
Context-based Online Configuration-Error Detection

Ding Yuan1,2∗, Yinglian Xie3, Rina Panigrahy3, Junfeng Yang4∗, Chad Verbowski5, Arunvijay Kumar5
1University of Illinois at Urbana-Champaign,2University of California, San Diego
3Microsoft Research Silicon Valley,4Columbia University,5Microsoft Corporation

Abstract
Software failures due to configuration errors are com-

monplace as computer systems continue to grow larger
and more complex. Troubleshooting these configura-
tion errors is a major administration cost, especially in
server clusters where problems often go undetected with-
out user interference.

This paper presentsCODE–a tool that automatically
detects software configuration errors. Our approach is
based on identifying invariant configuration access rules
that predict what access events follow what contexts. It
requires no source code, application-specific semantics,
or heavyweight program analysis. Using these rules,
CODE can sift through a voluminous number of events
and detect deviant program executions. This is in con-
trast to previous approaches that focus on only diagno-
sis. In our experiments,CODE successfully detected a
real configuration error in one of our deployment ma-
chines, in addition to 20 user-reported errors that we
reproduced in our test environment. When analyzing
month-long event logs from both user desktops and pro-
duction servers,CODE yielded a low false positive rate.
The efficiency ofCODE makes it feasible to be deployed
as a practical management tool with low overhead.

1 Introduction

Software configuration errors impose a major cost on
system administration. Configuration errors may re-
sult in security vulnerabilities, application crashes, se-
vere disruptions in software functionality, unexpected
changes in the UI, and incorrect program executions [7].
While several approaches have attempted to automate
configuration error diagnosis [2, 20, 26, 29], they rely
solely on manual efforts to detect the error symp-
toms [20, 26, 29]. As usual, manual approaches in-
cur high overhead (e.g., requiring users to write error-
detection scripts for each application) and are unreliable
(e.g., security policy errors may show no user-visible
symptoms). These drawbacks often lead to long delays
between the occurrence and the detection of errors, caus-
ing unrecoverable damage to system states.

In this paper, we aim to automatically detect config-
uration errors that are triggered by changes in config-

∗This work was done when the authors were at Microsoft Research
Silicon Valley.

uration data. These types of errors are commonplace
and can be introduced in many ways, such as operator
mistakes, software updates or even software bugs that
corrupt configuration data. For example, a software up-
date may turn off the “AutoComplete” option for a Web
browser, which, as a result, can no longer remember user-
names or passwords. An accidental menu click by a user
may corrupt a configuration entry and cause an applica-
tion toolbar to disappear. A seemingly benign user oper-
ation that disables the ActiveX control can unexpectedly
disable the remote desktop application.

We consider configuration data because it captures im-
portant OS and application settings. Further, the data is
typically accessed through well defined interfaces such
as Windows Registries. We can thus treat the applica-
tions and the OS as black boxes,transparentlyintercept-
ing and checking configuration accessing events (called
eventshereafter). This approach is lightweight: it does
not require modifying the OS [13] or using virtual ma-
chines [29].

We focus on Windows, where applications use the
Registry to store and access configuration data. In partic-
ular, we log all Registry events and analyze them online
to automatically detect errors. While Windows has the
largest OS market share1 and is also the focus of many
previous efforts [26], our methodologies can be general-
ized to other types of OS and configuration data.

Analyzing configuration-access events automatically
for error detection faces three practical challenges. First,
we need to efficiently process a huge number of events.
A typical Windows machine has on average 200 thou-
sand Registry entries [26], with10

6 to 10
8 access events

per day [23]. Commonly used learning techniques
(e.g., [1, 28]) rarely scale to this level.

Second, we must automatically handle a large set of
diverse applications. Different applications may have
drastically different configuration access patterns. These
patterns may evolve with user behavior changes or soft-
ware updates.

Finally, our analysis must effectively detect errors
without generating a large number of false positives.
Configuration data is highly dynamic: there are, on av-
erage,10

4 writes to Registry per day per machine, and
10

2 of them are writes to frequently accessed Registries

1Specifically, Windows has 91% of client operating system mar-
ket [22, 31] and 74% of server market [10].

1

that have never changed before. Application runtime be-
haviors such as user inputs, caching, and performance
optimizations may all add noise and unpredictability to
configuration states, making it difficult to distinguish be-
tween real errors and normal updates.

In this paper we presentCODE, an automatic online
configuration-error detection tool for system administra-
tors. CODE is based on the observation that the seemingly
unrelated events are actually dependent. The events ex-
ternalize the control flow of a program and typically oc-
cur in predictable orders. Therefore, a sequence of events
provides thecontextof a program’s runtime behavior and
often implies what follows. Further, the more frequently
a group of events appear together, the more correlated
they should be.

Thus, rather than analyzing each event in isolation,
CODE extractsrepetitive, predictableevent sequences,
and constructs invariant configuration access rules in the
form of context → event that a program should fol-
low. CODE then enforces these rules and reports out-of-
context events as errors. By tracking sequences,CODE

also enables richer error diagnosis than looking at each
individual event. OnceCODEdetects an error, it also sug-
gests a possible fix based on the context, the expected
event, and the error event.

We implementedCODE as a stand-alone tool that runs
continuously on a single desktop for error detection. It
can also be extended to support centralized configura-
tion management in data center environments. Our eval-
uation, using both real user desktops and production
servers, shows that the context-based approach has four
desirable features:
• Application independent:CODE requires no source

code, application semantics, or heavyweight program
analysis to generate contexts; it can automatically con-
struct rules to represent more than 80% of events for
most processes we studied.

• Effective: CODE successfully detected all reproduced
real-world configuration errors and 96.6% of randomly
injected errors in our experiments.CODEalso detected
a real configuration error on a coauthor’s desktop.

• Configurable false positive rate:Since CODE re-
ports only out-of-context events instead of new events,
it will not report normal configuration changes as
alarms. Further, the false positive rate is configurable.
In our experiments it reports an average of 0.26 warn-
ing per desktop per day and 0.06 per server per day.

• Low overhead: CODE keeps only a small number of
rules for detection and processes events as they arrive
online. The CPU overhead is small (less than1% over
99% of the time). The memory overhead is less than
0.5% for data-center servers with 16GB memory.

We explicitly designedCODE to detectconfiguration
errors; our goal isnot to catch all errors or malicious at-

tacks. We view our focus on frequent event sequences
as a good tradeoff. The high access frequencies indicate
that errors in these events are more critical. Moreover,
our detection takes place at the time when erroneous con-
figurations are accessed and manifest. Hence, these er-
rors are the ones that actually affected normal program
executions, andCODE naturally concentrates on them.

This paper is organized as follows. We first discuss re-
lated work in Section 2 and introduce Windows Registry
and a motivation example in Section 3. We then present
an overview ofCODE in Section 4. We next describe its
rule learning (Section 5) and error detection (Section 6).
We show our evaluation results in Section 7. Finally, we
discuss our limitations and future work (Section 8) be-
fore we conclude (Section 9).

2 Related Work

To our best knowledge,CODE is the first automatic sys-
tem for online configuration error detection. Below we
discuss related work on configuration-error diagnosis
and sequence-analysis based intrusion detection.
Configuration error diagnosis. Several diagnosis
tools have been developed to assist administrators
in diagnosing software failures. ConfAid [2] uses
information-flow tracking to analyze the dependencies
between the error symptoms and the configuration en-
tries to identify root causes. Autobash [20] leverages
OS-level speculative execution to causally track activi-
ties across different processes. Chronus [29] uses virtual
machine checkpoints to maintain a history of the entire
system states. KarDo [14] automatically applies the ex-
isting fix to a repeated configuration error by searching
for a solution in a database. SherLog [33] uses static
analysis to infer the execution path based on the runtime
log messages to diagnose failures.

Another family of tools compares the configuration
data in a problematic system with those in other systems
to pinpoint the root cause of a failure [12, 26, 27]. They
focus on the snapshots of configuration states, and use
statistical tools to compare either historical snapshots or
snapshots across machines. While it may seem feasible
to extend these state-based approaches for error detec-
tion, our experiments showed that such approaches will
generate a large number of false positives due to the noise
in configuration states (e.g., constant state modifications
or legitimate updates). In contrast,CODE reasons about
actionsrather than states for error detection.

The existing systems discussed so far have enhanced
off-line diagnosis of configuration errors. However, they
all require users or administrators to detect configuration
errors. In contrast,CODE focuses on automatic error de-
tection (it can further aid error diagnosis). The impor-
tance of having an automatic detection system is also
recognized in [19]. Due to the complex dependencies

2

of modern computer systems, detecting faulty configura-
tion states as early as possible helps to isolate the dam-
age and localize the root cause of a failure, especially
in server clusters or data centers with thousands of user-
unmonitored machines.
Software resilience to configuration errors Candea
et al. proposed a tool called ConfErr for measuring a sys-
tem’s resilience to configuration errors [4, 11]. ConfErr
automatically generates configuration mistakes using hu-
man error models rooted in psychology and linguistics.
ConfErr andCODE differ in their purposes. ConfErr can
help improve software resilience to configuration errors
and thus prevent errors from occurring, whileCODE can
be used to detect and diagnose configuration errors once
they occur and is thus complementary.
Sequence analysis. A large number of intrusion detec-
tion systems (IDS) identify intrusions with abnormal sys-
tem call sequences (e.g., [6, 9, 24, 32]). They

construct models of legal system call sequences by an-
alyzing either the source code or the normal executions in
an off-line learning phase. A deviation from the learned
models is flagged as an intrusion.

By analyzing event sequences to identify predictable
patterns, CODE shares similar benefits to run-time
system-call analysis. However, our focus on configura-
tion events instead of system calls leads to significantly
different design decisions. Configuration access patterns
constantly evolve, so off-line analysis used in IDS sys-
tems risks overfitting and producing outdated rules. Fur-
ther, while IDS systems have to prevent sophisticated at-
tacks [25] using conservative, non-deterministic models,
CODE explicitly focuses on the potentially more criti-
cal frequent sequences using simple, deterministic rules.
More importantly, the heavyweight learning algorithms
that IDS systems commonly use make them difficult to
scale to the volume of configuration access events, thus
these systems are often unable to adapt to dynamic en-
vironments online. In contrast, the focus of identifying
only invariant rules enablesCODE to adopt and adapt
much more efficient sequence-analysis methods to op-
erate online.

Prior work (e.g., [8, 15]) has also used event transi-
tions to build program behavior profiles. They mostly
focus on depth-2 transitions on code call graphs. In con-
trast,CODE’s event transition rules can consist of all pos-
sible lengths of prefixes, thus are more flexible and ex-
pressive when representing event sequences as contexts.

3 Background and A Motivating Example

In this section, we first introduce Windows Registry,
the default configuration store for Windows applications.
We then present a motivating configuration-error exam-
ple and show howCODE can automatically detect and
diagnose this error using contexts.

Key: HKEY LOCAL MACHINE\Software\Perl
Value: BinDir
Data: C:\Perl\bin\perl.exe
Operation:QueryValue
Status: Success

Table 1: An example Windows Registry operation.

AverageMaximum
Data modification 1051 5505
Key/Value creation 883 32676
Key/Value deletion 172 4997
Total 2106 43178

Table 2: Average and maximum number of Registry update
operations/process/day (across 115 processes on a regular user
desktop over one month period).

3.1 Windows Registry

Windows Registry is a centralized repository for soft-
ware, hardware, and user settings on Windows machines.
This repository makes it easy for different system com-
ponents to share and track configurations.

Windows Registry is organized hierarchically, closely
resembling a file system. Each Registry entry is uniquely
identified by a Registry key and a Registry value. A Reg-
istry key resembles a directory and a Registry value a
file name. A key may contain multiple subkeys and val-
ues. Given a key/value pair, Windows Registry maps it
to Registry data, which resembles the content of a file.
Hereafter, we will refer to Registry keys, Registry val-
ues, and Registry data as Keys, Values, and Data.

Table 1 shows a Windows Registry entry example.
Its Key is a hierarchical path name with root Key
HKEY LOCAL MACHINE, which stores settings generic
to all users. The Key in the example stores settings about
the Perl application. The Value/Data specifies that the
Perl executable is located atC:\Perl\bin\perl.exe. Win-
dows Registry supports about 30 operations (e.g., Cre-
atekey and OpenKey), each with a return value indicat-
ing the success or failure of the operation. Table 1 shows
a successful QueryValue operation (given a Key/Value
pair, fetch associated Data).

Previous studies have shown that a significant fraction
of configuration errors are due to Windows Registry cor-
ruptions [7]. Software bugs, user mistakes, or applica-
tion updates can all trigger unexpected Registry modifi-
cations that lead to software errors. In many cases, even
a single entry corruption may result in serious applica-
tion failures ranging from user-interface changes (e.g., a
menu or icon missing) to software crashes.

While Windows Registry facilitates configuration ac-
cess, it remains challenging to detect and diagnose con-
figuration errors due to the complex and dynamic nature
of Windows Registry. The number of Registry entries

3

…, … (check other settings)29-45

(normal)

Key: HKLM\Software\Policies\Microsoft\Windows\Windo wsUpdate\AU
Op: QueryValue, Status:not exist, Value: NoAutoUpdat e, Data:“”

28
(normal)

Key: HKLM\Software\Policies\Microsoft\Windows\Windo wsUpdate\AU
Op: QueryValue, Status:0, Value: NoAutoUpdate, Data :1

28
(error)

Key: HKLM\Software\Policies\Microsoft\W indows\WindowsUpdate\AU

Op: QueryValue, Status:not exist,

Value: DetectionFrequencyEnabled, Data:“”

27

…, … (check other settings)4-26

Key: HKLM\Software\Policies\Microsoft\W indows\WindowsUpdate

Op: QueryValue, Status: sucess, Value: WUStatusServer,

Data: http://sup-nam-nlb.redmond.corp.microsoft.com:80

3

Key: HKLM\Software\Policies\Microsoft\W indows\WindowsUpdate

Op: QueryValue, Status: success, Value: WUServer,

Data: http://sup-nam-nlb.redmond.corp.microsoft.com:80

2

Key: HKLM\Software\Policies\Microsoft\W indows\WindowsUpdate

Op: OpenKey, Status: success, Value: “”, Data: “”
1

Figure 1: Registry access sequence of Windows update.

is huge—about 200K for an average machine, and this
number is increasing [26]. Furthermore, Registry up-
dates are highly frequent. As shown in Table 2, the num-
ber of updates can be as high as tens of thousands per
process per day. Despite several recent proposals for au-
tomatic mis-configuration diagnosis, configuration-error
detection remains an open problem.

3.2 A Motivating Example

In this example, we illustrates howCODE can detect and
diagnose a real-world configuration error that disables
the Windows automatic update feature (i.e., switch the
OS to the manual update mode).

Given that Windows update often runs as a back-
ground task, users who normally leave automatic-update
on will hardly notice that their computers have stopped
checking for updates. Previous tools do not help in this
case because they diagnose configuration errors only af-
ter users detect them. Consequently, this error may go
undetected, leaving security vulnerabilities not patched
and machines compromised. Early detection is thus crit-
ical to alert users to reset this important safety feature.

This configuration error was reported when a user
removed a program that he or she thought was ex-
traneous [30]. The program removal adds a Value
“NoAutoUpdate” and Data 1 under the Key

K = [HKLM \Software\Policies\Microsoft\Windows\

WindowsUpdate\AU]

Since an average process can have over 2000 Registry
modifications (i.e., writes) per day during its normal ex-
ecution (Table 2), we need to determine which modifica-
tions are relevant to detection. One approach is to mon-
itor and report modifications to only frequently accessed
Keys. However, our experiments show that this approach
would generate 154 false alarms per desktop/day, an un-
acceptably high number.

In our detection,CODE identifies that a rule involv-
ing a frequent sequence of exactly 45 Registry accesses
is violated. By examining this sequence and its occur-
rence timestamps, we find that these events are issued by
ansvchost.exe process, which synchronizes with an
update server and checks for available updates periodi-
cally (once per hour for Windows laptops). If there are
updates available, the checking process will proceed to
download and install the updates.

Figure 1 shows this 45-event sequence. It be-
gins with an OpenKey operation on registry Key
“HKLM \...\WindowsUpdate”, which stores all the infor-
mation about Windows update. Next,svchost.exe
accesses this Key and all its Values. For example, the
second and third operations show thatsvchost.exe
queries the URLs of the windows update server and the
status reporting server.

At the 28th event,svchost.exe queries the Value
“NoAutoUpdate” (highlighted in Figure 1). Since this
Value does not exist during normal execution, the
QueryValueoperation will return “Value not found” and
svchost.exe continues to check other automatic up-
date options. However, after the Value “NoAutoUp-
date” is created with Data 1, the operation returns “Suc-
cess”, causingsvchost.exe to prematurely stop with-
out further checks.

Since the 45-event sequence occurs frequently in nor-
mal execution,CODE will learn a set of rules from this
sequence. In particular, it will identify the first 27 events
as the context for the 28th event. Thus, in the error
case,CODE successfully detects the deviation. In addi-
tion, CODEknows (1) the context, the expected event and
the event actually happened and (2) what process and the
time at which the process created the problematic Value.
It can thus pinpoint the root cause and recover the error.

4 System Overview

From a high level, our approach identifiespredictable
configuration-access rules from program executions for
error detection and diagnosis. From the example de-
scribed in Section 3, we see that each Windows update
check triggers a sequence of 45 Registry accesses. This
entire sequence is deterministic and thus predictable.
This behavior is not surprising, as configuration-access
patterns are usually reflective of a program’s control
flow. When a program runs the same code blocks with
same/similar user inputs, the set of external events tend
to be same/similar and in order.

We focus on only these predictable event sequences
in our detection. For each event in such a sequence, its
preceding event subsequence provides thecontextfor the
current program execution point. A deviation from the
predicable event sequence suggests that the correspond-
ing program’s control flow might have changed, which

4

Rules

Time

Extract frequent
event sequences

Construct
a trie

Epoch i Epoch i+1

Match events
against rules

Generate rules
abc -> d
abcd-> f

Diagnose rule
violations

Expected: abc -> d
Observed: abc -> e

Corrupted keys and causes

Learning Detection

Update

Event collection module

Analysis module
Figure 2: The CODE system architecture.

may indicate the existence of configuration errors. In this
case, the expected sequence and the actually observed
one are further used to diagnose the error’s root cause.

However, not all configuration-access events are pre-
dictable. A program’s runtime behavior such as caching,
optimizations, or the use of temporary files may all affect
the program’s control flow. Correspondingly, accessing
the configuration data will be less predictable. We may
observe a large number of temporary events, and even
the same set of events may exhibit completely different
timing orders. The challenge is how to differentiate the
two cases and identify only predictable patterns from a
voluminous number of events.

Given the complexity and dynamics of Windows Reg-
istry, CODEmust meet the following two requirements to
realize online detection and diagnosis:

• Efficient: The tool should have low timing com-
plexity in order to process events as they arrive in
real time. The number of Registry events to process
is on the order of10

6 to 10
8 per machine per day.

• Effective: As an online tool,CODE needs to distin-
guish true errors from volatile or benign changes.

We implementCODE as a stand alone tool, monitor-
ing each host independently (Section 8 discusses our de-
ployment ofCODEas a centralized manager for data cen-
ters). We structureCODE into two parts: an event collec-
tion module and an analysis module (Figure 2). Both
run simultaneously as a pipeline. The collection mod-
ule writes Registry operations to disk and the analysis
module reads them back for learning, detection, and di-
agnosis. We chose this architecture to keep the collection
module simple; otherwise, it may perturb the monitored
processes. We chose files as the communication method
between the two modules (instead of sockets) for flexible
control over analysis frequency (e.g., every few seconds
to minutes).

The core of the event collection module is a Windows
kernel module written in C++, similar to FDR [23]. It

intercepts all Registry operations and stores them in a
buffer in highly compressed forms. It then writes them
to disk periodically.2 Each event contains the following
fields: event time-stamp, program name represented by
the entire file system path to the executable, command
line arguments, process ID, thread ID, Registry Key,
Value, Data, operation type (e.g., OpenKey and Query-
Value) and operation status.

The analysis module is implemented in C#. It includes
a learning component and a detection/diagnosis compo-
nent. Both learning and detection are done by analyzing
the event sequences at a per-thread level because they
faithfully follow the program’s control flow in execu-
tion. For compact representation, we fingerprint a Reg-
istry event to generate a Rabin hash [18] by considering
all of its fields excluding the time-stamp, the process ID,
and the thread ID.

a b c d
context

Figure 3: Example of a rule.

The learning component takes the Registry event se-
quences as input, and generates a set ofevent transition
rules. Figure 3 shows an example rule. In this exam-
ple, a, b, andc each represents a unique Registry event.
This rule means if we have observed eventsa, b, andc in
sequence, then the next event is determined to bed. In
other words, event sequenceabcis the context of eventd
if and only if abcwill be always followed byd with no
exceptions (We do not consider non-deterministic cases
whereabccan be followed by other events such ase, as
majority of the important errors can be captured by de-
terministic cases in our experience).

We further require the number of occurrences of the
rule sequence to exceed a certain threshold for it to be
deemed as a rule. We use the complete command line
that launched a process to group the set of threads shar-
ing the common executable name and input arguments3.
The frequency of a rule is thus measured over all the
event sequences across a process group. Finally, the set
of learned rules are updated periodically byepochsand
stored in a rule repository as illustrated in Figure 2. We
define anepochas a time period where we observe a
fixed number of events, so that the rules learned from
one epoch can be applied immediately in the next epoch.

The detection component takes the set of learned rules
and applies them to detect errors as new events arrive.

2The overhead is negligible, even when flushing the buffer every
minute [23].

3Different arguments often lead to different program execution
paths for different tasks. Applications that launch at machine boot time
often start with fixed arguments. In Windows, many applications have
a graphical icon on the desktop that launches the application with fixed
arguments each time.

5

In case of a rule violation, the detection module per-
forms a set of checks to facilitate diagnosis based on the
rule sequence, the expected event, the Registry write that
caused the error, and the actually observed event. In the
next two sections, we describe the details of rule learning
and error detection/diagnosis.

5 Learning Configuration Access Rules

This section describes howCODE generates event transi-
tion rules from input Registry-access sequences. These
input sequences consist of registry accesses at thread
granularity for each process group (i.e., all processes that
share the same executable name and command-line argu-
ments). Figure 2 shows the three steps of this procedure:
(1) generate frequent event sequences, (2) construct a trie
(i.e., a prefix tree) to represent the event transition states,
and (3) derive invariant event transition rules based on
the trie. For efficient detection,CODE represents the set
of output rules in the form of a trie with labeled edges,
and each process group has a separate trie.

Throughout the process,CODE has time complexity
linear in the number of events processed. Although
CODE generates a set of frequent event sequences in-
dependently from each epoch, meaning that a sequence
has to appear frequently enough within one epoch to be
learned byCODE, it maintains the labeled tries in mem-
ory across epoches and updates them incrementally. We
will show in Section 7.3 that the generated trie sizes are
small for most of the programs.

5.1 Frequent Sequence Generation

The first step of generating frequent sequences is the
most critical, since it provides the candidate event sets
for generating rules as well as the potential context
lengths. To identify frequent event sequences, one op-
tion is to generate hash values for fixed-length event sub-
sequences, and then count their frequencies. We may po-
tentially leverage data structures such as bloom filters [3]
to optimize space usage. However, this option is not de-
sirable because it is difficult to pre-determine the event
subsequence lengths. Although we may choose several
popular lengths (e.g., 2, 4, 8), the semantically meaning-
ful event sequences can be very large (as illustrated in
Section 3) and can have varied lengths. Popular tech-
niques such as suffix trees [16] are not applicable either.
They typically require the entire input sequence to be
available. Furthermore, their space-time requirements
are not efficient enough to deal with a large number of
Registry events arriving in real time.

In order to generate the longest applicable frequent
subsequences efficiently,CODE adopts the Sequitur [17]
algorithm. Given a sequence of symbols, Sequitur iden-
tifies repeated sequence patterns and generates a set of

Figure 4: An example of Sequitur hierarchical rules. We also
show the flattened rule in the parenthesis.

Modified
Sequitur

T1

T2

a b c d

a b c d h i

e f g S1: abcd
S2: efg
S3: abcdhi

Input event streams Event sequence
segments

FS1: abcd

Frequent
event sequence

Figure 5: Generating frequent event sequences.T1 andT2 are
two threads belonging to the same process group.

grammar rules to hierarchically represent the original se-
quence. Figure 4 shows an example input sequence and
the hierarchical grammar rules derived by Sequitur. The
lower case letters represent the input symbols, and we
use upper case letters to denote the derived symbols.

During learning, the default epoch size is 500K events,
which can span from hours to days for different pro-
cesses.4 For each epoch,CODEdoes not need to store the
complete input sequence because the hierarchical repre-
sentation makes the original sequence more compact. In
practice, the number of symbols to store in memory is
roughly on the order of the number of distinct Registry
events, which is around only 1% of the total events [23].

Compared with other methods, Sequitur has a lin-
ear time complexity and reads only one pass of data in
streaming mode. Although it may generate sub-optimal
frequent sequences, we found it acceptable in our appli-
cation, as low time complexity is an important require-
ment. To apply Sequitur in our context, we make the
following two modifications to the algorithm:
Analyzing multiple sequences simultaneously.The in-
coming events processed byCODE contain not a sin-
gle event sequence, but multiple sequences. These se-
quences come from different processes and different
threads in the same process group. In addition, we ob-
serve that events belonging to the same task often occur
in a bursty manner. Mixing events from these semanti-
cally different tasks as one sequence would create unnec-
essary noise. We thus segment them into per-thread per-
burst sequences (the default time interval between two
bursts is one second), as shown in Figure 5.

The original Sequitur algorithm, however, analyzes
only one sequence at a time. We thus modify it to take
multiple sequences. We could maintain a separate gram-

4After learning, the detection takes place in real time.

6

root

a b c d: 6
a b e f: 7
b c d: 7
...

a b

b

c e

d f

c

d

root

a b

b

c e

d f

c

d

un-mark

un-mark

Frequent
sequences

Trie before marking Trie after marking

Build trie
Mark edges
.. a b c e ..

Figure 6: Constructing a trie from frequent event sequences and identifying its rule edges.

mar table (needed for Sequitur) for each sequence, but
this approach would miss common subsequences shared
across different threads in the same group. For example,
in Figure 5, both threads share the subsequenceabcd.
Thus a grammar table is shared among all sequences.
This sharing also reducesCODE’s memory usage.

With grammar table sharing, one complication arises
when a sequenceSx completely contains another one
Sy. To avoid storing the same sequence twice, Sequitur
would replace the redundant copy ofSy in Sx with a
pointer toSy. However, we cannot expandSy if new
events come in, because this expansion may makeSy no
longer a subsequence ofSx. To solve this problem, we
giveSy a fresh nameS′

y
each time we expand it.

Flattening the hierarchy: The second modification is
to flatten the default hierarchical symbols output by Se-
quitur to event symbols in order to construct the trie later
(illustrated by Figure 4). To ensure each learned se-
quence is not too short, we select a flattened event se-
quence only if its length is above a pre-defined length
thresholdl (by defaultl = 4) and its sequence is above a
pre-defined frequency thresholds (by defaults = 5). We
call the frequency of an event sequence as itssupport.

Although the rule flattening process is relatively
straightforward, correctly computing the support (i.e.,
frequency) of the expanded sequences is a more involved
task. In Figure 4,R1 appears at bothR2 andR3, andR2

further appears atR3. CODE takes a top-down approach
to traverse the hierarchical representations for computing
the correct support. The final output of this step is a set
of frequent event sequences with support greater thans.

5.2 Event Trie Construction
After CODE generates the frequent sequences from in-
put events, it proceeds to construct an event trie in the
form of a prefix tree to store all the frequent sequences
from all threads of each process group. Figure 6 shows
the construction of an example trie. In a trie, each node
represents a Registry access event (encoded as a Rabin
hash), and each directed edge represents the transition
between the two corresponding events in temporal order.

The adoption of a trie representation serves a couple
of important purposes. First, it represents the temporal
transition relationships between different events, provid-

ing the basis for deriving event transition rules. Second,
we found that many frequent event sequences have com-
mon prefixes. Hence a prefix tree explicitly encodes the
divergence of different event paths from a single point.

We further optimize the trie data structure to make it
more compact. An observation is that many event se-
quences share suffixes as well. In practice, merging com-
mon suffixes is very effective in reducing the trie size (by
half). Meanwhile, this optimization still preserves the
event transition relationship and ensures the correctness
of the derived rules.

5.3 Rule Derivation

With a trie, CODE proceeds to deriveevent transition
rules that all threads from the same process group have
to follow. We look at only the rules that were never vio-
lated. Our approach is to identify those event transitions
a→ b that are deterministic given the sequence of events
from the root toa. We define such an edge as arule edge.
Clearly, only edges from nodes with only one outgoing
edge are rule edge candidates.

However, simply counting outgoing edges is incom-
plete. For example, given a frequent sequenceabcd, we
can construct a trie of 4 nodes, and the edge fromc → d

appears to be a rule edge. However, there may exist a
sequenceabce that did not occur frequently enough to be
selected as a popular sequence. In this case, the transition
c → d is not deterministic.

For each newly created rule edge,CODE determines
whether it is truly a deterministic transition by check-
ing it against the upcoming event sequences in the next
epoch. Figure 6 shows this edge-marking process. Doing
so defers the use of this edge for detection. It is worth
noting that for each event,CODE identifies all possible
matches based on the preceding subsequences. Addition-
ally, CODEalso starts from the root every time to capture
subsequences that begin with the current event. During
the edge-marking process in Figure 6, if the incoming
evente is following sub-sequenceabc, we will un-mark
the twoc→ d transitions from rule edge in the trie.

7

6 Error Detection and Diagnosis

This section describes howCODE detects configuration
errors using the learned rules and further outputs diagno-
sis information. Since the labeled trie structure captures
the rules as deterministic event transitions and is efficient
at matching sequences, we conveniently reuse this data
structure for error detection without explicitly represent-
ing the rules. The detection algorithm is thus simple and
similar to the edge-marking process in Figure 6, except
when we see a violation, we report a warning rather than
un-marking the transition. This online detection method
ensures that we can detect a configuration error as early
as possible, before it affects other system states.

6.1 False Positive Suppression
In the rule-learning process, the support thresholds can
be used to configure the false positive rate. A largers

usually implies a smaller false positive rate, but we may
also miss some real errors. We further evaluate this pa-
rameter in Section 7.2.

Additionally, we use three techniques to reduce
CODE’s false positive rate. First, beforeCODE reports
a warning, it performs an additional check to ensure that
the violated (i.e., expected) event does not appear in the
near future. So ifabc → e is a rule that is violated by
observingabc followed byf , then we monitor the events
for a delay buffer (set to 1 sec) to check ife appears;
if it does, we suppress the warning. The idea behind
this check is that since we are looking for corruptions
of Registry Keys/Values, iff is indeed a corruption of
the Key/Value corresponding to the Registry in evente,
thene should not appear again. Otherwise it is perhaps
simply a benign program flow change.

Second, if multiple alarms are generated in a1 second
delay buffer,CODE only reports the first one as the oth-
ers are likely manifestations of the same root cause. We
found the first alarm is always the true root cause in our
experiments (see Section 7.1.1).

The third technique iscooperative false positive sup-
pression: aggregate warnings from all machines, and re-
port only unique ones. We consider two warnings iden-
tical if they warn about the same Key, Value, and Data.
We canonicalized user names when comparing Registry
Keys (More canonicalization would help, but it is beyond
the scope of this paper). This technique effectively re-
duced the number of false positives by 30% in our exper-
iments, though it can be turned off for privacy concerns.

6.2 Error Diagnosis
CODE also provides rich diagnosis information after er-
ror detection. When a process violates a rulecontext →

event, CODE knows precisely the context, the expected
event, the violating event, and the violating process.
Such information can help diagnosis in a few ways.

First, CODEallows the operator to understand how the
Registry in the expected event was changed by track-
ing which process, at what time, modified the entry that
caused the error. To do so,CODE uses a modification
cache to store the last modification operations (along
with timestamps) on the Registries in the rules. Because
the rules track only frequently accessed Registries and
the majority of the accesses to these Registries are read-
only events, we need only a small cache. In practice,
the size of the modification cache is always smaller than
2,000 events for all the machines that we used in our ex-
periments. The typical size of 200 events is enough for
the majority of them.

Second, the expected event and its context often
provide enough information regarding the program’s
anomalous behavior to the administrator. They also pro-
vide the candidate Registry entries for recovery. In the
“auto-update error” example in Section 3.2, the expected
event has empty Data for ValueNoAutoUpdate, while
the violating event has “1” as the Data. Further the ex-
pected event belongs to a sequence where svchost.exe is
checking for auto-update setting. Such information pro-
vides hints to the administrators about the root causes.

Finally, CODE returns all the processes whose rule
repositories involve the corrupted Registry. Operators
can use this information to examine whether the same
configuration error might affect other programs.

7 Evaluation

We deployedCODE on 10 actively used user desktops
and 8 production servers. In our month-long deployment,
we set the data collection interval to every one hour. We
ran the analysis module separately off-line on the col-
lected registry-event logs. This allowed us to conve-
niently examine the logs in detail. For the off-line anal-
ysis, it took about 12 hours to process each machine’s
one-month log. We also evaluated the same version of
CODE using one minute intervals to measure its online
analysis performance.

To demonstrate the value of using context, we also
implemented astate-based approachthat does not use
context for error detection and compared it withCODE.
Instead of looking at sequences, this approach tracks
commonly used Registry Key/Value entries and raises an
alarm if the Data field has not been observed before. To
ensure a fair comparison, we applied the same param-
eters used byCODE as well as the set of false positive
suppression heuristics described in Section 6 whenever
applicable. Below we present our evaluation results.

7.1 Detection Rate and Coverage

We first evaluateCODE using real-world configuration
errors and randomly injected Key corruptions.

8

Error name Description
Doubleclick When double clicking any folder in explorer, “Search Result” window pops up.
Advanced IE advanced options missing from menu.
IE Search Search dialog will always be on the left panel of IE that can’t be closed.
Brandbitmap The animated IE logo disappears.
Title IE title changed to some arbitrary strings.
Explorer PolicyWindows start menu becomes blank.
Shortcut In explorer, clicking the shortcut to a file no longer works.
Password IE can no longer remember the user’s password.
IE Offline IE would launch in offline mode and user’s homepage can’t be displayed.
Outlook trash Outlook asks to permanently delete items in the “Deleted Items” folder every time it exits.

Table 3: Description of the 10 reproduced errors.

7.1.1 Detection of Real-Errors

The real world error discovered byCODE was
caused by Hotbar Adware [21], which unexpect-
edly infected one co-author’s desktop. This adware
adds graphical skins to Internet Explorer (IE), and
modifies a group of Registries related to the Key
“HKLM \Software\Classes\Mime\Database\Content type\
App”. CODE successfully detected rule violations at
the IE start-up time.CODE further provided diagnostic
information to help remove the IE tool bars created by
the adware.

Additionally, we manually reproduced 20 real-user re-
ported errors to evaluateCODE. These errors were se-
lected from a system-admin support database. The only
criteria we used in our selection was whether these er-
rors were triggered by modifications to Windows Reg-
istry and were reproducible.5 The error reproduction pro-
cess exactly followed the set of user actions that triggered
the software failures as described in the failure report.
The 20 errors involved nine different programs, includ-
ing popular ones such as Internet Explorer, Windows Ex-
plorer, Outlook, Firefox.

CODE successfully detected all these reproduced er-
rors. Due to space constraints, we do not describe all
of them, but list the 10 representative ones in Table 3.
To further evaluate the effectiveness ofCODE across dif-
ferent environments, we reproduced these 10 errors in
5 different OS environments (one of them was a virtual
machine). Not all of these 10 errors can be reproduced
on all 5 machines; out of all combinations, we were able
to reproduce 41 cases.

Among these 41 cases,CODE detected 40 cases and
missed only 1 case (Table 4). Further investigation on
the missing case showedCODE had over-fitted the con-
text for that error; that is, the context learned was longer
than that observed after the reproduction. We suspect
there might exist two different program flows that pre-
ceded the access to the corresponding Registry Key, and
CODE learned a longer context than what was observed
during detection.

5Some errors require special hardware setup or specific software
versions to reproduce.

Machine OS andServer 03Vista xp-sp2 xp-sp3 xp-VM
IE version IE 6 IE 7 IE7 IE 7 IE 6
Doubleclick 1 (1) 1 (1) 1 (3) 1 (3) 1 (2)
Advanced 1 (1) 1 (1) 1 (2) 1 (1) 1 (6)
IE Search 1 (10) N/A N/A N/A 1 (7)
Brandbitmap N/A N/A N/A N/A 1 (3)
Title 1 (1) 1 (1) 1 (2) 1 (3) 1 (3)
Explorer Policy 1 (1) 1 (2) 1 (2) 1 (5) 1 (2)
Shortcut 1 (1) 1 (1) 1 (3) 1 (1) 1 (2)
Password N/A 1 (2) 1 (1) 1 (2) 1 (2)
IE Offline 1 (1) 1 (1) 1 (2) - 1 (1)
Outlook Trash 1 (2) 1 (2) 1 (2) 1 (2) N/A

Table 4: Detection results of reproduced real errors. The first
number in each box is the rank of the root cause event, and the
second number in the parenthesis is the total number of viola-
tions observed in detection. N/A means we couldn’t reproduce
that error on that machine, and “-” is the caseCODE missed.

Table 4 lists the total number of violations before
CODEaggregated the warnings within the one second de-
lay buffer. In all these cases, the root cause event was the
first event that occurred. The other violations all hap-
pened in a burst right after the first one. By aggregating
warnings (Sect. 6.1), only the first alarm is reported.

Indeed, manual inspection suggests those additional
violations are not false positives but are highly corre-
lated to the root cause. For example, theOutlook
Trash error is triggered by modifying the Data of
Key “HKCU\Software\Microsoft\Office\11.0\Outlook\
Preferences\Emptytrash” to 1. This error caused an
alert window to pop up on each exit of Outlook,
asking whether to permanently delete all items
in the “Deleted Items” folder. This alert win-
dow is related to another Registry Key“\HKCU\
Software\Microsoft\Office\11.0\Outlook\Common\Alerts”,
whose settings were changed during the error, causing
CODE to report additional violations.

Based on the diagnosis information output byCODE,
we can easily recover all the reproduced errors by chang-
ing the corrupted Registry entries back to the expected
ones. However, due to the complex dependencies be-
tween today’s system components, we expect automatic
recovery to be a challenging topic for future work.

9

7.1.2 Exhaustive Key Corruption

To evaluate the coverage ofCODE’s error detection, we
manually deleted every Registry Key that is frequently
accessed (≥ 2 times) by a process on a virtual ma-
chine. Note that this does not implyCODE can detect
configuration errors caused by only Registry deletions.
Any change to Registries such as modifications or new
Key/Value creations, can be detected byCODE so long
as a future access to these modified Registries violates a
learned rule. For example, the AutoUpdate error in Sec-
tion 3.2 was caused by modification to a Registry Data.

The process we chose is Internet Explorer (IE), which
has both the maximum number of Registries and distinct
Registry Key accesses on a typical desktop machine. We
ran a program that simulates user browsing activities by
periodically launching an IE browser, visiting a Web site,
and then closing the browser. After running this program
for two hours (for the learning phase), we deleted every
Registry Key that IE accessed more than twice during the
two hours, one at at time. After each corruption, we ran
the program twice that simulates a user’s Web visit and
let CODE perform detection. We then recovered the cor-
rupted Key before proceeding to the next Key corruption.

Total Registry accessesRegistry writes Distinct Keys
2,097,642 275,549 (13.1%) 1,247

Frequent Registry Successfully CODE detected
Keys (≥ 2 times) corrupted Keys corruptions

783 (62.8%) 387 374 (96.6%)

Table 5: Summary of the Key corruption experiment.

Table 5 summarizes the statistics and the results.
Among the 387 successfully corrupted Keys,CODE de-
tected 374 (96.6%) of them. Note not every frequently
accessed Key can be corrupted. Among 783 of the fre-
quent Keys, we successfully found and corrupted only
387 of them. The remaining Keys were temporary to the
life time of a particular IE instance. Since our experiment
periodically launched a new IE instance, those temporary
Keys no longer existed at the deletion time.

In total, CODE failed to detect 13 of the corrupted
Keys, among which, 12 are Keys or sub-Keys of the fol-
lowing 4 Keys:

• HKEY LOCAL MACHINE\software\ classes\rlogin
• HKEY LOCAL MACHINE\software\ classes\telnet
• HKEY LOCAL MACHINE\software\ classes\tn3270
• HKEY LOCAL MACHINE\software\ classes\mailto

These Keys store settings about the dynamically linked
libraries for handling four application-layer protocols
and they are periodically queried by IE. During the ex-
haustive Key-corruption experiment, we deleted a Reg-
istry Key “AutoProxyTypes” that stores settings about
automatic Internet sign-up and proxy detection. The

deletion of this Key may have triggered persistent pro-
gram behavior changes in IE, which switched to an alter-
native configuration option that did not rely on the above
four Keys to perform Internet sign-up and proxy detec-
tion. This example also suggests that recovering from
errors triggered by configuration changes may require
more than reversing these modifications.

Total Frequent Frequent AccessDistinct Accesses
Key Access CODE Captures To Frequent Keys
2,090,777 2,083,912 (99.7%) 2,400

Distinct Access Accesses with Average Number
CODE captures single context of contexts
2,400 (100.0%)1,743,708 (83.4%) 1.74

Table 6: Event context statistics.

To further understand the predictability of using con-
texts for detection, we measure the number of the Reg-
istry accesses that fall into contexts, where our detec-
tion is applicable. Table 6 shows that out of the to-
tal 2,090,777 accesses to the frequent Keys, 2,083,912
(99.7%) of them fall into some contexts, and thus may
be captured byCODE. Furthermore, 83.4% of the fre-
quent accesses belong to a single non-overlapping con-
text. This means that their access happened in only one
deterministic way. On average, for each frequent Reg-
istry access, it has 1.74 contexts. For those Registry ac-
cesses that have more than one context, most of them are
related to the settings of dynamically linked modules that
may be shared by different components in IE, resulting
in more than one context.

7.2 False Positive Rate

We evaluated the false positive rate ofCODE using
month-long Registry access logs from the following two
sets of machines: (1) 8 production servers with similar
hardware and workloads and (2) 10 desktops used by
two interns, four researchers, one research lab manager,
and three part-time vendors, giving us a diverse set of
workloads. Other than the Hotbar Adware, we were un-
aware of any other configuration errors reported for the
log-collection time period.

CODE State-based
Num/day/machineAverage Max Min Average

Server 0.06 0.27 0 13.67
Desktop 0.26 0.96 0 153.83

Table 7: Summary of false positive rates (in terms of the num-
ber of warnings/machine/day) across 10 desktops and 8 servers.

Table 7 shows the false positive rates ofCODE. Over
the 30 day period with hundreds of billions of events
from all machines,CODE reported a total of 78 warnings
with an average of 0.26 warning/desktop/day and 0.06
warning/server/day. As a comparison, the state-based
approach reported three orders of magnitude more, on

10

Name Description Percentage
File AssociationThe default program used to open different file types is changed. 24.1%

MRU List Changes to most recently accessed files tracked by applications (e.g.,explorer and IE) 12.7%
IE Cache The meta-data for the IE Cache entities is changed. 3.8%
Session The statistics for a user login session are updated. 3.8%

Environment Environment variable changes. 2.5%

Table 8: Top 5 reasons for causing false positives on one machine. The “Percentage” column shows, using the 5 categories, the
percentage of alarms that can be summarized over all alarms from all machines.

average 153.83 warnings/desktop/day and 13.67 warn-
ings/server/day. This difference can be explained by sev-
eral reasons. First, many modifications to frequently ac-
cessed Registries do not occur in any frequent sequences
(i.e., no context). Second, multiple Registry modifica-
tions often belong to a single sequence whereCODE re-
ports only the first modification as a warning while the
state-based the approach reports all of them. Finally,
some modified Registries will never be accessed again
after the modification. While the state-based approach
reports all such cases as warnings,CODE does not be-
cause it reports a warning only when the modified Reg-
istry is read again.

We further examine the time distribution of the warn-
ings generate byCODE. Figure 7 shows that for the
desktop that generated the largest number of warnings
(0.96/machine/day in Table 7), only 4 processes reported
a total of 29 warnings during the 740 hours (more than 30
days). Most warnings are clustered in time, and are likely
caused by the same configuration modification event.

 0
 0.5

 1
 1.5

 2
 2.5

 800 600 400 200 0

W
ar

ni
ng

s

Hour

outlook
ccmexec
explorer
services

Figure 7: Number of warnings per hour generated by the desk-
top that had the most number of warnings.

We analyzed the different causes of the false positives
on user desktops and found that they can be categorized
into a few types (Table 8 summarizes the top five causes).
Some of them (File Association and Environment Vari-
able) are intended configuration changes issued by users;
the others (Most Recently Used List, IE Cache, and Ses-
sion Information) are temporary-data changes. By using
regular expressions to filter the Registry Keys that fall
into these top five causes, we can potentially reduce the
false positive rate to0.14 warnings/desktop/day.

We also observed a significant overlap in the false
positives generated across different machines. Without
the cooperative false positive suppression heuristic that
merges false positives across machines, the false positive
rate in an isolated detection would have increased from
0.26 to 0.36 warnings/desktop/day.

7.2.1 Analysis Sensitivity

We studyCODE’s sensitivity to workload and the support
threshold (i.e., the number of occurrences for a frequent
event sequence to be learned as a rule) in this section.
Workload sensitivity. Table 7 shows thatCODE’s false
positive rate is four times lower on servers than on
user desktops. This is because server workloads are
less interactive, and thus, their Registry access logs are
less noisy. To evaluate the workload sensitivity, we
measure the false positive rate of different programs
for all the machines in our experiment. Among all
the programs running on the servers, only 2 ever re-
ported warnings; for programs running on desktops, 12
reported warnings. The program Windows Explorer
(explorer.exe) generated the maximum number of
warnings, contributing to 1/3 of the total alarms followed
by Internet Explorer (iexplore.exe) and Windows
Login (winlogon.exe). Windows Explorer is like the
Unix shell for Windows and is highly interactive. While
CODE currently uses the same support threshold 5 for
learning frequent sequences, we can adjust the false pos-
itive rate by setting a larger support threshold.
Support-threshold sensitivity. As discussed above,
an important parameter is the support threshold for sep-
arating frequent and infrequent sequences. We evaluated
this sensitivity using the desktop with the highest false
positive rate (0.96/machine/day in Table 7). Figure 8
shows the result. As was expected, using a larger thresh-
old decreased the false positive rate. Users and adminis-
trators can tune this parameter to trade-off detection rate
vs. false positive rate.

7.2.2 Impact of Software Updates

Software updates are frequent on modern computers.
Their activities may be intrusive and change a program’s
configuration-access patterns. We study the impact of
software updates on the false positive rate in this section.

We used the logs collected from the 10 desktop ma-
chines for our analysis. We treat a warning as a
software-update related false positive if the correspond-
ing Registry was last modified by one of the Win-
dows software update processes (e.g.,ccmexec.exe,
svchost.exe, update.exe) and Windows soft-
ware installation processes (e.g.,msiexec.exe).

Among the 78 false positives reported byCODE, only
5 were due to software updates, averaging to 0.017 warn-

11

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 a

la
rm

s

Support Threshold

Number of alarms

0 1 2 3 4 5 6 7

10
2

10
4

10
6

10
8

10
10

X: 6.026
Y: 3055

Time (days)

N
um

be
r

of
 e

ve
nt

s
in

 lo
g

sc
al

e

Total events
Distinct events
Trie Size

671 million

2726 3055

489 million

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

Trie size (number of nodes)

E
ve

nt
 c

ov
er

ag
e

(%
)

Desktop processes
Server processes

infopath.exe

aclient.exe

searchindex.exe

cqmghost.exe
snmp.exe

(a) (b) (c)
Figure 8: (a) Sensitivity of false positive rate vs. support threshold. (b) The growth of the trie size and the number of events over
time for IE (desktop) in log scale. (c) Trie size vs. event coverage fordifferent processes on two machines.

ing per desktop/day or 0.139 per update across total 36
updates from these machines. These 5 warnings were
caused by two environment variable updates, one display
icon update, one DLL update, and one daylight saving
start date update. This small false-positive number is not
surprising, as software updates tend to fix bugs and add
new functionalities, but do not change the existing fre-
quent configuration-access patterns.

CODE learned the new access patterns introduced by
software updates as new rules, rather than considering
them as false positives. For example, after a large Office
update on a desktop, the trie size of the corresponding
program increased by 10% within one day. Otherwise,
the trie size was relatively stable.

We further examine the most intrusive update we
found in the logs: an update from Office Service Pack
2 to Service Pack 3 [5]. This upgrade includes more
than 200 patches. It affected 7 of the Office applica-
tions, created and modified more than 20,000 keys, but
caused only one false positive warning. A closer look
revealed that while this update created many keys, the
majority of them were temporary keys for bookkeeping
and were deleted right after the update, causing no warn-
ings. This update additionally modified or deleted 61 ex-
isting keys; only 10 keys overlapped with the rulesCODE

learned and they were all captured in one rule, causing
the only warning. These 10 keys specified the daylight
saving start dates of 10 countries and were frequently
queried by Outlook6, resulting in aCODE rule. When
the Office update changed these keys,CODE detected a
rule violation.

7.3 Performance Evaluation
When we deployCODE in online mode, where it periodi-
cally (every minute) processes Registry events arriving in
real time, the CPU overhead is very small–less than 1%
over 99% of the time, with a peak usage between 10%-
25% (on an AMD 2.41GHz due-core machine). The cur-
rent memory usage is between 500 MB-900 MB.

6Outlook queries these keys to determine how to display the calen-
dar items based on the current time zone.

The memory overhead is largely caused by maintain-
ing sets of tries, one for each process group. Figure 8 (b)
plots the trie size growth over time in log scale for an IE
process. The trie size is about 2000-3000 and converges
roughly after 1 day. In contrast, the number of Registry
events can be up to hundreds of millions. Even the num-
ber of distinct events is one order magnitude larger than
the trie size, suggestingCODE is effective in reducing the
event complexity.

We proceed to examine the trie sizes for different pro-
cesses in Figure 8 (c). For the majority of the pro-
cesses, their trie sizes are consistently small, on the or-
der of hundreds to tens of thousands of events. The
total trie size across all processes on a machine is still
small, on average 529,500 per user desktop and 97,042
per server. Given each trie node requires around 12 bytes
(8 byte Rabin hash + 4 byte pointer), maintaining all the
tries requires around 1MB-6MB in the ideal, optimized
case. We suspect a large portion of the current mem-
ory overhead is caused by both caching the event se-
quences during the learning phase and the C# overhead.
Such overhead can be potentially reduced by using sam-
pled epoches to reduce the learning frequency, and by
re-implementing the analysis module in C++.

Figure 8 (c) also shows the percentage of unique
events included in the tries defined asevent cover-
age. This metric roughly tracks the Registry-access
predictability. We found that most of the processes
have over 80% of event coverage. In particular, the
snmp.exe process running on the server is highly pre-
dictable, where a trie with 27 unique events can represent
99.77% of all its Registry access events.

One of our goals is to useCODE to monitor server clus-
ters or data center machines for detecting abnormal con-
figuration changes. A typical server cluster consists of
machines with similar hardware, software settings, run-
ning similar workloads. In this scenario,CODE could of-
fload the analysis task from each server to a small num-
ber of centralized management servers.

We run CODE in a centralized mode, constructing a
single centralized trie that consists of all the rules from

12

Trie Size (%) Memory MB (%)
1 machine 98,042 503
2 machines119,503 (21.9%) 510 (1.4%)
4 machines134,892 (12.9%) 560 (9.8%)
8 machines139,918 (3.7%) 600 (7.1%)

Table 9: The size and memory usage of a centralized trie con-
structed by analyzing events from multiple machines. The trie
size is monitored after 3 days, and the memory usage is the
average usage in one day.

multiple machines. Table 9 shows the growth of the trie
size and the memory usage as we increase the number of
machines to monitor. As we see, the trie size grows by
only 3.7% when the number of machines to monitor in-
creases from 4 to 8. This suggests that rules learned from
multiple machines can be applied to other similarly con-
figured machines (i.e., with similar hardware, software
and workload). For centralized configuration-error de-
tection, the memory overhead is on average about 0.4%
per machine for 16GB-memory servers. We leave it as
future work to fully generalize theCODEapproach to per-
form centralized data-center management.

8 Discussion

Limitations: Not all configuration errors can be detected
by CODE. By focusing on changes to configuration data
and their access patterns,CODEmay not detect errors in-
troduced at system or software installation/setup time.
To detect these errors, we can extendCODE to process
event sequences across machines, so that errors on one
machine can be detected by comparing Registry event
sequences from another properly installed machine. Pre-
vious work [26] has also showed encouraging results by
cross referencing static configuration states in a similar
way. If a configuration error is caused by an event with-
out any context,CODE cannot detect it either. However,
in our evaluation, we have not encountered such errors.

We have evaluatedCODE on only Windows Registry,
but we believeCODE’s underlying techniques can poten-
tially be generalized to other configuration formats, such
as Unix’s configuration files under /etc/. However, in
Unix, different applications manage their own configu-
ration data in their own format, so it might require per-
application instrumentation to collect the configuration
data access trace.

CODE can be deployed as both a stand-alone tool run-
ning on end user’s desktops and a centralized manage-
ment tool used by system administrators to monitor mul-
tiple machines in a data-center or a corporate network.
We expectCODE to work better in the latter scenario
for the following reasons. First, end users might have
no clue on how to deal with warnings for filtering false
positives. Second, with centralized management, an end
user desktop can be spared from the 500-900MB mem-

ory overhead (the event collection component still needs
to run on end user machines, but it has a negligible over-
head [23]). Third, our cooperative false positive suppres-
sion feature requires the sharing of canoncalized configu-
ration entries, which is easier to perform in a centralized-
management setting.
Future work: Our experiments showed that the noise
in event logs varied greatly from program to program—
after all, these programs have different purposes, work-
loads, and users. CurrentlyCODE treats all programs
uniformly in learning. However, we envision harnessing
program-specific knowledge to further improve our de-
tection accuracy and reduce false positives. In particular
we may set a higher support threshold for a noisier pro-
gram. Another possibility is to rank errors based on the
importance of the programs affected by these errors. For
example, a warning fromsystem.exe (the Windows
kernel process) may be more important than a warning
from explore.exe.

In a distributed setting,CODE can collect a much
larger, unbiased set of logs to improve the quality of its
rules. In particular, for managing server clusters, the ho-
mogeneity of the machines may also help reduceCODE’s
memory overhead and false positive rates (see Section 6,
7.2, and 7.3). One challenge is canonicalization: the
rules CODE learns may contain machine-specific infor-
mation (e.g. machine names, IP addresses, and user
names). We manually added user-name canonicalization
in CODE. As future work, we plan to develop automatic
or semi-automatic techniques to infer more machine-
specific configuration data for canonicalization.

9 Conclusion

We presentedCODE, an online, automatic tool for con-
figuration error detection. Our observation is rather sim-
ple: key configuration access events form highly repeti-
tive sequences. These sequences are much more deter-
ministic than each individual event, thus can serve as
contexts to predict future events. Based on this obser-
vation,CODE uses a context-based analysis to efficiently
analyze a massive amount of configuration events. We
implementedCODE on Windows and used it to detect
Windows Registry errors. Our results showed thatCODE

could successfully detect real-world configuration errors
with a low false positive rate and low runtime overhead.

Acknowledgments

We thank the anonymous reviewers and our paper shep-
herd Dilma Da Silva for their valuable feedbacks. We
also thank Marcos K. Auguilera for his detailed com-
ments for improving the paper. We thank Professor
Yuanyuan Zhou, the UCSD Opera research group and
Marti Motoyama for discussion and paper proofreading.

13

References
[1] R. Agrawal and R. Srikant. Mining sequential patterns.

In Proceedings of the Eleventh International Conference
on Data Engineering (ICDE), pages 3–14, 1995.

[2] M. Attariyan and J. Flinn. Automating configuration trou-
bleshooting with dynamic information flow analysis. In
Proceedings of the 9th USENIX conference on Operating
systems design and implementation (OSDI), 2010.

[3] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors.Comm. of ACM, 13(7):422–426, 1970.

[4] G. Candea. Toward quantifying system manageability.
In Proceedings of the Fourth conference on Hot topics in
system dependability (HotDep), 2008.

[5] Description of Office 2003 service pack 3.http://
support.microsoft.com/kb/923618.

[6] X. Ding, H. Huang, Y. Ruan, A. Shaikh, and X. Zhang.
Automatic software fault diagnosis by exploiting applica-
tion signatures. InProceedings of the 22nd conference
on Large installation system administration conference
(LISA), pages 23–39, 2008.

[7] A. Ganapathi, Y.-M. Wang, N. Lao, and J.-R. Wen. Why
PCs are fragile and what we can do about it: A study of
Windows registry problems. InDSN’04.

[8] J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ra-
madan, D. E. Porter, D. L. Chen, and E. Witchel. Im-
proved error reporting for software that uses black-box
components. InProceedings of the 2007 ACM SIGPLAN
conference on Programming language design and imple-
mentation (PLDI), pages 101–111, 2007.

[9] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion de-
tection using sequences of system calls.Journal of Com-
puter Security, 6(3):151–180, 1998.

[10] Windows still No.1 in server OS.
http://www.zdnet.com/blog/microsoft/behind-the-
idc-data-windows-still-no-1-in-server-operating-
systems/5408.

[11] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A
tool for assessing resilience to human configuration er-
rors. InProceedings of IEEE International Conference on
Dependable Systems and Networks With FTCS and DCC
(DSN), pages 157–166, 2008.

[12] E. Kiciman and Y.-M. Wang. Discovering correctness
constraints for self-management of system configuration.
In Proceedings of the 1st International Conference on Au-
tonomic Computing (ICAC), 2004.

[13] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging op-
erating systems with time-traveling virtual machines. In
Proceedings of the annual conference on USENIX Annual
Technical Conference, 2005.

[14] N. Kushman and D. Katabi. Enabling configuration-
independent automation by non-expert users. InProceed-
ings of the 9th USENIX conference on Operating systems
design and implementation (OSDI), 2010.

[15] Z. Li and Y. Zhou. Pr-miner: automatically extracting im-
plicit programming rules and detecting violations in large
software code.SIGSOFT Softw. Eng. Notes, 30:306–315,
September 2005.

[16] E. M. McCreight. A space-economical suffix tree con-
struction algorithm.Journal of ACM, 23(2), 1976.

[17] C. G. Nevill-Manning and I. H. Witten. Identifying hier-
archical structure in sequences: A linear-time algorithm.
Journal of Artificial Intelligence Research, 1997.

[18] M. O. Rabin. Fingerprinting by random polynomials. In
Harvard University Report TR-15-81 (1981).

[19] J. A. Redstone, M. M. Swift, and B. N. Bershad. Using
computers to diagnose computer problems. InProceed-
ings of the 9th conference on Hot Topics in Operating Sys-
tems (HotOS), 2003.

[20] Y.-Y. Su, M. Attariyan, and J. Flinn. AutoBash: im-
proving configuration management with operating sys-
tem causality analysis. InProceedings of twenty-first
ACM SIGOPS symposium on Operating systems princi-
ples, pages 237–250, 2007.

[21] Symantec hotbar adware information. http:
//www.symantec.com/security response/
writeup.jsp?docid=2003-080410-3847-99.

[22] Top 5 OSes on Oct 09.http://gs.statcounter.
com/#os-ww-monthly-200910-200910-bar.

[23] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu,
J. Lee, Y.-M. Wang, and R. Roussev. Flight data recorder:
Monitoring persistent-state interactions to improve sys-
tems management. InProceedings of the 7th USENIX
Symposium on Operating Systems Design and Implemen-
tation, 2006.

[24] D. Wagner and D. Dean. Intrusion detection via static
analysis. InProceedings of the 2001 IEEE Symposium on
Security and Privacy, pages 156–169, 2001.

[25] D. Wagner and P. Soto. Mimicry attacks on host-based
intrusion detection systems. InProceedings of the 9th
ACM conference on Computer and communications se-
curity (CCS), pages 255–264, 2002.

[26] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M.
Wang. Automatic misconfiguration troubleshooting with
PeerPressure. InProceedings of the 6th USENIX Sympo-
sium on Operating Systems Design and Implementation,
2004.

[27] Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang,
and C. Yuan. Strider: A black-box, state-based approach
to change and configuration management and support. In
Proceedings of the 17th USENIX conference on System
administration, pages 159–172, 2003.

[28] L. R. Welch. Hidden markov models and the Baum-
Welch algorithm.IEEE Info. Theory Society Newsletter,
2003.

[29] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration
debugging as search: Finding the needle in the haystack.
In Proceedings of the 6th USENIX Symposium on Oper-
ating Systems Design and Implementation, 2004.

[30] Windows automatic update disabled.
http://forums.lenovo.com/t5/
Windows-XP-and-Vista-discussion/
Windows-automatic-update-disabled/
td-p/69380.

[31] Operating system market share. http:
//marketshare.hitslink.com/
operating-system-market-share.aspx?
qprid=8.

[32] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M.
Wang, and W.-Y. Ma. Automated known problem di-
agnosis with event traces. InProceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Com-
puter Systems (EuroSys), pages 375–388, 2006.

[33] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasu-
pathy. Sherlog: error diagnosis by connecting clues from
run-time logs. InProceedings of the International Con-
ference on Architecture Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 143–
154.

14

