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ABSTRACT

Deep networks achieve state-of-the-art performance on computer vision tasks, yet
they fail under adversarial attacks that are imperceptible to humans. In this paper,
we propose a novel defense that can dynamically adapt the input using the intrinsic
structure from multiple self-supervised tasks. By simultaneously using many self-
supervised tasks, our defense avoids over-fitting the adapted image to one specific
self-supervised task and restores more intrinsic structure in the image compared
to a single self-supervised task approach. Our approach further improves robust-
ness and clean accuracy significantly compared to the state-of-the-art single task
self-supervised defense. Our work is the first to connect multiple self-supervised
tasks to robustness, and suggests that we can achieve better robustness with more
intrinsic signal from visual data.

1 INTRODUCTION

Deep learning architectures achieve state-of-the-art and often superhuman performance across a
wide variety of vision tasks (Croce & Hein, 2020). Despite this, as first noticed in 2014, they remain
vulnerable to adversarial attacks: visually imperceptible perturbations that cause easily classifiable
images to be misclassified with high confidence by otherwise state-of-the-art machine learning al-
gorithms (Szegedy et al., 2014). This results in unpredictable behavior in edge-cases, contrived
examples and examples unrepresented in training data. The inability to address this sufficiently is a
leading hurdle to deploying deep learning solutions to human safety and well-being critical applica-
tions like autonomous transportation and health-care.

Though there is a large line of research into adversarial training, how we can train networks to resist
adversarial attacks, training time defenses can be very computationally expensive and it is difficult
to provide guarantees for all possible attack methods (Tramèr et al., 2018). Empirically, unrestricted
white box attacks, in which an adversary has complete, unrestricted access to the network it is trying
to corrupt, have been found very difficult to resist via adversarial training. Mao et al. (2021) propose
to adapt to adversarial attacks at test time by restoring the performance of a selected self-supervised
task, however, the adaption method significantly reduces the clean accuracy after adaptation because
it over-fits to a single self-supervised task.

In this paper, we propose to mitigate the over-fitting problem present in Mao et al. (2021)’s reversal
method by using multi-task learning. Our key insight is that different self-supervised tasks, none
of which require labels, capture different aspects of the intrinsic structure of images. By restoring
the performance of attacked images on multiple self-supervised tasks, we can recover a larger set of
features that have been corrupted by an adversarial attack. In addition, Mao et al. (2020) show that it
is harder to simultaneously attack multiple tasks, suggesting that this methodology is also resistant
to an adaptive attacker who has full access to our reversal methodology and attempts to optimize
their attack knowing our reversal methodology in place.

Using three self-supervised tasks, our approach yields statistically significant improvement upon
the state-of-the-art defense. On the CIFAR-10 dataset using Carmon et al. (2019)’s robustly trained
baseline model, we achieved a 1.1% improvement in classification accuracy of unattacked images,
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Figure 1: Given a possibly attacked image, in our approach we find some small reverse perturbation
to minimize multiple self-supervised learning task losses and recover structure in the image. Adding
this reverse perturbation to our image, we are able to improve classification accuracy on attacked
images with minimal disruption to classification accuracy on unattacked images.

and a 0.3% improvement in classification accuracy of PGD attacked images compared with the state-
of-the-art results from Mao et al. (2021). Our work suggests that deep computer vision models’
robustness can be improved by ensuring that they leverage the rich intrinsic structure of image data.

2 RELATED WORK

2.1 ADVERSARIAL ATTACKS

Early work in this field demonstrated the susceptibility of neural networks trained to solve computer
vision tasks to human-imperceptible amounts of noise that would result in high-confidence misclas-
sifications (Szegedy et al., 2014). Notable early adversarial attack methods include the Fast Gradient
Sign Method (FGSM) from Goodfellow et al. (2015), and Projected Gradient Descent (PGD) from
Madry et al. (2018), in which the attacker attempts to maximize the loss function of a classification
network within the local ϵ-neighborhood of a particular example. In this paper, we assume white
box access to the network and reversal procedures, and attempt to optimize attacker performance
using the same minimax optimization setup presented initially by Mao et al. (2021).

2.2 SELF-SUPERVISED LEARNING

Image data contains rich intrinsic structure that can be used in learning image representations. In
Self-supervised learning for images we use deep architectures to learn unsupervised tasks including
canonical examples like rotation prediction, inpainting and contrastive predictive coding (Gidaris
et al., 2018; ?; Pathak et al., 2016; Chen et al., 2020). Mao et al. (2021)’s first noted the transferabil-
ity of adversarial attacks on classification, a supervised task, to contrastive learning. While we can’t
repair an attacked image by minimizing the classification loss since we don’t have a ground truth
label, we can still minimize loss for self-supervised tasks. They show the effectiveness of revers-
ing adversarial attacks by minimizing contrastive loss thereby implicitly strengthening the inherent
structure in the image.

2.3 MULTITASK LEARNING

In multitask learning, we attempt to learn multiple related tasks at once using a shared architecture.
Heuristically, this leverages the fact that much of the representational information needed to solve
related tasks is shared (Caruana, 1997). Mao et al. (2020) provide theoretical and empirical results
concerning multitask learning’s ability to enhance robustness of single-task and multi-task attacks.
In this work, we incorporate these theoretical and empirical observations by leveraging multiple
self-supervised tasks to repair potentially attacked images, instead of one.
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Algorithm 1 Multi-task Learning Reverse Attack
Input: Potentially attacked image x, step size η, number of iterations K, a classifier F , reverse

attack bound ϵv , contrastive loss Ls, roation loss Lr and inpainting loss Li.
Output: Class prediction ŷ

1: x′ ← x+ n, where n is the initial random noise
2: for k = 1, ...,K do
3: L = Ls(x) + Lr(x) + Li(x)
4: x′ ← x′ − η(Ls(x)/L)∇xLs(x)
5: if k mod 2 = 0 then
6: x′ ← x′ − η(Lr(x)/L)∇xLr(x)
7: else
8: x′ ← x′ − η(Li(x)/L)∇xLi(x)
9: end if

10: x′ ← Π(x,ϵv)x
′ which projects the image back into the bounded region.

11: x← x′

12: end for
13: Predict the final output by ŷ = F (x′)

3 OUR APPROACH

In our approach we improve Mao et al. (2021)’s results by migrating their self-supervised learning
based image repair to a multi-task learning approach using multiple self-supervised tasks. In this
paper we experimented with SimCLR, Inpainting and Rotation prediction tasks, but note that this
is a somewhat arbitrary and preliminary choice that would benefit from additional investigation in
future work (Gidaris et al., 2018; Pathak et al., 2016; Chen et al., 2020).

3.1 ATTACK MODEL

We use a standard attack model in which for a given image x, classifier F and its loss function Lc

(we use cross-entropy loss, defined as Lc(x, y) = H(F (x), y)), norm parameter p (∞ here) and
small ϵ, the attacker searches for an adversarial perturbation xa where

xa = argmax
xa

Lc(x+ xa, y) : ∥xa∥p < ϵ

3.2 REVERSE MODEL

We observe that often xa is designed in such a way as to disrupt the inherent structure of the resultant
image x+ xa. We can thus seek to repair this inherent structure by minimizing the loss associated
with our multiple self-supervised task loss function Lm(x), defined as a weighted sum of three self-
supervised task loss functions Ls(x),Li(x),Lr(x), explained in detail in the following sections. To
reverse an attack for a given input image x′ (which may or may not have been attacked), classifier
F , norm parameter p (∞ here) and small ϵr, we find reverse vector r,

r = argmin
r
Lm(x′ + r) : ∥r∥p < ϵ

After finding a minimal r via PGD we can recover robust classifications by classifying on x′ + r
(Madry et al., 2018). See 1 for the full reversal algorithm. Because Lm(x) is a sum of multiple
objective functions, a whitebox attack will have to balance objectives, thus reducing its effectiveness
as an attacker (Mao et al., 2020). As seen in the equation above, this approach to finding r is
independent of F , and is thus compatible with any classification architecture or supervised task.

3.2.1 CONTRASTIVE LOSS: Ls

In the SimCLR contrastive learning task introduced by Chen et al. (2020), we train a ResNet branch
to minimize the latent space distance to copies of the same image under various transformations,
and maximize the distance of non-matching image pairs, thus learning an augmentation-invariant
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Figure 2: On the left see the rotation task, in which a network predicts the rotation of an image
(lower left - 90 degree rotation, upper left - no rotation) (Gidaris et al., 2018). In the middle see
the inpainting task in which given the upper middle image, a network attempts to predict the lower
middle image (Pathak et al., 2016). On the right see the SimCLR task, in which a network tries to
map augmented images (Crop, gray-scale and rotation shown here) from the same class closer to
one another in a latent space than images from different classes (Chen et al., 2020)

representation of images (He et al., 2016). More formally, we define our contrastive loss for an
image x as

Ls(x) = −Ei,j

[
yi,j log

(
exp(ziz

T
j /τ)∑

k exp(ziz
T
k /τ)

)]

Where zi is a possible result from transforming x,zj is a random transformed image, and yi,j is 1
if zi and zj originate from the same source image x, and 0 otherwise. τ is a hyperparameter. For
our augmentations, we sequentially applied random cropping and color jittering, and also applied a
horizontal flip and/or grayscale filter at random to each image. See 2 for an example.

3.2.2 INPAINTING TASK LOSS: Li

In the inpainting task, we train an encoder-decoder deep network to fill in the missing centers of
images, using encoders and decoder structures derived from the AlexNet architecture (Krizhevsky
et al., 2012; Pathak et al., 2016). For a given whole image x, and context encoder-decoder F , we
denote the output of F on x as F (x). We define M̂ to be a binary mask indicating dropped pixels
via 1 and 0 otherwise. Letting⊙ define the element-wise product operation, we define the inpainting
task loss on a given image x as

Li(x) = ∥M̂ ⊙ (x− F ((1− M̂)⊙ x))∥22

Intuitively speaking, we may interpret this as the L2 norm of the difference between the true in-
painted section of x, and the predicted inpainted section of the image returned by F ((1− M̂)⊙ x)

(predicted using all pixels but the pixels masked by M̂ , thus giving the (1− M̂) term). See 2 for an
example.

3.2.3 ROTATION TASK LOSS: Lr

In the image rotation task, we train a deep convolutional neural network to predict the rotation
angle of an input image x. We use the experimental setup given in Gidaris et al. (2018). Given
a convolutional neural network F with learnable parameters θ designed to predict image rotations,
where F k(x) denotes the probability of x having been transformed by rotation labeled k, and xk
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Classification Accuracy
Reversal Method Attacked Input Clean Input
None 63.9% 89.7%
SSL 65.3% 86.6%
MTL 65.6% 87.7%

Table 1: Using Carmon et al. (2019)’s robustly trained baseline model on CIFAR-10, we see a 1.1%
improvement in classification accuracy of clean images, and a 0.3% improvement in classification
accuracy of PGD attacked images compared with the state-of-the-art results from Mao et al. (2021)

denotes x transformed by rotation labeled k we define the loss:

Lr(x, θ) = −
1

K

K∑
k=1

log(F k(xk|θ))

Intuitively, we treat this as a classification problem with cross-entropy loss and take the average loss
across a set of K different rotations, trying to maximize the probability of the correct rotation for
each k. Minimizing Lr(x, θ) pushes F k(xk|θ)→ 1 as desired. See 2 for an example.

4 RESULTS

In line with the literature, we set our attack bounds ϵ = 8 (Madry et al., 2018). In configuring
reversal parameters we continue Mao et al. (2021)’s experiments and similarly find that the defense
aware attacker can do no better than standard PGD attack, and that a reversal with ϵ = 8 maximizes
attacked input classification accuracy. Our results can are listed in 4 and our code can be found at
https://github.com/mattlawhon/SelfSupDefense/tree/one-by-one.

4.1 ANALYSIS

Using three self-supervised tasks, our approach yields significant improvement upon the state-of-
the-art defense. On the CIFAR-10 dataset using Carmon et al. (2019)’s robustly trained baseline
model, we achieved a 1.1% improvement in classification accuracy of unattacked images, and a
0.3% improvement in classification accuracy of PGD attacked images compared with the state-of-
the-art results from Mao et al. (2021). Given an observed standard error of at most 0.4% in the
estimation of the approaches’ true accuracy, this indicates statistically significant improvement in
the classification accuracy of clean input with over 95% confidence. Our work suggests that deep
computer vision models’ robustness can be improved by ensuring that they leverage the rich intrinsic
structure of image data.

We note that this procedure increases computational cost because it requires the calculation of two
gradients rather than one per iteration of the PGD reversal procedure. Further, we use different
backbones for each self-supervised task, which improves accuracy of each task at the cost of perfor-
mance. This may very well be an acceptable trade-off for better performance on clean input, though
exploring this trade-off is an interesting direction for future research.

5 CONCLUSIONS

Though we show statistically significant improvements in overfitting over baseline, there is much
additional work to be done in this domain because the scope of the experiments presented here is
limited. Particularly exciting avenues for expanding this body of work include: experimenting with
other self-supervised tasks, different datasets and adding a shared backbone for all self-supervised
tasks for a true multi-task learning approach. Further, we note that this approach broadly furthers
the finding that both multi-task learning and self-supervised learning hold promise to increasing
adversarial robustness.
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