

2

3

4

5

crash();
_CR = true;
RECOVER1();D

Figure 4. An illustration of the output AD
E

, which is the result of
applying our encoding to the example in Figure 3.

atomic with respect to system crash. Consequently, trouble lurks in
subsequent code that may assume that the new file is guaranteed
to be on disk. In Version 2, a crash at `10 may leave the pw file
unchanged but then, surprisingly, joe may be in the directory entry
d returned by readdir. This subtlety of bugs such as this one in
Version 2 is not explained in the POSIX specification, and becomes
a source for many serious data loss bugs [27, 33].

Version 3 illustrates the fix for this bug: the solution is to add a
sync operation that forces the parent directory (and any modified
directories along the path of the file) to be written to disk at `8,
thereby ensuring that the directory entry for pw has been written
to disk. For clarity, we use psync to represent the sequence of
operations that open a file’s parent directory, call fsync on the
directory, and close the directory. This version is crash recoverable.

8. Implementation
We have developed ELEVEN82, which is capable of automatically
proving crash recoverability of C programs. ELEVEN82 is built
upon CPAchecker [5], which constructs a control-flow automa-
ton [24] from input programs written in C or (soon) Java. Our proto-
type implementation transforms input programs via C preprocessor
macro replacements for libc operations. These macros instanti-
ate a model file system (discussed next), create the cross product
with the asynchronous operations, and perform the transformation
described in Section 5.

Model of the Filesystem. Our specification and recoverability
reduction theorical work (which is over transition systems and
control-flow automata, respectively) has no problem supporting
complex structures such as trees, lists, etc. However, our imple-
mentation relies on an underlying solver and, while some of them
have support for trees with a fixed maximum depth, trees of ar-

bitrary recursion depth present many difficulties. CPAchecker, for
example, does not currently understand tree structures.

We now describe how we permit reasoning over trees by ap-
proximating them with the theories of arrays and linear arithmetic
— this was sufficient for the examples that we saw. See Figure 5.
First, we track files as the indexes of the mem and disk arrays. That
is, if integer variable fn is non-negative, then it corresponds to a
file. The in-memory contents of the file fn are given by the value
mem[fn], and likewise for disk. One can think of these values as
version numbers. For example, creat(fn) establishes a new file,
whose contents is represented by an initial version INIT VER. We
also track whether or not the parent directory of file fn has been
sync’d to disk, via the boolean flag fn psync. This abstraction
gives us a reasonably expressive filesystem model so CPAchecker
can generate the needed invariants.

Currently, due to the way we have implemented ELEVEN82
with compiler macros, it does not support nested directory struc-
tures. However, since directory structures can be approximated
with arrays, one can include support for nested directories as fol-
lows. First, represent filenames with their fully qualified pathname
(e.g. /foo/bar/file). Then use a series of arrays to track the par-
ents of a given directory, such as:

PARENT1[/foo/bar/file] = /foo/bar
PARENT2[/foo/bar/file] = /foo
PARENT3[/foo/bar/file] = ROOT
PARENT1[/foo/bar] = /foo
...

The model implementation of creat, open, etc. will then manipu-
late these arrays as appropriate.

Asynchronous disk. The macros for each filesystem operation
(e.g. read) in Figure 5 additionally perform the cross-product with
the asynchronous disk, execute the read operation on the unindexed
variables and (if CR) on the snapshot variables and check equiva-
lence. The macros insert code that runs MAY ASYNC. This method
iterates through the file system, nondeterministically shuffling files
from mem to disk, by setting disk[i] to be a version number
that is greater than its current value, but at most the version in
mem[i]. Additionally, the method iterates through each file, non-
deterministically deciding to swap the psync flag from false to
true. Finally, to simulate a crash, each file system macro involves
the script MAY CRASH(), which havocs the local variables, values
in mem, and eliminates any fn for which the psync flag has not
been set (fn:=-1). Since our model of the file system distinguishes
between file data in memory versus disk, we can verify assertions
unrelated to crashes such as “is the contents of file X the same in
memory as on disk.”

Optimized cross product. We employ a few optimizations in our
encoding. First, we only collect snapshots at program locations that
are the targets of the recovery. Second, we only need instances of
MAY ASYNC just after a filesystem operation. Intermediate control-
flow and local variable statements are not affected by transitions in
the asynchronous file system. The trickiest part of our implemen-
tation were the macros for creating snapshot versions of variables,
that are assigned before operations and loaded when recovery re-
turns to the relevant program location. After running the C prepro-
cessor, our macros expand to a form that is fit to be analyzed by
CPAchecker.

Quantified invariants. Our model of the filesystem is built on the
theory of arrays and so our implementation depends crucially on
tool support for reasoning in this theory. Usually, arrays require
support for quantified invariants which are difficult and, for exam-
ple, not part of CPAchecker. As such, filesystem recoverability pro-
vides another compelling example to motivate the need for better
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int disk[MAX FILES];
int mem[MAX FILES];
int COUNTER = 0;
int creat OTRUNC(fn) {
if (fn<0)

fn = COUNTER++;
mem[fn] = INIT VER;
disk[fn] = INIT VER;
fn psync = FALSE;

}

void append(fn) { mem[fn] = mem[fn] + 1; }
void write(fn) { mem[fn] = mem[fn] + 1; }
void fsync(fn) { disk[fn] = mem[fn]; }
void psync(fn) { fn psync = TRUE; }
void unlink(fn) { fn = -1; }
bool exists(f) { return (f >= 0); }
void rename(f1,f2) { f1 = f2; f2 = -1; }
int read(fn) {
if (fn < 0) assert(FALSE);
x = mem[fn];
return x;

}

1 void MAY ASYNC() {
2 for (i = 0; i < counter; i++) {
3 if(* && disk[i] < mem[i]) {
4 int t = disk[i];
5 disk[i] = nondet();
6 assume(disk[i]<=mem[i]&&disk[i]>=t);
7 }
8 }
9 foreach (file : ALL FILES)

10 if(nondet() && ¬ file psync)
11 file psync = true;
12 }

Figure 5. A model of an asynchronous filesystem, designed to enable tools such as CPAchecker, which don’t support trees, to reason about
filesystems using arrays and integers.

support for array reasoning. Our current implementation avoids the
need for quantified invariants by working with statically defined
arrays (being careful with cpa.predicate.maxArrayLength) and
creating snapshots by iterating over the disk/mem arrays, copying
elements to the corresponding snapshot version. Thus, we end up
with predicates for each array slot (e.g. snapA mem[0]==mem[0],
snapA mem[1]==mem[1], etc.). This was sufficient for the exam-
ples we worked with.

9. Evaluation
Benchmarks. We evaluated our technique and implementation
ELEVEN82 by applying it to 32 benchmarks: 8 are taken from the
examples in Figure 1 and 24 benchmarks are drawn from a variety
real database systems. The benchmarks can be found at

http://www.cs.yale.edu/homes/ejk/tools/eleven82/

Most of these systems are widely used and built by well-respected
engineers/companies. For instance, LevelDB was built by Google
fellows who built parts of Google’s platform, and is the back-end
database for today’s the most popular browser Chrome. Most of
these examples use one of two widely used recovery paradigms:

Write-ahead logging is used in filesystems and databases and
provides atomicity on general operations by writing a record of the
operation to a log and then, once the log is committed, performing
the operation directly on the storage system. If a crash occurs be-
fore the log is committed, the system recovers to the state before
the operation; otherwise, the recovery utility scans the log to find
the operation record, and redoes the operation. Real storage sys-
tems, however, may return from an operation before committing
the record, trading durability for speed [32]. The following is an
example from the LevelDB database server (Section 9).

1 int fd = creat(new log);
2 for(int i = 0; i < N; ++i)
3 append(new log, buf[i]);
4 fsync(new log);
5 psync(new log);

Shadow paging is the generalization of the example in Section 7
and provides atomicity on general operations. Conceptually, for
each operation, it copies the entire system state, applies the opera-
tion on the copy, and then atomically switches the system to use the
copy as the state. Regardless of when a crash occurs, the system is
in either the old or the new state. For performance, instead of copy-
ing the whole state, systems employ copy-on-write to copy pages
of the state on demand [20]. The VMware benchmark (# 28-30),
whose recoverability we have proved, uses shadow paging.

Experiments. We ran our experiments on Fedora Linux version
3.11.10 x86 64. This Linux guest machine was within a Vir-

tualBox that was running on a host machine with an Intel 3.5
GHz Core i5 processor, 16GB of RAM and 3TB of hard disk
space. ELEVEN82 is based on CPAchecker for which we used the
PredicateAbstraction-RefinementStrategy configuration.
The results of our evaluation are given below. For each System
(GDBM, Level DB, etc.) we consider several variants (Var.) of an
extracted portion of the system. The variants explore different ways
in which the algorithm could be broken. For example, the recovery
script might jump to the wrong location or incorrectly reconstruct
a file from disk to memory. The final variant for each benchmark
is the correct program and recovery script. Many of the failed vari-
ants came about because we thought we had a crash recoverable
program, but then the tool revealed otherwise.

The remaining columns indicate the following. LOC is the
number of lines of code of the input example program. XLOC indi-
cates the number of lines of the encoding we generate, that includes
our optimized cross product with the file system model. (All LOC
counts are based on the output after indent is applied.) The SMT
column indicates which solver was used. We used SMTInterpol [9]
(IPOL), except for benchmark #s 7,8 (Ex 5) and #s 18,19,20,21
(LMDB) for which we used MathSAT [11] (MSAT) because SMT-
Interpol crashed. The Q column indicates the number of CPA au-
tomaton states and Time indicates the total time to either verify or
find a counterexample. Finally, Exp is what we expect the result of
our tool to generate (either a proof ✓ or a counterexample χ), and
Res is the output of our tool. In all but two cases, we were able to
prove crash recoverability (or find a counterexample) in a minute or
two. The PostgreSQL variant C and GDBM variant E timed out af-
ter the 900s CPAchecker default limit. Some benchmarks included
complex recovery scripts. In the LevelDB example, the recovery
script examines the disk’s entry for a file new log and, depend-
ing on what version was last written, recovers to the appropriate
location in the program, which may be in the middle of a loop.
Our benchmarks helped us realize that the file descriptor COUNTER
needs to be included in the snapshots in addition to the disk and
memory. We also realized that when a file is created, the disk file
version should initially be the same as the memory initial version.
We found the counterexamples generated by ELEVEN82 to be very
helpful, as they allow one to trace back and discover why the sim-
ulation broke down.

The examples we examined all had recovery methods that iter-
ated over a constant-length array so we provided manual termina-
tion arguments such as [[i > 0 ∧ i′ < i]]. We plan to automate this
in future versions of ELEVEN82.
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Benchmarks ELEVEN82
# System Var. LOC XLOC Q SMT Time Exp Res
1 Fig 1, Ex 2 A 53 256 167 IPOL 7.750s χ χ
2 Fig 1, Ex 2 A 53 248 166 IPOL 15.988s ✓ ✓
3 Fig 1, Ex 3 A 61 449 317 IPOL 7.583s χ χ
4 Fig 1, Ex 3 A 61 443 318 IPOL 18.129s ✓ ✓
5 Fig 1, Ex 4 A 66 452 319 IPOL 20.496s χ χ
6 Fig 1, Ex 4 A 66 482 331 IPOL 24.943s ✓ ✓
7 Fig 1, Ex 5 A 88 759 515 MSAT 34.333s χ χ
8 Fig 1, Ex 5 A 96 767 518 MSAT 50.033s ✓ ✓
9 GDBM create A 84 846 557 IPOL 18.105s χ χ

10 GDBM create B 85 332 218 IPOL 21.320s ✓ ✓
11 GDBM create C 84 842 554 IPOL 19.060s χ χ
12 GDBM create D 83 971 642 IPOL 32.916s χ χ
13 GDBM create E 87 937 612 IPOL >900s ✓ T/O
14 Level DB A 58 369 232 IPOL 46.321s ✓ ✓
15 Level DB B 52 283 197 IPOL 10.528s χ χ
16 Level DB C 58 403 269 IPOL 25.229s χ χ
17 Level DB D 60 460 297 IPOL 77.090s ✓ ✓
18 LMDB A 50 410 302 MSAT 16.304s χ χ
19 LMDB B 51 473 349 MSAT 77.843s ✓ ✓
20 LMDB C 57 606 427 MSAT 24.718s χ χ
21 LMDB D 51 473 349 MSAT 77.430s ✓ ✓
22 PostgreSQL A 59 655 564 IPOL 15.272s χ χ
23 PostgreSQL B 60 716 624 IPOL 16.218s χ χ
24 PostgreSQL C 68 895 706 IPOL >900s ✓ T/O
25 PostgreSQL D 68 658 505 IPOL 315.109s ✓ ✓
26 SQLite A 69 956 770 IPOL 20.900s χ χ
27 SQLite B 65 875 700 IPOL 71.006s ✓ ✓
28 VMware A 65 540 450 IPOL 10.235s χ χ
29 VMware B 68 715 558 IPOL 7.605s χ χ
30 VMware C 68 715 558 IPOL 63.055s ✓ ✓
31 ZooKeeper A 56 594 453 IPOL 26.422s χ χ
32 ZooKeeper B 55 524 397 IPOL 43.490s ✓ ✓

Figure 6. Evaluation of ELEVEN82 proving crash recoverability on examples from Figure 1 and a variety of industrial systems.

10. Conclusions
Our work is the first automated tool for proving that programs cor-
rectly recover to their original behaviors in the event of externally-
induced crashes, via a novel reduction of termination and simula-
tion to reachability. We have proved that our work is sound and
have experimentally validated it on several examples drawn from
industrial systems.

We believe that our work provides a specification of a rich new
domain where new (and adaptations of existing) automatic verifi-
cation techniques can be applied. We have also demonstrated that
there is practical viability for verification in this domain, and estab-
lishes an immediate recoverabiltiy hierarchy that can be explored
in future work. Going forward, we hope to investigate abstractions
that yield techniques for proving N - or ∞-recoverability. Finally,
while recoverability for general-purpose programs over infinite
state spaces is undecidable, there may be decidability/complexity
results for interesting fragments.
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