
CodeMason: Binary-Level Profile-Guided Optimization

David Williams-King
dwk@cs.columbia.edu
Columbia University

New York, NY

Junfeng Yang
junfeng@cs.columbia.edu
Columbia University

New York, NY

ABSTRACT

Optimizing a program for a specific machine or a specific work-
load is possible with today’s compilers, but infrequently used,
despite significant performance gains. We implement work-
load specialization, or Profile-Guided Optimization (PGO),
at the binary level. Our system CodeMason runs on x86 64
Linux and is based on a binary rewriting platform called Egal-
ito. CodeMason performs static binary rewriting to obtain
program profiles, then adjusts function ordering, alignment,
and other binary-level details to achieve faster performance
(particularly on the given workload). We obtain 1.98% aver-
age performance speedup on SPEC CPU 2006, and 11.8%
speedup in the best case. These substantial performance im-
provements suggest that binary-level PGO may be widely
useful when compiler-based PGO is impossible because the
source code is inaccessible.

ACM Reference Format:
David Williams-King and Junfeng Yang. 2019. CodeMason: Binary-

Level Profile-Guided Optimization. In 3rd Workshop on Forming
an Ecosystem Around Software Transformation (FEAST’19), No-
vember 15, 2019, London, United Kingdom. ACM, New York, NY,

USA, 7 pages. https://doi.org/10.1145/3338502.3359763

1 INTRODUCTION

Optimizing compilers can produce output that is astound-
ingly faster than its unoptimized equivalent [16]. A compiler
can generate even better code if it knows details about the
target CPU architecture or target workload, but most distrib-
utors do not take advantage of this. The end-user’s machine
is typically unknown, so unless the user compiles the code
themselves (as in Gentoo [2]), the distributor would have to
build a large number of separate binaries. Workload-based op-
timization, otherwise known as Profile-Guided Optimization
(PGO), can gain up to about 9% performance improvement
across various GCC benchmarks [13], and was one of the
original goals of the LLVM project [14]. However, very few
developers use PGO, because it necessitates repeated, slow
recompilation [6] and is difficult to deploy.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

FEAST’19, November 15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-6834-6/19/11. . . $15.00
https://doi.org/10.1145/3338502.3359763

In this work, we consider the idea of performing per-
workload or per-CPU optimizations at the binary level, in-
stead of at the compiler level. The compiler’s peephole op-
timizer has carefully estimated the cycle latency of each
instruction to avoid pipeline stalls, and we do not want to
undo its work. Hence, we do not perform any instruction
substitution. Instead, we aim to make more effective use of
a CPU’s code caches. Leveraging powerful binary rewriting
techniques, we can move code to new addresses to adjust
program layout. The scope for improvement is significant:
suppose we manage to fit all the hot (frequently used) code
a program is executing into L1 code cache. Then code will
never need to be fetched from other caches, nor will TLB
lookups be spent on code addresses. Of course, the definition
of “hot” code depends on the workload, and the L1 cache
specifics depend on the user’s CPU.

We present our system CodeMason, which adjusts function
ordering and alignment and other binary-level details to
obtain 1.98% average performance speedup on SPEC CPU
(with a potential additive 1.7% average speedup with more
aggressive optimizations), and 11.8% speedup in the best case.
A user first applies binary-level instrumentation to a program
and runs it to gather an execution profile. Then, we perform
binary-level PGO to rearrange the binary and obtain one
that runs faster on the given workload, and will likely beat
the baseline on other workloads too. Hot functions get moved
closer together and empty space in the code section can be
elided to make the code more compact and cache-friendly.
CodeMason is still under development but our substantial
performance improvements suggest that binary-level PGO
may be useful when compiler-based PGO is inapplicable due
to lack of source access or deployment concerns.

2 BACKGROUND/RELATED WORK

Compiler Optimizations. Besides per-module optimizations,
some compilers are capable of link-time or whole-program op-
timizations [8, 10]. Most such optimizations are independent
of program input (though the compiler may well specialize a
function for particular values). Profile-Guided Optimization
is supported in major compilers [6, 13] as well. Our binary-
level PGO is similar, but does not require cooperation from
the developer to deploy.

Function Permutation. Related work performs function-
level permutation, at the compiler- [12] or binary-level [21, 22].
The typical reason to perform function permutation is to
increase entropy, for randomization-based defenses. One ex-
isting work called Stabilizer [7] measures the performance of

Workshop Presentation  FEAST’19, November 15, 2019, London, United Kingdom

47

https://doi.org/10.1145/3338502.3359763
https://doi.org/10.1145/3338502.3359763


different permutations, but their goal is to statistically aver-
age out the differences rather than select the most optimal.
Stabilizer is also a source-level technique, while we focus on
the binary level.

Recompilation/Reassembly. Typical binary analysis frame-
works [5, 9, 17, 18] focus on lifting binaries into an interme-
diate presentation, but do not enable code regeneration after
analysis. Some systems provide code execution in a process
virtual machine, such as DynamoRIO [4], Pin [15], PSI [23],
and Multiverse [3], but this incurs substantial overhead. Mul-
tiverse, for example, incurs 60.42% average overhead (288%
in worst case) on SPEC CPU. PSI [23] has the potential to be
more efficient, as it uses static rewriting, but its shepherding
branches still incur 53% overhead on a large set of programs.

In this work, we need to preserve the input assembly as
much as possible, since we are making very small changes to
the code and hoping to observe small performance improve-
ments. Two promising frameworks are Uroboros [20] and
Ramblr [19], which implement binary reassembly. Their aim
is to fully solve the disassembly problem, and lift a binary
into a .s assembly file which can be processed by a standard
assembler. We could then modify the code or addresses as
necessary. However, these systems are relatively fragile and
rely on complex heuristics. We instead chose to use a binary
rewriting framework Egalito [1], which calls itself a binary re-
compiler (a more fully-featured version of binary reassembly).
For more details, see the next section.

Egalito Framework. In this work, we use the Egalito binary
rewriting framework [1], which is currently under submission
to an academic conference. Egalito’s authors state that it
will be released open source once its paper is accepted. The
Egalito recompiler leverages metadata present in current
stripped x86 64 and ARM64 binaries to generate a complete
disassembly, and allows arbitrary modifications that may
affect program layout without any constraints from the orig-
inal binary. Essentially, it fully symbolizes and builds an
internal representation of the program using a minimum of
heuristics (some heuristics may still be needed to spot jump
tables within data-flow analysis structures). The code may
be modified, assigned to new addresses, and output into new
ELF files. Code modification is even possible at runtime,
by injecting some Egalito code and data structures into the
program. In this work, we use only static binary rewriting.
Importantly, Egalito has very little performance overhead
when performing layout transformations (despite every func-
tion potentially now living at a new address), which allows us
to measure the potentially small performance impacts that
we are interested in.

3 DESIGN

CodeMason runs on x86 64 Linux. The Egalito [1] recompi-
lation framework we use supports other platforms including
ARM64, with RISC-V and x86 64 Windows support under-
way, and our techniques should be equally applicable to any
platform including these.

In this work, we evaluate the effectiveness of three binary
optimizations:

(1) Adjusting the address alignment of the beginning of
functions, by inserting padding between functions.

(2) Choosing a different function ordering.
(3) Procedure Linkage Table (PLT) elimination (“collapse”),

e.g. turning a dynamically-linked executable into a
statically-linked one.

Alignment. On Linux, GCC aligns functions to a 16-byte
boundary by default. As a design decision, this makes sense;
the Intel Optimization Reference Manual [11] says “All branch
targets should be 16-byte aligned.” However, this can push
functions far enough away that a set of hot functions no
longer fit in the code cache. In some cases, it is better to sac-
rifice performance at misaligned branch targets in exchange
for better caching behaviour. One extreme example described
in Section 5 is a program that observed a 13.6% performance
improvement by using 2-byte function alignment instead of
16. CodeMason can find the best alignment for a given system
simply by benchmarking 16-, 8-, 4-, and 2-byte alignments.

Ordering. The biggest potential for performance improve-
ment is to take two functions which call each other frequently
and place them adjacent to one another, ideally in the same
cache line. That way, even if the program’s working set is
too large to fit into the code cache, the two functions should
be available together whenever one is in the cache. Further-
more, the CPU may automatically prefetch the correct next
function when accessing the first one (as in the L2 streamer
prefetcher, 3.7.3 of [11]). In this work, we implemented a
binary-level equivalent of gprof which counts function calls.
The user runs the program once (or more) under this profil-
ing, and then we generate a new executable which organizes
functions according to how many times they are called.

It is important not to mess too much with the original
function ordering. In a compiler toolchain, code from a single
source file ends up in one object file, and the linker simply
concatenates text sections from each object file. In many code-
bases, related functions will be grouped together in source
files. For example, all the code for a C++ class may be in one
object file. If we use a random function ordering, performance
is worse than baseline. Hence, we use a stable sort to keep
functions in their original order if the profiling code does not
wish to reorder them.

Collapsing PLTs. Procedure Linkage Tables—PLTs—are
indirect jumps from one executable (or library) to another
shared library. They involve one additional memory deref-
erence, and an additional code basic block, compared with
an in-image direct call. But the alternative to PLTs is to
statically link a program, bringing all the code needed into
the same executable, which prevents code-sharing between
processes. Actually, multiple instances of the same process
can share code, but e.g. two different programs using glibc

will need two separate physical memory pages. It is quite
conceivable that a user may be willing to pay this cost for a

Workshop Presentation  FEAST’19, November 15, 2019, London, United Kingdom

48



performance improvement, so one of CodeMason’s optimiza-
tions is to collapse PLTs into direct calls.

4 IMPLEMENTATION

The heavy lifting of binary rewriting is done by the Egalito
framework [1]. We implemented or used the following tools.

Function Alignment. Egalito is a recompiler. It resolves
all references in the input program, so that an arbitrary
new layout can be used for the output. Hence, it was trivial
for us to implement different function alignments (Egalito
places nops as needed to fill the empty gaps). There are no
trampoline jumps in the output, nor any copy of the original
code; it is as similar as possible to the output of a (compiler
+ linker) toolchain told from the beginning to use a specific
function alignment.

Function Profiling. We implemented our own binary-level
profiling, similar to gprof. Our instrumentation transforms
every function to include a counter increment in the function
prologue (the counter will only be incremented once per
function call, even in the presence of loops). We allocate a
new counter global variable for each function, and give them
symbols so that gdb can examine function counts. We inject
a small amount of code at program exit which appends the
current array of counter variables to a “profile.data” file,
analogous to gprof’s “gmon.out”, and provide an additional
tool (like the gprof binary) which dumps the accumulated
counts in text form.

Function Permutation. By default, Egalito uses the same
function order that was present in the original binary. When
libraries are also being transformed, code from different ELFs
is simply concatenated, much as the linker does for object
files. We implemented support for selecting a random function
permutation, and also for specifying a function permutation
in an input file. Specifically, the function ordering file can
give a rank to each name; functions with highest rank are
given first (lowest) addresses. However, within the same rank,
the original ordering prevails. In other words, we perform a
stable sort based on function ranks.

In our experiments, we use two ways of calculating function
ranks:

(1) Set the rank to the number of times 𝑁 the function
was invoked on a representative test run.

(2) Set the rank to 𝑙𝑜𝑔2(𝑁), the log base 2 of the number
of function invocations, unless 𝑁 < 3 in which case set
the rank to zero (treat small counts as the same rank).

For more information, see Section 5.

Collapsing PLTs. Egalito supports parsing an ELF file
and all its shared library dependencies, then outputting a
single merged ELF (“union ELF mode”). All calls through
PLT entries are pre-resolved and turned into direct calls.
(Some special cases are handled differently: IFUNC PLTs are
statically resolved based on an executed instance of glibc,
while .plt.got PLTs are still generated.) In this mode, all
functions are placed in a single merged .text section, so code

locality is slightly improved. The relative order of functions
within each ELF is not modified, by default, though new
addresses are assigned.

5 EVALUATION

Evaluation was performed on the following three machines:

∙ M1: Debian buster with an Intel Core i7-4770 (4 cores,
8 threads) and 32GB of RAM. Compiler: GCC 7.2.0.

∙ M2: Debian stable 9.6 with dual socket Intel Xeon
X5550 (8 cores, 16 threads total) and 24GB of RAM.
Compiler: GCC 6.3.0.

∙ M3 (graphs not shown): Debian stable 10.0 with an
AMD Ryzen 7 1800X (8 cores, 16 threads) and 32GB
of RAM. Compiler: GCC 8.3.0.

The compiler used for evaluation was each machine’s default.
More details on each CPU can be found in Figure 1. Through-
out our evaluation, the default system is M1 unless otherwise
specified. Whenever we mention an average time, it is the
geometric mean by default.

Motivating Example. When experimenting with Egalito
on binaries installed on our Debian system, we transformed
/usr/bin/perl. We used the following simple micro-benchmark:

perl -e ’for(1..10000000){$x+=$_}print $x’

Simply by transforming the binary with Egalito (default 16-
byte function alignment), we saw a 2.22% speedup (over a
multi-second execution). But we observed even faster per-
formance with smaller alignment, the fastest being a repro-
ducible 13.6% speedup at 2-byte alignment. We believe that
the smaller alignments coincidentally moved functions close
enough together that the code used in this loop would all fit
into the CPU’s code cache.

5.1 SPEC CPU Performance Evaluation

Here, we evaluate CodeMason’s performance on SPEC CPU
2006. Unless otherwise noted, we transformed only the main
executables and not shared libraries. Since Egalito does not
yet support C++ exceptions, we modified SPEC CPU by
replacing exceptions with conventional control flow in om-
netpp (20-line change) and povray (15 lines). We also fixed a
compile error in soplex (1 line) in recent GCC versions.

Function Alignment. The default function alignment used
by our GCC is 16-byte alignment. We transformed all pro-
grams at the binary level, starting from 16-byte aligned code,
and outputting 16-, 8-, 4-, 2-, and 1-byte aligned code. Results
are shown in Figure 2a and Figure 2b.

On M1 (Figure 2a), the winning parameter value is 8-byte
alignment. Note that 1-byte alignment fails in two cases
(povray and xalancbmk): libstdc++ exception-handling code
uses the least-significant bit of a function address to indicate
that an exception has been thrown, and so odd addresses
cause phantom exceptions in try-catch blocks. Meanwhile, on
M2 (Figure 2b), the best alignment is 2-byte alignment. With
a different (older) version of libstdc++, 1-byte alignment
runs in all cases. We ran the same experiment on M3, but

Workshop Presentation  FEAST’19, November 15, 2019, London, United Kingdom

49



ID CPU Year Microarch L1 code L1 data L2 L3

M1 Intel Core i7-4770 2013 Haswell (22nm) 4x32KB 8-way 4x32KB 8-way 4x256KB 8-way 1x8MB 16-way
M2 Intel Xeon X5550 (x2) 2009 Nehalem (45nm) 4x32KB 4-way* 4x32KB 8-way* 4x256KB 8-way* 1x8MB 16-way*
M3 AMD Ryzen 7 1800X 2017 Zen (14nm) 8x64KB 4-way 8x32KB 8-way 8x512KB 8-way 2x8MB 16-way

Figure 1: Details of the CPUs in each machine used for CodeMason testing and evaluation. *=per socket.

 85

 90

 95

 100

 105

4
0
0
.p

e
rlb

e
n
ch

4
0
1
.b

zip
2

4
0
3
.g

cc

4
2
9
.m

cf

4
3
3
.m

ilc

4
4
4
.n

a
m

d

4
4
5
.g

o
b
m

k

4
4
7
.d

e
a
lII

4
5
0
.so

p
le

x

4
5
3
.p

o
vra

y

4
5
6
.h

m
m

e
r

4
5
8
.sje

n
g

4
6
2
.lib

q
u
a
n
tu

m
4
6
4
.h

2
6
4
re

f
4
7
0
.lb

m

4
7
1
.o

m
n
e
tp

p
4
7
3
.a

sta
r

4
8
2
.sp

h
in

x3
4
8
3
.xa

la
n
cb

m
k

a
rith

m
e
tic-m

e
a
n

g
e
o
-m

e
a
n

R
u

n
ti
m

e
 (

%
),

 b
a

s
e

lin
e

=
1

0
0 16-byte alignment 8-byte alignment 4-byte alignment 2-byte alignment 1-byte alignment

(a) SPEC CPU overhead for different function alignments, measured on machine M1.

 85

 90

 95

 100

 105

4
0
0
.p

e
rlb

e
n
ch

4
0
1
.b

zip
2

4
0
3
.g

cc

4
2
9
.m

cf

4
3
3
.m

ilc

4
4
4
.n

a
m

d

4
4
5
.g

o
b
m

k

4
4
7
.d

e
a
lII

4
5
0
.so

p
le

x

4
5
3
.p

o
vra

y

4
5
6
.h

m
m

e
r

4
5
8
.sje

n
g

4
6
2
.lib

q
u
a
n
tu

m
4
6
4
.h

2
6
4
re

f
4
7
0
.lb

m

4
7
1
.o

m
n
e
tp

p
4
7
3
.a

sta
r

4
8
2
.sp

h
in

x3
4
8
3
.xa

la
n
cb

m
k

a
rith

m
e
tic-m

e
a
n

g
e
o
-m

e
a
n

R
u

n
ti
m

e
 (

%
),

 b
a

s
e

lin
e

=
1

0
0 16-byte alignment 8-byte alignment 4-byte alignment 2-byte alignment 1-byte alignment

(b) SPEC CPU overhead for different function alignments, measured on machine M2.

Figure 2: CodeMason SPEC CPU overhead with different function alignments (nop padding). For readability,
these graphs show overhead relative to baseline=100 instead of relative to baseline=0.

results were noisy clearly due to thermal throttling, and hence
are not shown; however, 2-byte alignment appeared to be
best on that machine as well.

Finally, Figure 3 selects the best alignment for each SPEC
case on M1, showing that we obtain 1.2% performance speedup
simply by modifying function alignment, while preserving
original function order. On M2, 2-byte alignment is a 0.59%
speedup, and selecting the best alignment for each case is
only 0.63% speedup. So on M2, a good strategy would be to
always use 2-byte alignment. We believe this is because the
instruction cache on M2 is only 4-way, whereas M1’s 8-way
instruction cache gives the processor more leeway to keep
code around for longer, benefitting more from the degree of
freedom given by adjusting function alignment.

Function Permutation. First, we show that the default
function permutation present in SPEC executables is better

-10

-5

 0

 5

 10

4
0
0
.p

e
rlb

e
n
ch

4
0
1
.b

zip
2

4
0
3
.g

cc
4
2
9
.m

cf
4
3
3
.m

ilc
4
4
4
.n

a
m

d
4
4
5
.g

o
b
m

k
4
4
7
.d

e
a
lII

4
5
0
.so

p
le

x
4
5
3
.p

o
vra

y
4
5
6
.h

m
m

e
r

4
5
8
.sje

n
g

4
6
2
.lib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f
4
7
0
.lb

m
4
7
1
.o

m
n
e
tp

p
4
7
3
.a

sta
r

4
8
2
.sp

h
in

x3
4
8
3
.xa

la
n
cb

m
k

a
rith

m
e
tic-m

e
a
n

g
e
o
-m

e
a
n

R
u
n
ti
m

e
 o

v
e
rh

e
a
d
 (

%
)

Egalito default Best per-case alignment

Figure 3: SPEC CPU overhead with the best func-
tion alignment from Figure 2a selected for each case.

than a random permutation. Figure 5 shows performance
overhead with collapsed PLTs changing from 1.7% speedup
to 0.53% slowdown (on M1). This makes sense because the

Workshop Presentation  FEAST’19, November 15, 2019, London, United Kingdom

50



 85

 90

 95

 100

 105

4
0
0
.p

e
rlb

e
n
ch

4
0
1
.b

zip
2

4
0
3
.g

cc

4
2
9
.m

cf

4
3
3
.m

ilc

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.sje

n
g

4
6
2
.lib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.lb

m

4
8
2
.sp

h
in

x3

a
rith

m
e
tic-m

e
a
n

g
e
o
-m

e
a
n

R
u
n
ti
m

e
 o

v
e
rh

e
a
d
 (

%
) Egalito default test order log(test order) ref order log(ref order)

Figure 4: Performance obtained by ordering functions according to a captured execution profile (PGO). Run
on M1 on SPEC CPU C programs only due to time constraints.

-5

 0

 5

 10

4
0
0
.p

e
rlb

e
n
ch

4
0
1
.b

zip
2

4
0
3
.g

cc
4
2
9
.m

cf
4
3
3
.m

ilc
4
4
4
.n

a
m

d
4
4
5
.g

o
b
m

k
4
4
7
.d

e
a
lII

4
5
0
.so

p
le

x
4
5
3
.p

o
vra

y
4
5
6
.h

m
m

e
r

4
5
8
.sje

n
g

4
6
2
.lib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f
4
7
0
.lb

m
4
7
1
.o

m
n
e
tp

p
4
7
3
.a

sta
r

4
8
2
.sp

h
in

x3
4
8
3
.xa

la
n
cb

m
k

a
rith

m
e
tic-m

e
a
n

g
e
o
-m

e
a
n

R
u
n
ti
m

e
 o

v
e
rh

e
a
d
 (

%
)

Union mode Union + func permutation

Figure 5: Choosing a random function permutation
incurs overhead (2-byte alignment, collapsed PLTs).

standard permutation will place functions from the same
object file contiguously, which in most codebases will keep
related code together.

Next, we performed several profile-guided optimization
experiments based on hot functions. These experiments were
only performed on SPEC C programs, due to lack of time.
Some C++ programs (especially xalancbmk, with its many
tiny virtual functions) will likely benefit even more from
function permutation. The experiments, shown in Figure 4,
were:

(1) Instrument SPEC with our profiling code, count func-
tion calls when running SPEC’s “test” input size. Order
functions according to number of calls. Then run and
benchmark the “ref” input.

(2) Count calls on “test”; order according to 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2(𝑁))
of the number of calls 𝑁 . If 𝑁 < 3, place into bucket
zero. Then benchmark on “ref”.

(3) Count calls on “ref”; order functions according to exact
number of calls. Then run the “ref” input.

(4) Count calls on “ref”; order functions according to the
log of the number of calls. Then run the “ref” input.

(The overhead of our function-call instrumentation was only
0.75% on “ref”.) The final speedup in the first case is 1.03%.
This shows that profiling on one input (the “test” inputs
are really very small) yields a useful speed improvement for
another input. The second case shows 0.13% slowdown, so
either the buckets were too coarse-grained or the “test” input

-5

 0

 5

 10

4
0
0
.p

e
rlb

e
n
ch

4
0
1
.b

zip
2

4
0
3
.g

cc
4
2
9
.m

cf
4
3
3
.m

ilc
4
4
4
.n

a
m

d
4
4
5
.g

o
b
m

k
4
4
7
.d

e
a
lII

4
5
0
.so

p
le

x
4
5
3
.p

o
vra

y
4
5
6
.h

m
m

e
r

4
5
8
.sje

n
g

4
6
2
.lib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f
4
7
0
.lb

m
4
7
1
.o

m
n
e
tp

p
4
7
3
.a

sta
r

4
8
2
.sp

h
in

x3
4
8
3
.xa

la
n
cb

m
k

a
rith

m
e
tic-m

e
a
n

g
e
o
-m

e
a
n

R
u
n
ti
m

e
 o

v
e
rh

e
a
d
 (

%
)

1-1 ELF mode Union ELF mode

Figure 6: Performance of typical rewriting vs collaps-
ing PLTs; the latter is 1.7% absolute speedup.

size did not generate enough calls. When training on “ref” in
the third case, we observe 1.98% speedup; using buckets slows
performance slightly, to 1.76% speedup. Hence, we observe
1-2% speedup overall, with increased performance when the
exact input is known in advance. Precise function ordering
works better than bucketing by the log of the counts.

Note that the last two cases, trained on “ref” counts, were
repeated three times each for reproducibility. Variance is
fairly low, averaging 1.93%, 2.39%, 1.98% in the former, and
2.42%, 1.76%, 1.55% in the latter (all numbers are speedups).
The graph shows the results from the mid-performing run.

Collapsing PLTs. Using 2-byte function alignment, we
measured on M1 the performance of collapsing all PLT entries.
Results are in Figure 6. We went from a 0.46% slowdown to
1.7% speedup by collapsing PLTs. Clearly there is a significant
performance improvement when collapsing PLTs.

As to the memory overhead: the total mapped memory
of union ELFs is between 79%-95% (average 88.4%) that of
the original SPEC programs, when measured at the program
entry point. The total size of the code sections is 540KB-
2.56MB larger (1.7MB average) in the outputs due to the
addition of library code, though the total file-backed resident
memory use is 152KB-1.25MB less (598KB average), mea-
sured near program exit. Thus, union ELFs need less total
memory due to the omission of PLTs, but for SPEC-sized
executables use up to 2.5MB more per process due to static
linking of library code.

Workshop Presentation  FEAST’19, November 15, 2019, London, United Kingdom

51



Summary. We showed that 8-byte function alignment is
best on M1, while 2-byte alignment is best on M2 and M3
(which use different processor architectures). We clustered
functions close together with 2-byte alignment in our hot func-
tion experiments, ordering code according to program profiles.
We measured significant performance improvement from col-
lapsing PLTs. We expect the performance improvement from
function alignment and collapsing PLTs to be additive, but
we did not actually have time to test the combination. Hence,
Figure 4 (“ref” order) shows the best performance we ob-
tained on SPEC CPU.

6 DISCUSSION AND FUTURE WORK

The traditional trade off between dynamically-linked and
statically-linked executables is that the former enables code
sharing, while the latter avoids the expense of indirect calls.
We showed that statically-linked code can perform signifi-
cantly better (1.7% on SPEC CPU), if the user is willing to
duplicate shared code used by different programs.1 However,
this speedup likely comes from a very small set of PLT calls.
We could instrument and count PLT invocations, and only
“inline” the functions which are used frequently. For example,
maybe a program needs only memcpy to be statically linked
in order to get significant performance improvements, which
will not substantially increase the memory footprint of the
program. We see this as a promising direction for future work,
the creation of partially-statically-linked executables with
increased performance and minimal cost.

Egalito supports function-level debloating. It can statically
analyze a program to determine functions that can never be
used, and exclude them from the output. We believe that
this may combine well with the techniques in our work: if
certain functions can be removed, then our function ordering
is more likely to be able to place invoked functions within the
same cache lines. Furthermore, the call-graphs computed by
debloating can be used to inform the order in which we place
functions. Instead of merely placing hot functions together,
we could first check if one function calls the other.

Finally, although we performed static binary rewriting
in this work, the Egalito framework is actually designed for
dynamic recompilation. Leveraging this capability, we may be
able to rearrange a program’s code dynamically as it enters
different phases of its execution. The main challenge will
be to make our monitoring code as lightweight as possible;
our function-counting mechanism is a good fit, but we may
need other metrics. We believe the goal of a binary that self-
optimizes based on its own runtime and input is a realistic
possibility, and we are excited to explore this in future work.

7 CONCLUSION

We presented our system CodeMason, based on the Egalito
binary rewriting framework, for binary-level profile-guided

1Multiple copies of the same statically-linked program can still use
code page sharing, especially for position-independent executables; the
duplication only occurs when a diverse set of programs is used.

optimization (PGO). We discussed three binary optimiza-
tions: function alignment, function reordering, and collaps-
ing PLTs (converting dynamically-linked to statically-linked
code). Though this is a small set of operations, like compiler-
level PGO we sometimes achieve very significant performance
improvements—up to 11.8%. In future, we hope to develop a
partial PLT collapse mechanism to trade off between memory
overhead and runtime performance.

ACKNOWLEDGMENTS

Thanks to Graham Patterson for assisting with development
that led to this project, and the reviewers for their feedback
and experiment suggestions. This work is supported in part
by ONR grants N00014-17-1-2788 and N00014-16-1-2263, and
NSF grant CNS-1564055.

REFERENCES
[1] 2019. Egalito: Layout-Agnostic Binary Recompilation. (under

submission).
[2] 2019. Gentoo Linux. https://www.gentoo.org/.
[3] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, Ahmad M

Mustafa, Gbadebo Ayoade, Khaled Al-Naami, Latifur Khan,
Kevin W Hamlen, Bhavani M Thuraisingham, Frederico Araujo,
et al. [n. d.]. Superset Disassembly: Statically Rewriting x86
Binaries Without Heuristics. In Proceedings of the 25th Network
and Distributed Systems Security Symposium (NDSS), Vol. 12.
Springer, 40–47.

[4] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003.
An Infrastructure for Adaptive Dynamic Optimization. In CGO.

[5] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J
Schwartz. 2011. BAP: A binary analysis platform. In International
Conference on Computer Aided Verification. Springer, 463–469.

[6] Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao,
Vinodha Ramasamy, Paul Yuan, Wenguang Chen, and Weimin
Zheng. 2010. Taming hardware event samples for FDO compila-
tion. In Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization. ACM, 42–52.

[7] Charlie Curtsinger and Emery D. Berger. 2013. STABILIZER:
Statistically Sound Performance Evaluation. In Proc. of ACM
SIGARCH. 219–228.

[8] Bruno De Bus, Bjorn De Sutter, Ludo Van Put, Dominique Chanet,
and Koen De Bosschere. 2004. Link-time optimization of ARM
binaries. In ACM SIGPLAN Notices, Vol. 39. ACM, 211–220.

[9] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta.
2017. Rev. Ng: a unified binary analysis framework to recover
CFGs and function boundaries. In Proceedings of the 26th Inter-
national Conference on Compiler Construction. ACM, 131–141.

[10] Honza Hubička. 2014. Linktime optimization in GCC,
part 1 - brief history. http://hubicka.blogspot.com/2014/04/
linktime-optimization-in-gcc-1-brief.html.

[11] Intel. 2011. Intel 64 and IA-32 Architectures Optimization
Reference Manual. https://software.intel.com/en-us/download/
intel-64-and-ia-32-architectures-optimization-reference-manual.

[12] Chongkyung Kil, Jinsuk Jim, C. Bookholt, J. Xu, and Peng Ning.
2006. Address Space Layout Permutation (ASLP): Towards Fine-
Grained Randomization of Commodity Software. In 22nd Annual
Computer Security Applications Conference (ACSAC).

[13] Michael Larabel. 2018. A Fresh Look At The PGO Perfor-
mance With GCC 8. https://www.phoronix.com/scan.php?page=
article&item=gcc-82-pgo&num=1.

[14] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation
framework for lifelong program analysis & transformation. In
Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization.
IEEE Computer Society, 75.

[15] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. 2005. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation. 190–200.

Workshop Presentation  FEAST’19, November 15, 2019, London, United Kingdom

52

https://www.gentoo.org/
http://hubicka.blogspot.com/2014/04/linktime-optimization-in-gcc-1-brief.html
http://hubicka.blogspot.com/2014/04/linktime-optimization-in-gcc-1-brief.html
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-optimization-reference-manual
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-optimization-reference-manual
https://www.phoronix.com/scan.php?page=article&item=gcc-82-pgo&num=1
https://www.phoronix.com/scan.php?page=article&item=gcc-82-pgo&num=1


[16] Phoronix. 2012. The Performance Between GCC Optimiza-
tion Levels. https://www.phoronix.com/scan.php?page=article&
item=gcc 47 optimizations&num=1.

[17] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick
Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji Feng,
Christophe Hauser, Christopher Kruegel, et al. 2016. Sok:(state
of) the art of war: Offensive techniques in binary analysis. In
Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,
138–157.

[18] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. 2008. BitBlaze: A new approach
to computer security via binary analysis. In International Con-
ference on Information Systems Security. Springer, 1–25.

[19] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind
Machiry, John Grosen, Paul Grosen, Christopher Kruegel, and
Giovanni Vigna. 2017. Ramblr: Making Reassembly Great Again.
(2017).

[20] Shuai Wang, Pei Wang, and Dinghao Wu. 2016. UROBOROS:
Instrumenting Stripped Binaries with Static Reassembling. In
Software Analysis, Evolution, and Reengineering (SANER),
2016 IEEE 23rd International Conference on, Vol. 1. IEEE,
236–247.

[21] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and
Zhiqiang Lin. 2012. Binary Stirring: Self-randomizing Instruction
Addresses of Legacy x86 Binary Code. In Proc. of ACM CCS.
157–168.

[22] David Williams-King, Graham Gobieski, Kent Williams-King,
James P Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng,
Vasileios P Kemerlis, Junfeng Yang, and William Aiello. 2016.
Shuffler: Fast and Deployable Continuous Code Re-Randomization.
In OSDI. 367–382.

[23] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R Sekar. 2014.
A platform for secure static binary instrumentation. ACM SIG-
PLAN Notices 49, 7 (2014), 129–140.

Workshop Presentation  FEAST’19, November 15, 2019, London, United Kingdom

53

https://www.phoronix.com/scan.php?page=article&item=gcc_47_optimizations&num=1
https://www.phoronix.com/scan.php?page=article&item=gcc_47_optimizations&num=1

	Abstract
	1 Introduction
	2 Background/Related Work
	3 Design
	4 Implementation
	5 Evaluation
	5.1 SPEC CPU Performance Evaluation

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References



