
Argus: Debugging Performance Issues in Modern Desktop Applications with
Annotated Causal Tracing

Lingmei Weng† Peng Huang‡ Jason Nieh† Junfeng Yang†

Columbia University† Johns Hopkins University‡

Abstract
Modern desktop applications involve many asynchronous, con-
current interactions that make performance issues difficult to
diagnose. Although prior work has used causal tracing for de-
bugging performance issues in distributed systems, we find
that these techniques suffer from high inaccuracies for desktop
applications. We present Argus, a fast, effective causal tracing
tool for debugging performance anomalies in desktop appli-
cations. Argus introduces a novel notion of strong and weak
edges to explicitly model and annotate trace graph ambiguities,
a new beam-search-based diagnosis algorithm to select the
most likely causal paths in the presence of ambiguities, and
a new way to compare causal paths across normal and abnor-
mal executions. We have implemented Argus across multiple
versions of macOS and evaluated it on 12 infamous spinning
pinwheel issues in popular macOS applications. Argus diag-
nosed the root causes for all issues, 10 of which were previously
unknown, some of which have been open for several years. Ar-
gus incurs less than 5% CPU overhead when its system-wide
tracing is enabled, making always-on tracing feasible.

1 Introduction

Diagnosing performance anomalies is an essential need for
all kinds of software. For modern desktop applications, perfor-
mance diagnosis can be very difficult. Such applications are
often built with assorted frameworks and libraries. For respon-
siveness, they divide handling of user interface (UI) events into
many small execution segments [30] that run concurrently on
multi-core hardware. For instance, macOS applications handle
UI events by sending messages to delegate objects that contain
code to react to these events asynchronously. The messages are
generated by the closed-source Cocoa framework [11], which
in turn interacts with the operating system (OS), daemons, and
other libraries. The asynchronous, predominantly concurrent
interactions obscure the true cause of a performance anomaly.

Traditional debugging and profiling tools are not well suited
to troubleshoot performance issues in desktop applications.
macOS tools such as spindump [10] and lldb [45] allow
users to analyze a buggy process’ stack traces. Profilers like
Gprof [28], perf [5], and macOS Instruments [12] mainly
analyze what functions take the most time. None of these
tools provide insights regarding the sequence of events that

span across the many frameworks, libraries, system daemons,
kernel, application processes/threads, and result in the
performance issue. Traditional tools excel at analyzing system
state at a specific point in time in an individual component.
They are not amenable to analyzing concurrent execution flows
over time whose interactions may cause performance issues.

To debug cross-component performance issues, causal trac-
ing has been proposed [14, 20, 27, 32, 37, 38, 40, 41, 43, 44, 46,
56], especially for distributed systems. Causal tracing utilizes a
trace graph to help developers understand performance issues
that involve complex interactions. A trace graph consists of
vertices and edges, where vertices are execution segments, such
as an operation, system event, message, etc., and edges indicate
causal relationships between vertices. To diagnose a perfor-
mance issue, these solutions usually run a critical path analysis
on the constructed trace graph that finds the sequence of ver-
tices and edges which start from the vertex where the problem
occurs and take the greatest amount of time for completion.

Unfortunately, we observe that previous causal tracing
approaches are ineffective for desktop applications because
they cannot accurately identify the boundaries of execution
segments and their causality relationships. For example, a
long-standing Google Chrome web browser performance
anomaly [2] on macOS occurs when a user enters non-English
words in the search box, causing Chrome to hang with the
infamous macOS spinning pinwheel, which appears when
an application is not responsive to user input. Using previous
approaches to construct trace graphs for the multi-threaded,
multi-process browser results in many missing execution
segments and many additional irrelevant execution segments.
Attempting to diagnose the problem using these incomplete
and inaccurate graphs would incorrectly pinpoint no events
or wrong events as the culprit. In theory, these tracing
inaccuracies could be fixed by adding instrumentation, such
as adding constraints in noisy trace points to filter irrelevant
events. However, frameworks and libraries used by desktop
applications have diverse programming idioms and are
often closed-source, making deep instrumentation difficult.
Extensive instrumentation would also incur prohibitive
overhead, resulting in unacceptable performance.

To address these problems, we have created Argus, a
causal tracing tool specially designed to help users diagnose
performance anomalies in desktop applications. Argus is

based on the insight that tracing inaccuracies are inherently
unavoidable in real desktop systems, so instead of trying to
eliminate all inaccuracies, we should design tracing solutions
that can accommodate some inaccuracies. Argus introduces
a new notion of annotated trace graphs, in which edges
are explicitly annotated as strong and weak edges. Strong
edges represent connections among segments based on
typical programming paradigms that must be causal, such as
sending and receiving an IPC message. Weak edges represent
ambiguous relationships among segments. For example,
when one thread wakes up another thread, it could be a causal
relation, e.g., lock/unlock, or just an artifact of regular OS
scheduling. Argus further boosts or prunes unnecessary weak
edges by leveraging operation semantics and call stacks.

Argus introduces a new beam search diagnosis algorithm
based on edge strength and a novel method of comparing
trace subgraphs across normal and abnormal executions of
an application. The algorithm is motivated by our observation
that critical path analysis used in prior work is ineffective
due to inaccuracies inherent in trace graphs. Beam search
embraces more possibilities while exploring the annotated
noisy trace graph. Our algorithm efficiently selects likely
causal paths in the massive trace graph and tolerates noises.
Comparing trace subgraphs across normal and abnormal
executions also helps with diagnosis when the problem is due
to missing operations in the abnormal execution.

Argus provides system-wide tracing by extending existing
tracing support in the OS kernel and applying binary patching
for low-level libraries. This allows Argus to easily track objects
across process boundaries, account for kernel threads involved
in communications among processes, and cover customized
programming paradigms by operating in a common low-level
substrate used by higher-level synchronization methods and
APIs that may be introduced and evolve over time. Argus does
not require any application modifications.

We have implemented and evaluated a prototype of Argus
across multiple versions of macOS. This presents a harsh test
for Argus given the many complex, closed-source frameworks,
libraries, and applications in the macOS software stack. We
evaluated Argus on 12 real-world spinning pinwheel issues in
widely-used macOS applications, such as Chrome, Inkscape,
and VLC. Argus successfully pinpoints the root cause and se-
quence of culprit events for all cases. This result is particularly
notable given that 10 of the 12 cases are open issues whose root
causes were previously unknown to developers. Argus incurs
runtime overhead low enough such that users can leave Argus
tracing always-on in production without experiencing any
noticeable performance degradation. Source code for Argus is
available at https://github.com/columbia/ArgusDebugger.

2 Motivation and Observations

We experienced first-hand the Chrome web browser perfor-
mance issue on macOS. Typing non-English words in a search

box while a web page is loading causes Chrome to freeze and
trigger a spinning pinwheel. The spinning pinwheel appears
when an application is not responsive to user input for more
than two seconds. Others have also experienced this issue
with the Chromium web browser and reported it to Chromium
developers [2]; Chrome is based on Chromium.

We study the bug in Chromium since it is open-source, so
we can verify its ground truth. Chromium is a multi-process
macOS application involving a browser process and several
renderer processes, each process having dozens of threads.
When a user types a string in the browser search box, a thread
in the browser process sends an IPC message to a thread in
the renderer process, where the rendering view code runs to
calculate the bounding box of the string, which in turn queries
fontd, the font service daemon, for font dimensions.

To diagnose the bug, we first tried using spindump [10], a
widely-used macOS debugging tool, which shows the main
thread of the browser process is blocking on a condition
variable. However,spindumpprovides no clue as to why the con-
dition variable is not signaled. Using macOS Instruments [12]
was also ineffective, as it simply analyzes what functions take
the most time, which are not the root cause in this case. These
traditional debugging and profiling tools are fundamentally
not well suited to analyzing causality in highly concurrent
execution flows across multiple components over time.

We next tried state-of-the-art causal tracing techniques.
Specifically, we use Panappticon [56], a system-wide tracing
tool originally built for Android. We reimplemented a version
for macOS with more complete tracing of asynchronous
tasks, using non-intrusive interposition to trace asynchronous
tasks, IPCs, and thread synchronizations from the system
and libraries. We use the tool when running Chromium and
reproduce the anomaly by typing non-English search strings.
After the browser handles the first few characters normally,
the remaining characters trigger a spinning pinwheel. We then
stop the tracing. The entire session took around five minutes.

Dividing up the trace graph into separate graphs each
beginning from a user input event results in 359 trace
graphs; user input events are dispatched from the macOS
WindowServer process to Chromium. The trace graphs are
highly complex, with 888,236 vertices and 751,332 edges in
total. They span across 11 applications, 79 daemons including
fontd, mdworker, nsurlsessiond, and various helper tools
started by the applications. They cover 90 processes, 1177
threads, and 644K IPC messages.

Studying the trace graphs, we observe: (i) connections
exist between graphs from different UI events; (ii) some
long execution segments have no boundaries; (iii) there
are orphaned vertices with no edges; (iv) the trace graph
that contains the anomalous event sequence triggering the
spinning pinwheel contains 12 processes—3 are clearly
unrelated to the transaction, and 6 are daemons whose
relationships are unclear without further investigation. Based
on further analysis of these graphs with call stacks and reverse

https://github.com/columbia/ArgusDebugger

// worker thread in fontd:

block = dispatch_mig_server;

dispatch_async(block);

1

2

3

1

2

3

4

1

2

3

4

5

6

7

// implementation of dispatch_mig_server

dispatch_mig_server()

 for (;;) { // batch processing

 mach_msg(send_reply,recv_request)

 call_back(recv_request)

 set_reply(send_reply)

 }

// main thread in fontd:

// dequeue blocks

block = dequeue();

dispatch_client_callout(

 block);

Figure 1: Dispatch message batching. dispatch_mig_server can
serve unrelated applications together.

engineering techniques, we conclude that they have significant
inaccuracies. Running diagnosis on them leads to a wild goose
chase, investigating components such as fontd, as it sends
out messages after a long execution, which turn out to be
completely unrelated to the root cause. We observe two general
inaccuracies: over-connections and under-connections.

Over-connections usually occur when intra-thread execution
segment boundaries are missing. We summarize three common
programming patterns responsible for this—dispatch message
batching, piggyback optimization, and superfluous wake-ups.

Dispatch message batching. Frameworks and daemons often
implement event loops for handling multiple events inside
callback functions. For example, Figure 1 shows two threads
from the fontd daemon in macOS; the worker thread installs
a callback function dispatch_mig_server() in a dispatch
queue and the main thread dequeues and calls the function via
dispatch_client_callout. dispatch_mig_server() has an
event loop which batch processes requests from different ap-
plications, presumably for performance. It invokes call_back
to process a message and set_reply to post a reply. However,
previous causal tracing tools like Panappticon assume the exe-
cution of a callback function is entirely on behalf of one request.
dispatch_mig_server is thus treated as a single execution
segment and edges are added between the vertex representing
dispatch_mig_server and the many unrelated applications for
which it handles requests. These edges incorrectly indicate
causal relationships that would result in misleading diagnoses.

Piggyback optimization. Frameworks and daemons may
piggyback multiple tasks in a system call to reduce kernel
boundary crossings. For example, Figure 2 shows the macOS
system daemon WindowServer uses a single system call
mach_msg_overwrite to receive data and piggyback the reply
for an unrelated event. However, previous causal tracing tools
like Panappticon treat the execution of a system call as a single
execution segment for one event, artificially making many
events appear causally related.

Non-causal wake-up. Desktop applications typically have
multiple threads synchronized via mutual exclusion, such
that a thread’s unlock operation wakes up another waiting
thread. Such a wake-up may be, but is not always, intended as
causality. For example, in Chromium, a wake-up is commonly
followed by a batch processing block, but it is unclear whether

//a thread in WindowServer

while (true){
 //postpone a reply
 CGXPostReplyMessage(msg);
 //receive requests
 CGXRunOneServicePass();
}

CGXRunOneServicePass(){
 if (_gOutMsgPending)
 mach_msg_overwrite(
 SEND|RECV,
 _gOutMsg, RecvMsg)
 else
 mach_msg(RECV,RecvMsg)
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2: Piggyback optimization and intra-thread data dependency.
mach_msg_overwrite combines the reply of a previous event. Opera-
tions inside a thread have dependencies on _gOutMsg.

// worker thread needs

// UI update

obj->need_display = 1

//main thread

if (obj->need_display == 1)

 render(obj)

1

2

3

1

2

3

Figure 3: Shared data flag across threads.

the following events being batch processed depend on the
wake-up event. Previous causal tracing tools assume any
wake-up is causal, which may artificially make events appear
causally related when they are not.

Under-connections usually occur due to missing intra-
thread data dependencies and inter-thread shared flags.

Data dependency. Frameworks and daemons may have
internal state that causally link different execution segments
of a thread. For example, Figure 2 shows that a WindowServer

thread calls the function CGXPostReplyMessage to save the
reply message, which it internally stores in a variable _gOutMsg.
When the thread later calls CGXRunOneServicePass, it sends
out _gOutMsg if there is any pending message.

Shared data flags. Frameworks and daemons may use
shared flags that causally link different threads. Figure 3
shows a worker thread sets a field need_display inside
a CoreAnimation object whenever the object needs to be
repainted. The main thread iterates over all animation objects
and reads this flag, rendering any such object. Existing tools
do not track these kinds of shared-memory communication.

3 Overview of Argus

We have designed Argus to diagnose performance issues in
desktop applications. Argus satisfies four key requirements
not met by previous causal tracing tools: (1) use minimal
instrumentation, (2) support closed-source components, (3)
extract rich information from heterogeneous components with
minimal manual effort, and (4) incur low runtime overhead.

Central to its design is the construction of annotated trace
graphs from low-level trace events. Argus introduces the
notion of strong and weak edges in trace graphs to mitigate
inherent inaccuracies in tracing. When there is strong evidence
of causality, such as an IPC message event, Argus adds a
strong edge between vertices. When an execution segment is
created by events that may not necessarily represent causality,
such as non-causal wake-ups, Argus adds a weak edge. During
diagnosis, Argus prefers traversing through strong edges when
possible. Argus also stores extra semantic information in the
graph vertices, including user input events, system calls, and

instrumented core libraries

instrumented OS

Argus Tracer

third-party libraries,

frameworks, …

helper
1

daemon
1

daemon
2

Trace logs

…
tid1tid233.2 wakeUp

…

tid3

attr2

port2

tid0

attr1

port1

event_type

wakeUp

sendMsg

31.7

30.4

time

Argus Debugger

Argus Grapher
Annotated

trace graphs

beam search

diagnosis algo

(1) costly operations

(2) culprit event sequence

(3) call stacks

Figure 4: Overview of Argus.

sampled call stacks. This extra information is used to improve
weak edge annotation and align and compare trace graphs for
normal and abnormal execution to aid diagnosis.

Figure 4 shows an overview of Argus. It consists of three
main components—a tracer, a grapher, and a debugger. The
tracer runs continuously in the background on a user’s machine,
transparently logging events from low-level system libraries
and the kernel, without any need to modify applications. When
a user encounters some performance anomaly, she reports
the issue about the problematic application, along with the
timestamp of the anomaly occurrence. The reported issue and
trace logs are sent to the developer, the logs containing events
for both normal execution and abnormal execution when the
performance anomaly occurs. The developer feeds the logs
into the grapher to construct the annotated trace graphs for
both normal and abnormal execution, and runs the debugger
on the graphs to output the diagnosis results.

4 Argus Tracer

Argus traces events inside the kernel and low-level libraries,
with minimal instrumentation. This provides three advantages
over tracing in user applications. First, tracing in the kernel and
libraries ensures coverage of custom programming paradigms.
For instance, Argus traces general thread scheduling events
and wake-up and wait to ensure coverage of a variety of custom
synchronization primitives in desktop applications, because
their implementations almost always use kernel wake-up
and wait. Second, tracing in the kernel helps connect tracing
events across process boundaries, because the addresses of
the traced objects in kernel space are usually unique, while
tracing in user programs requires maintaining and propagating
unique identifiers. Third, tracing kernel threads helps bridge
communications among processes. For instance, a kernel
thread sends out a message to a process when the process
needs to execute a delayed function.

In the macOS XNU kernel, Argus traces system calls, thread
scheduling, interrupts, time-delayed calls, and Mach messages.
Argus leverages existing macOS kernel tracing support [13],
but adds enhancements to log more information and enable
always-on tracing using a ring buffer to avoid exhausting

storage. The enhancements require roughly 500 lines of
code (LOC) in the XNU kernel, which are straightforward
to add given that the kernel is open source. Trace events
are asynchronously flushed to a file with a size limit. The
limit is by default 2 GB, which can store roughly 20 million
trace events; this is about 5 minutes of tracing when running
large applications like Chrome. It can be easily adjusted to
accommodate longer execution times. We used the default
limit for all experiments in Section 7.

Argus logs kernel events to identify when threads are execut-
ing and their causal relationships. All system calls are traced to
provide high-level semantics that can be used to identify causal
relationships. Argus simply records return values for most
system calls, but call stacks are also logged for a small set of
system calls, namely those pertaining to Mach messages and
synchronization using conditional variables and semaphores.
Call stack information is later used by the Argus debugger
to provide debugging information for developers. Thread
scheduling is traced to track when a thread becomes idle and
which thread wakes it up. Argus logs three types of thread
scheduling events: wait to indicate when a thread becomes idle,
wake-up to indicate when the current thread wakes up another
thread, and preempt to indicate when a thread is preempted due
to its timeslice being used up or priority policies. Interrupts are
logged to indicate when threads are preempted by interrupts,
with call stacks also logged for interprocessor interrupts
(IPIs). Argus traces the internal kernel implementation of
time-delayed calls, which are used to implement asynchronous
calls in libraries such as Grand Central Dispatch (GCD).
Finally, Argus traces the internal kernel implementation of
Mach messages, not just their invocation via system calls, to
enabling tracing of all use of Mach messages, including use
within the kernel among kernel threads.

To aid developers in interpreting the virtual addresses in
call stacks via lldb, Argus also logs in userspace the virtual
memory layout of images for all processes. The tracer records
the virtual memory maps for all running processes when
tracing is enabled or terminated; processes launched during
tracing are also recorded. The memory layout information is
also fed to the Argus debugger.

In addition to kernel tracing, Argus traces four closed-
source macOS frameworks, AppKit, libdispatch.dylib,
CoreFoundation, and CoreGraphics, to track UI events and
batch processing paradigms used by applications. Because
these frameworks are closed source, the trace events are added
via binary instrumentation using a mechanism similar to De-
tour [31]. AppKit is used to dispatch UI events to handlers. Ar-
gus traces where a UI event is fetched from the WindowServer

and dispatched to an event handler. libdispatch.dylib imple-
ments GCD, managing dispatch queues to balance work across
the entire system. Argus adds trace events to track when objects
are pushed into a dispatch queue and popped off of the dispatch
queue and executed. CoreFoundation supports event loops for
GUI applications, which are widely used to process requests

from timers, customized observers, and sources such as sock-
ets, ports, and files. Argus adds trace events so the handling of
different requests inside event loops can be tracked separately.

To deal with the under-connection issues (Section 2), we
annotate a handful of data flags in CoreGraphics. Given the
shared flag variable names, Argus monitors the respective
virtual addresses with watchpoint registers. Reads or writes
to the addresses will invoke a signal handler that records trace
events with the values stored in those addresses. Argus adds
code to CoreFoundation to install this signal handler.

Argus can use the same watchpoint mechanism to trace
shared data flags in applications. To assist developers in
finding these shared data flags, Argus provides a lightweight
tool that uses lldb to record the operand values of each
instruction and finds ones that lead to divergence in control
flow, which are likely data flags. The shared flag variable
names are recorded in an Argus tracer configuration file,
which are then traced using the same signal handler installed
by CoreFoundation. Since CoreFoundation is imported by
all GUI applications, Argus can trace these shared data flag
accesses without any application modifications.

Note that the annotation effort for shared data flags is
in general small. This is because execution segments that
access shared variables are usually connected already by some
types of causality, e.g., wait/signal events; developers mainly
need to provide Argus with shared flags that are accessed
through ad-hoc synchronization [49]. In our experience, only
a few shared flags need to be monitored. Also for this reason,
although hardware watchpoint registers are limited, Argus
is unlikely to exhaust them. In fact, none of the applications
we evaluated in Section 7 needed shared flags to be identified
or traced in the applications themselves. Mechanisms such
as Kprobe [3] could potentially be used to extend Argus to
support monitoring more shared flags.

5 Argus Grapher

Argus uses the trace logs to build an annotated trace graph by
first identifying the boundaries of execution segments in each
thread to determine the graph vertices, then adding annotated
edges between vertices. The annotated edges contain type
metadata to indicate strong versus weak edges, which is
used during diagnosis to mitigate inaccuracies due to over-
connections and under-connections, as discussed in Section 2.

Argus first determines the execution segments that will form
the graph vertices. Using various trace events as boundaries,
Argus splits the execution of each thread is into separate ex-
ecution segments. First, Argus splits nesting of tasks executed
from dispatch queues. If an execution of dispatch_callout
invokes several other dispatch_callout, each dispatched
task is separated. Second, Argus recognizes batch processing
patterns such as dispatch_mig_server() in Figure 1 and splits
the batch into separate execution segments. Third, when a wait
operation blocks a thread execution, Argus splits the execution

Edge Rules for Edge Annotation

Strong 1. IPC message send and receive; 2. Asynchronous calls
(work queue, delayed call); 3. Direct wake-up of a thread
on purpose; 4. Data dependency.

Weak 1. Non-causal wake-up; 2. Execution segments divided
between a wait event and a wake-up event, excluding
following cases: wait or wakeup are introduced by system
call workq_kern_return, or they are in kern_task; 3. Split
suspicious batching execution segments, except known
batching APIs: RunLoopDoObservers, CGXServer, etc.

Boosted
Weak

Continuous execution segments matching weak edge
rules but are on behalf of the same task.

Table 1: Edge annotation rules.

into separate segments at the entry of the blocking wait. The
rationale is that blocking wait is typically done as the last step
in event processing. Finally, Argus uses Mach messages to split
execution when the set of communicating peers differs. Argus
maintains a set of peers, including the direct sender or receiver
of the message and the beneficiary of the message; macOS
allows a process to send or receive messages on behalf of a
third process. Argus splits execution when two consecutive
messages have non-overlapping peer sets. By splitting thread
execution using these four criteria, Argus avoids potential over-
connections due to batching and piggyback optimizations.

Argus next determines the edges that should be added
between vertices. Edges are introduced to reveal the causality
of two execution segments and thus guide the causal path
exploration. Based on the rules in Table 1, Argus annotates
three types of edges: strong, weak, and boosted weak.

First, Argus adds strong edges by identifying Mach message,
dispatch queue, time-delayed call, and data flag trace events
associated with a vertex and finding the corresponding peer
events and peer vertices. For Mach message events, Argus adds
a strong edge from the vertex with the message send event to the
vertex with its associated receive event. If a message requires
a reply, the received message can produce a reply message,
which can be sent by a third thread, in which case Argus adds a
strong edge from the vertex with the received message event to
the one with the send event for the reply message. For dispatch
queue events, Argus adds a strong edge from the vertex where
the callback function is pushed to a dispatch queue to the vertex
where the callback function is invoked. For time-delayed calls,
Argus adds a strong edge from the vertex where the timer is
armed to the vertex where the callback function is fired. For
shared data flags, Argus adds a strong edge from the vertex
with a data flag write event to the vertex with its corresponding
read event, avoiding potential under-connections.

Second, Argus adds edges by identifying thread scheduling
trace events and finding the events and vertices corresponding
to the pair operations. Argus adds strong edges only when
the context clearly indicates causality, such as the signal and
wait operations of a condition variable. Otherwise, Argus
adds only weak edges. One hint Argus takes from macOS is

dispatch_

mig_server()

dispatch_

mig_server()
weak edges

split segment

split

Figure 5: The segment for batch processing in dispatch_mig_server

is split into multiple segments to distinguish different items. Weak
edges are added among the split segments.

that, if a wake-up is not followed by a specific communication
operation (e.g., message receive), and does not target a specific
thread but all threads on the wait queue, then it is likely not
causal, in which case a weak edge is added.

Third, because Argus splits the execution of a thread into
segments (graph vertices) based on heuristics that may not al-
ways be valid, Argus adds weak edges between these adjacent
execution segments, as shown in Figure 5. Argus converts a
weak edge into a boosted weak edge if two continuous execu-
tion segments are on behalf of the same task. It infers whether
the segments are for the same task by leveraging call stack
symbols. We calculate frequencies for all symbols across the
whole tracing and notice a low-frequency (bottom 10%) sym-
bol usually only appears in a task from a specific application,
compared to high-frequency symbols from system routines or
framework APIs. Thus, if the two segments share the same low-
frequency symbols, Argus infers they are collaborating on the
same task and sets a boost flag for the weak edge between them.

However, abuse of weak edges could generate excessive
false positives during diagnosis, so Argus takes advantage
of high-level semantics to avoid adding unnecessary weak
edges between adjacent execution segments. First, if the call
stacks of two segments of a thread share no common symbols
or share a recognized system library batching API, Argus does
not add a weak edge between them. Second, because wait and
wake-up events are mostly from system calls, Argus leverages
system call semantics to determine the necessity of weak
edges. For example, we find the wait event from system call
workq_kern_return indicates an end of a task in the thread,
while the wake-up event formed in workq_kern_return intends
to acquire more worker threads for concurrent tasks in the
dispatch queue. Execution segments containing such event
sequences do not need bridging with weak edges. Finally, the
kernel task in macOS acts as a delegate to provide service
for many applications, such as I/O processing and timed
delayed invocations. The kernel task threads contain execution
segments beginning with a wake-up event and ending with
a wait event. Each segment serves different requests and they
are not causally related, so weak edges are not added between
those kernel task execution segments.

6 Argus Debugger

Argus uses the constructed trace graphs to diagnose perfor-
mance issues by starting with the vertex that contains the

step

anomaly

vertex

beam width (β) = 2

lookback steps = 2

weak edge
boosted weak edge
strong edge

step

…

step… vertex
step selected state

prune prune expandexpand

1234

Figure 6: Beam search diagnosis algorithm. Search backwards from
the anomaly vertex; choose the best β states to expand next. For every
lookback steps, prune the existing states to at most β paths.

performance anomaly and traversing the graphs to identify
the causal paths including the root cause vertices. The typical
critical path analysis used in existing causal tracing solutions
cannot effectively handle the noises in the trace graphs. Argus
introduces a new diagnosis algorithm based on beam search
to efficiently explore the causal paths likely related to the
performance anomalies. It also introduces a novel subgraph
comparison mechanism to find missing vertices not present
in the trace graph for abnormal execution that are present in
the graph for normal execution. This comparison is helpful
to identify the root cause that would be otherwise unknown.

6.1 Causal Path Search—Beam Search
From a given vertex that contains the anomaly, such as the
spinning cursor, Argus finds what path “caused” the anomaly
by using beam search based on a cost function for annotated
edges. Beam search is similar to breadth-first-search, but at
each search step, it sorts the next level of graph vertices based
on a cost function and only stores β—the beam width—best
vertices to consider next. Argus customizes its beam search
with a lookback scheme such that the algorithm evaluates
the cost function for multiple levels of edges before pruning.
Argus evaluates the vertices and prunes them with β only after
the search advances the configured lookback steps to avoiding
pruning paths with weak edges too early.

Argus’s beam search algorithm provides two key advan-
tages. First, compared to brute-force search, beam search
only explores the most promising vertices, which is essential
given that trace graphs are highly complex with millions of
edges; searching all paths would be too inefficient and, given
graph inaccuracies, result in an overwhelming number of
options to consider. Second compared to local search methods
such as hill-climbing, beam search embraces more possible
causal paths because it ranks partial solutions and the ranking
changes during the exploration. For example, assuming strong
edges are preferred to weak ones, a path with a weak edge
followed by a series of strong edges is likely to get a higher
ranking and be returned by beam search, but will be missed
by a hill-climbing search algorithm.

Figure 6 illustrates the algorithm. It searches for causal paths
backwards from the anomaly vertex. For each incoming edge
of the current vertex, the algorithm computes the penalty score
for the new path. At every lookback step, the search branches

Algorithm 1: Causal Path Search Algorithm (Beam Search).
Data: g - event graphs, curVertex - vertex inspected in current search

state, beamWidth - search branches at most, lookbackSteps -
searching steps taken before pruning current search branches

Result: paths
1 Function BeamSearch(g, curVertex, beamWidth, lookbackSteps):
2 curStates.init(curVertex);
3 curSteps← 0;
4 while curStates.incoming_edges() > 0 && beamWidth > 0 do
5 ++curSteps;
6 newStates.clear();
7 for each state∈ curStates do
8 if beamWidth <= 0 then
9 break;

10 end
11 if state.path.reach(UI) || state.path.incoming_edges = /0

then
12 paths.add(state.path);
13 −−beamWidth;
14 end
15 for each edge∈ state.path.incoming_edges do
16 newState.path← state.path + edge;
17 newState.score← state.score + penalty(edge.val);
18 newStates.add(newState);
19 end
20 end
21 curStates← newStates;
22 if curSteps = lookbackSteps then
23 pruneStates(curStates, beamWidth);
24 curSteps← 0;
25 end
26 end
27 pruneStates(curStates, beamWidth);
28 paths.append(curStates.paths);
29 return SortIncPenaltyScore(paths);
30 Function pruneStates(newStates, beamWidth):
31 SortIncPenaltyScore(newStates.paths);
32 while newStates.size() > beamWidth do
33 newStates.pop_back();
34 end
35 return;

are pruned: it sorts the paths by their penalty scores and only
retains at most β paths with low penalties. A path is added to
the result if a vertex is reached containing a UI event or has no
incoming edges, and the beam width decreases by one. Using
such vertices as for path termination helps developers under-
stand causality in an end-to-end request handling transaction.

Algorithm 1 lists the pseudo-code of the search algorithm.
Lines 16 – 18 compute penalty scores for new paths after
incoming edges are added to the path. Lines 22 – 25 prune the
searched branches every L lookback steps. Paths are sorted
by their penalty scores and paths with high penalties are
discarded. Penalty scores are calculated with a linear function
on edge values, where a strong edge is -1, a weak edge is 1, and
a boosted weak edge is 0. A path with n edges has a penalty
p = ∑

n
i=1(a× Ei + b), where Ei is the ith edge value. This

approach guides search towards paths with stronger causality.
While more complex non-linear functions may be feasible,
this simple function works well for many diagnosis cases.

The beam width setting affects the search efficiency and
diagnosis accuracy. A setting too large would cause path
explosion and noisy paths to be returned. A setting too small
may easily miss the true causal path. We set β = 5 to strike
a good balance. Tuning this parameter is relatively easy in
practice. The lookback step setting is set based on observing

Algorithm 2: Subgraph Comparison Algorithm.
Data: anomVertex – problematic vertex, anomGraph – trace graph

for anomaly case, normGraph – trace graph for normal case
Result: ret- potential culprits of anomaly

1 Function SubGraphCompare(anomVertex, anomGraph,
normGraph):

2 ret.clear();
3 similarVertices← FindSimilarVertices(normGraph,

anomVertex);
4 baselineVertex←GetBaseLine(similarVertices, anomVertex);
5 targetVertex←woken(normGraph, baselineVertex);
6 causalPaths← BeamSearch(normGraph, targetVertex,

beamWidth, lookbackStep);
77 // sub-graph is constituted with paths;
8 for each causalPath∈ causalPaths do
9 for each vertex ∈ causalPath do

10 expectVertex← SimilarVertex(anomGraph, vertex);
11 if expectVertex = /0 then
1212 // missing similarity to vertex ;
13 anomThr← SearchT hread(anomGraph,

vertex.thread);
1414 // get the vertex that causes the dissimilar ;
15 suspVertex←VertexInT hread(anomGraph,

anomThr);
16 else if Di f f erentVertices (expectVertex, vertex) then
1717 // vertex acts different from normal case ;
18 suspVertex← expectVertex;
19 else
20 countinue;
21 end
22 ret.push_back(suspVertex);
23 end
24 if !ret.empty() then
25 return ret;
26 end
27 end
28 return ret;

that traversal of most graphs encounters a weak edge within
five steps. We set L = 5 to tolerate weak edges. Given this
setting, a path of x strong edges, y weak edges, and z boosted
weak edges has a penalty of p =−a× (x− y)+5×b. If all
edges are strong, the penalty is negative only when b < a.
If there are weak edges, the penalty is positive only when
(x−y)×a<5×b,where−3<x−y<3. Therefore, we set the
default penalty function coefficients a=3 and b=2.

6.2 Subgraph Comparison

If we run causality analysis only on the trace graph constructed
with the anomalous performance issue, the root cause may not
be exposed in some cases. For example, a blocked function
could be caused by a missing wake-up from one of the back-
ground threads. If the thread does not perform the wake-up
during abnormal execution, there will be no execution segment
with the wake-up, and therefore no vertex in the anomalous
trace graph that can be identified correctly as the root cause.
Argus addresses this problem by first constructing the trace
graphs for both normal and abnormal execution. It then uses its
beam search method on the normal trace graph to identify the
causal paths in that graph that corresponds to the desired nor-
mal behavior that does not occur during abnormal execution.
We refer to those causal paths a subgraph.Argus then uses the
vertices in the subgraph to identify the missing root cause in the
abnormal execution. This is done by introducing a novel sub-

graph comparison method between the trace graphs for both
normal and abnormal execution, which is listed in Algorithm 2.

Argus first determines a baseline vertex in the normal graph
that is comparable to the anomaly vertex in the anomalous
graph. Argus computes a signature for each vertex based
on the trace event sequence in its execution segment. The
signature is composed of two parts, one that encodes the
types corresponding to the event sequence e.g. 0 for IPC
event, 1 for syscall event, etc., and another that is a hash of the
event parameters, e.g., process names of IPC events. Argus
calculates the similarity of two vertex signatures using string
edit distance. Among the vertices in the normal graph that are
similar to the anomaly vertex, Argus chooses one that behaves
differently from the anomaly vertex, based on return values of
system calls and execution times. For example, a vertex whose
last event is a blocking system call with a timed wait may
behave in two different ways, timing out or quickly woken up.

After Argus identifies a baseline vertex, it obtains its causal
paths using Algorithm 1. The result is a subgraph of the normal
trace graph rooted from the baseline vertex to some ending ver-
tex. Argus examines the subgraph from the most related causal
path. Starting with the ending vertex V , whose execution seg-
ment was executed by some thread T , Argus identifies vertices
in the abnormal trace graph that were also executed by T . For
each identified vertex, Argus checks whether it behaves differ-
ently from V , in which case it is flagged as a suspicious vertex.
If no such vertices are found, Argus repeats this procedure with
the next vertex in the subgraph. Otherwise, for each suspicious
vertex that has incoming edges, Argus recursively repeats the
subgraph comparison by treating the suspicious vertex as the
initial anomaly vertex. The recursive procedure effectively
keeps working backwards through vertices to eventually find
a set of root cause candidate vertices in the anomalous trace
graph with no incoming edges. Argus then returns the vertex
whose path to the original anomalous vertex has the lowest
penalty score, identifying that vertex as the root cause.

Figure 7 shows a simplified example of the subgraph
comparison method applied to the Chromium performance
issue discussed in Section 2. Vertex E ′ in the anomalous graph
is the initial anomaly vertex. Argus identifies vertex E in the
normal graph as having a similar signature but behaving dif-
ferently, and treats it as a baseline vertex. Argus applies beam
search to the normal graph starting with vertex E, resulting
in the subgraph A← B←C← D← E. Argus starts with A,
identifies its browser thread, and determines that A cannot
be the root cause since the same browser thread contains the
performance anomaly E ′ in the anomalous trace graph. Argus
then considers B, identifies its renderer thread, and finds all
vertices in the anomalous trace graph executed by the renderer
thread. F ′ is similar to F , so it is not considered a suspicious
vertex, but J′ is not similar to any vertex in the normal trace
graph, so it is considered suspicious. J′ has no incoming edges
and is identified as a root cause candidate. If there are no other
candidates identified, J′ is returned as the root cause.

C

D

G

timed out waitE'
semaphore wait

anomalous trace graph

normal trace graph

J'

G'

B

E A

execution segment
weak ege

boosted weak edge
strong edge

H

H'

F

F'

I

browser
renderer

fontd
SCIM

browser
renderer

fontd
SCIM

Figure 7: Chromium normal and anomalous trace graphs after user
typed in a search box (vertex G/G’). Vertex E’ (requesting a bounding
box for input) is the anomaly vertex. Sub-graph in normal trace graph
is extracted from baseline vertex E. Vertex J’(javascript processing
blocks on semaphore) is the root cause Argus reported. Trace graphs
are simplified for clarity; only processes are shown and communica-
tions with processes such as imklaunchagent are omitted.

6.3 Debug Information
Argus further provides the calling contexts of the anomaly
vertex and the root cause vertex to help developers localize
the bug in code. To do so, Argus examines the call stacks it
attaches in the graph vertices. If the anomaly or root cause
vertex has a blocking call, the call stack Argus tracer collects
would reveal the context of the blocking call directly. If the
vertex has a long runtime cost, the problematic vertex usually
contains periodic IPIs, where the Argus tracer collects call
stacks. In this case, the Argus debugger calculates the longest
common sequence of frames from those call stacks. The top
frame in the sequence reflects the costly function call.

For instance, in Figure 7, Argus reports the following
information: (i) the calling context of problematic vertex
E’ and its causal path E ′ ← G′; (ii) the calling context of
root cause vertex J’ along with its unmatched causal path in
baseline trace graph: A←B←C←D←E←G, and vertex
B is marked because its thread should have waken up the
blocking thread in the anomaly case.

6.4 Diagnosis for Spinning Pinwheel in macOS
Argus’s debugger can be used to effectively diagnose spinning
pinwheel performance issues in macOS applications. Recall
that a spinning pinwheel appears when the UI thread of an
application can not process any user inputs for over two
seconds. During normal execution, the two-second interval
may cover many vertices, but when the spinning pinwheel
appears, the main thread of the application is stalled and the
two-second interval covers only a single vertex. Leveraging
this timing information, Argus identifies the anomaly vertex
in the main thread of the targeted application and classifies
the issue as either a LongRunning and LongWait anomaly.

LongRunning. The main thread is busy performing lengthy
CPU operations and therefore its execution segment is in the
anomalous trace graph. Argus uses its beam search method

to identify the causal path between the anomaly vertex and the
vertex with the UI event resulting in the issue. Argus reports
the costly API, event handler, and causal path to the developer.

LongWait. A UI thread is blocked, but it is hard to tell why.
Argus uses its subgraph comparison method together with its
beam search method to deduce which vertex is missing from the
anomalous trace graph. A long-wait event could be caused by
another long-wait event. Argus supports recursively diagnos-
ing “the culprit of the culprit.” Therefore, it can reveal deep root
causes. At the end of each iteration of diagnosis, the calling con-
text of problematic vertex, root cause vertices in the anomalous
trace graph, and causal paths are ranked and reported to users.

Some LongRunning issues may be diagnosed with existing
tools such as spindump if the profiling is accurate and complete.
However, Argus is better in that a call stack is usually not
enough to connect the busy processing to the event handler,
due to the prevalence of asynchronous calls. Also, call stack
profiles after the anomaly may miss the real costly operations.
LongWait issues usually involve multiple components and are
extremely hard to understand and fix with current tools. Those
issues may remain unresolved for years and significantly hurt
user experience and developer productivity.

7 Evaluation

We have implemented Argus across multiple versions of
macOS, ranging from El Capitan to Catalina. We evaluate
Argus to answer several key research questions: (1) Can Argus
effectively diagnose real-world performance anomalies for
modern desktop applications? (2) How does Argus compare
to other performance debugging tools? (3) How useful are
Argus’s weak edges and their optimizations in mitigating
tracing inaccuracies? (4) How much overhead does Argus’s
tracing tool incur? Unless otherwise indicated, all applications
and tools were run on a MacBookPro12,1 with an Intel Core
i7 CPU, 16 GB RAM, and an APPLE SM0512G SSD.

7.1 Diagnosis Effectiveness

We evaluated Argus on 12 real-world user-reported perfor-
mance issues in 11 popular desktop applications, which
we collected and reproduced, as listed in Table 2. We are
especially interested in evaluating performance issues that
have been hard to troubleshoot. Except for B11, all of these
are open issues, meaning their root causes were previously
unknown to developers. For B2, the reported issue was “fixed”
in the latest version (due to refactoring or platform upgrade)
but the root cause remained unknown. Nine applications,
or some of their components, have source code available,
whereas two applications are closed-source. Source code was
used to validate whether the correct root cause was diagnosed
for the performance issues, but all evaluation was performed
on the released application binaries. We have also used

ID App Performance Issue Age

B1 Chromium Typing non-English in searchbox, page freezes. 7 yr
B2 TeXstudio Modifying Bib file in other app gets pinwheel. 2 yr
B3 BiglyBT Launching BiglyBT installer gets pinwheel. 1 yr
B4 Sequel Pro Reconnection via ssh causes freeze. 4 yr
B5 Quiver Pasting a section from webpage as a list freezes. 5 yr
B6 Firefox Connection to printer takes a long time. 1 mo
B7 Firefox Some website triggers pinwheel in the DevTool. 3 yr
B8 Alacrity Unresponsive after a long line rendering. 6 mo
B9 Inkscape Zoom in/out shapes causes intermittent freeze. 1 yr
B10 VLC Quick quit after playlist click causes freeze. 7 mo
B11 QEMU Unable to launch on macOS Catalina. 1 mo
B12 Octave Script editing in GUI gets pinwheel. 2 yr

Table 2: Real-world performance issues in macOS applications.

Argus with proprietary applications like Microsoft Word for
macOS, but without source code, we need to wait for vendors’
confirmation and responses; in our experience, vendors are
reluctant to communicate issues with an external party.

Table 3 shows that Argus was able to diagnose all 12 perfor-
mance issues, including all longstanding open issues. As listed
in Table 4, we checked the correctness of Argus’s diagnosed
root causes in three ways: (1) inspecting the corresponding
source code if available, (2) dynamic patching with lldb based
on the diagnosed root cause to fix the problem, and (3) con-
firmation by developers. The last one is ideal, but not always
feasible; we reported our findings to developers for seven is-
sues, but only received two responses. Only the root cause of
B11 was previously known, which Argus returned correctly
(Grd). For B1, B7, and B10, we validated the diagnosed root
causes by analyzing the source code (Src). For B2 and B4, we
received confirmation from the respective application develop-
ers that Argus correctly diagnosed the root cause for these open
issues [8, 9] (Dev). For example, for B4, the Sequel Pro devel-
opers suspected a particular Cocoa Framework API does not
work as expected, but could not pinpoint the exact place to fix it.
Argus determined the defect was in their installed callback func-
tion, and we submitted a pull request [8] to fix the issue. B8 was
fixed in an official developer patch after we reported the root
cause (Fix). For the remaining issues, we confirmed the issue
was resolved by dynamically patching the application based
on the root cause (Dyn). We describe a few of the performance
issues in further detail, but omit others due to space constraints.

B1-Chromium: This is the Chromium performance issue
discussed in Section 2. Argus analyzes the trace graph,
pinpoints the circular waits between renderer main thread
and browser main thread with the interactions of daemon
processes like fontd. Argus not only localizes the problematic
execution segment (waiting on a condition variable), but also
the sequence of events leading to this issue. The same issue
occurs in Chrome. We also reported our findings to Chrome
developers, but received no reply.

B2-TeXstudio: TeXstudio [55] is an IDE for creating LaTeX
documents. Users reported when they modified a bibliography

ID Root Cause Identified

B1 circular wait between renderer and browser main threads.
B2 long running function calculating line indices in document.
B3 recursive invocations of accessible objects in GUI.
B4 UI event loop mishandling input causes deadlock with ssh.
B5 paragraph value never equals last paragraph inside web view.
B6 sleep waiting on chain of deamons, the last being nsurlsessiond.
B7 excessive garbage collection on the main thread.
B8 excessive copy of rendering cells when searching potential URL.
B9 excessive memory operations for trimming and compositing.
B10 termination signal before displaying thread ready; deadlocks.
B11 window adjustment before it finishes launching; deadlocks.
B12 readline thread writing tty repeatedly, main thread waiting.

Table 3: Root causes identified by Argus.

file with another application, TeXstudio froze with a spinning
pinwheel. We reproduced this case by running touch from a
terminal on a 500 entry bibliography file, which immediately
caused a spinning pinwheel to appear in TeXstudio’s window.
Argus analyzes the trace graph and identifies five causal paths,
ordered by likelihood of causality. The first path connects mul-
tiple entities: Terminal→WindowServer→bash→kernel_task

→fseventd→TeXstudio—and suggests the following
root cause chain. touch triggers a change in the file
metadata. fseventd notifies TeXstudio and invokes
a callback handler. TeXstudio executes a function
QDocument::startChunkLoading, and causes busy pro-
cessing in TeXstudio’s main thread. Argus also outputs
the call stack with the busy APIs, startChunkLoading and
QDocumentPrivate::indexOf(). We reported our findings to
the developers and received confirmation that the diagnosis
is correct.

B5-Quiver: Quiver [7] is a closed-source notebook appli-
cation for mixing text, code, Markdown, LaTeX, etc. Users
report that applying bullet points to a text cell without an
empty line at bottom causes a spinning pinwheel [6]. Based on
the Argus trace graph, there is a hanging vertex in the WebKit
component used by Quiver. In particular, WebKit hangs in
executing InsertListCommand::doApply when applying the
list command to the Webview context from Quiver. The hang
occurs because of an infinite loop bug in WebKit rather than
Quiver. We verified the root cause by changing the comparison
result of the loop with lldb, which enables Quiver to display
the bulletin points without a spinning pinwheel. We reported
our findings to the developers, but received no reply.

7.2 Comparing with Other Approaches
We compared Argus versus other state-of-the-art tools for
diagnosing the performance issues in Table 2. We used two
widely-used traditional debugging and profiling tools from
Apple, spindump [10] and Instruments [12]. For spindump,
we enable it once the performance issue appears, and repeat
the process five times to eliminate bias on the start timing.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

spind.@top1 7 7 7 7 7 7 7 7 7 7 3 7

spind.@top3 7 7 7 7 7 7 3 7 7 7 3 7

spind.@top5 7 7 7 7 7 7 3 3 7 7 3 7

spind.@top10 7 7 7 7 7 3 3 3 3 7 3 7

Instr.@top1 7 7 7 7 7 7 7 3 7 7 7 7

Instr.@top3 7 7 7 7 7 7 7 3 7 7 7 7

Instr.@top5 7 7 7 7 7 7 3 3 7 7 7 7

Instr.@top10 7 7 7 7 7 3 3 3 3 7 7 7

AppInsight 7 7 7 7 7 7 3 3 7 7 7 7

Panappticon 7 7 7 7 3 3 3 3 7 7 7 7

Argus 3 3 3 3 3 3 3 3 3 3 3 3

no weak edges 7 7 3 3 3 3 3 3 3 7 7 3

w/critical path 7 7 3 7 3 3 3 3 3 7 7 7

Argus result
Src Dev Dyn Dev Dyn Dyn Src Fix Dyn Src Grd Dyn

validation

Table 4: Comparing Argus with other debugging tools.

spindump separately ranks the symbols from all sampled call
stacks and only the top of call stacks. We examined the topN
symbols and their corresponding call stack information. For
Instruments, we enable its time profiler in the background
when reproducing the bugs, and analyze its data from two
seconds before the performance issue occurs to three seconds
after. We rank APIs in the reported call trees with CPU time
percentage and filter out system routines. Then, we select the
topN APIs for investigation. We used values from N = 1 to
N = 10. We also used two causal tracing tools, the macOS
version of Panappticon, as discussed in Section 2, and AppIn-
sight [40]. Since AppInsight was originally built for Windows,
we reimplemented a version for macOS which captures trace
events, constructs trace graphs, and follows the path analysing
rules for diagnosis according to AppInsight’s design.

Table 4 shows the results for using the different tools,
including the results for Argus discussed in Section 7.1;
checks indicate correct root cause diagnosis. All of the
other tools diagnosed much fewer performance issues than
Argus. spindump diagnosed at most five issues. It captures
the state near the symptom point but cannot deduce how
the execution reaches a problematic point, especially in the
presence of highly concurrent and asynchronous execution
across different entities. Instruments diagnosed at most four
issues. It only outputs the most costly functions, which are
helpful for performance optimizations but may not be for
troubleshooting specific performance issues. Neither of the
causal tracing tools did any better because the constructed
trace graphs are highly inaccurate. AppInsight only diagnosed
two issues while Panappticon diagnosed four issues.

7.3 Mitigation of Trace Graph Inaccuracies

We evaluated the effectiveness of Argus in mitigating trace
graph inaccuracies in diagnosing the performance issues in
Table 2. Table 4 shows the benefits of weak edges and Beam

Events Vertices Edges

Total Strong Weak

Max 12.3M 1.68M 1.62M 751.3K 864.6K
Min 260.8K 15.1K 25.5K 17.5K 8.01K
Mean 3.31M 349.5K 358.4K 188.8K 169.6K
Med 1.02M 97.3K 172.6K 111.9K 60.71K

Table 5: Argus trace graph statistics. B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11B12
Issue Id

101

102

103

104

T
im

e
 (

s
)

Graph diagnosis

Graph construction

Figure 8: Argus diagnosis time.

2 4 6 8 10
Setting

0

2

4

6

8

10

12

D
ia

g
n
o
s
e
d
 i
s
s
u
e
s beam width

lookback steps

penalty a

penalty b

Figure 9: Sensitivity of beam search settings.

search. Argus diagnoses eight issues if it discards weak edges
(no weak edges), and seven issues if it uses traditional critical
path analysis instead of Beam search (w/critical path). In both
cases, Argus still performs better than other tools.

Table 5 shows that the Argus trace graphs include hundreds
of thousands to millions of events, and on average have 350K
vertices and up to 1.68M vertices. Graphs are in general dense,
with an average of 358K edges. A significant percentage, 40%
on average, of the edges are tagged as weak edges. To avoid
abusing weak edges and overwhelming the diagnosis, Argus
applies the optimizations discussed in Section 5. Figure 10
shows the percentages of potential weak edges that Argus
excludes from the trace graph for different techniques: call
stack similarity, wait on end of task in a thread, acquire worker
threads, and kernel task delegate. Call stack similarity was
most effective in pruning potential weak edges.

We evaluated the sensitivity of Argus’s beam search settings:
beam width, lookback steps, and penalty function coefficients
a and b. Figure 9 shows the number of diagnosed issues when
changing one setting and leaving the rest at their defaults. The
settings for beam width and lookback steps are robust. Larger
settings increase the diagnosis effectiveness, but if they are too
large, the Argus debugger could run out of memory or time out
for large trace graphs. Changing penalty function coefficients
can significantly change the number of diagnosed issues. In
general, small coefficients from two to four are better. Overall,
the results indicate that Argus is practical, and developers do
not need to spend much effort to tune search settings.

7.4 Performance

We measured the time to run the Argus grapher and debugger
for diagnosing each of the performance issues in Table 2.
Figure 8 shows the time varies for different issues, ranging
from 49 s (B12) to 9870 s (B1). Constructing the trace graph
is the dominant cost. Running the beam search diagnosis
algorithm on the graph is fast, taking at most 144 s (B10).

We also measured the overhead of the Argus tracer using
various CPU, memory, and I/O benchmarks running on a live
deployment of Argus on a MacBookPro9,2 with an Intel Core
i5-3210M CPU, 10 GB RAM, and a 1 TB SSD. We first mea-
sured five runs of the iBench Cocoa benchmark [35], with and
without Argus, to measure overall performance. The reported
scores were 6.14 with 0.027 standard error without Argus trac-

ing and 6.13 with 0.025 standard error with Argus tracing
enabled. Argus only has a 0.16% performance degradation on
average. In comparison, with Instruments, the reported score
was 6.04, showing a 1.6% performance degradation. We next
ran the Chromium Catapult benchmarks [1] to evaluate CPU
performance, with and without Argus tracing. Figure 11 shows
that Argus overhead is less than 5%. The average overhead
for real and user time was 3.36% and 2.15%, respectively.
sys overhead was higher because Argus tracing in libraries in-
volves crossing the user-kernel boundary. Finally, we ran Bon-
nie++ [22] and IOzone [19] I/O benchmarks to evaluate I/O
performance, with and without Argus tracing. Figure 12 shows
the I/O throughput measurements. Argus tracing has almost no
overhead for sequential character read and write operations and
less than 10% overhead for block read and write operations.

8 Discussion and Limitations
Diagnosis in Argus may require the anomalous execution trace
as well as the normal one for comparison. Obtaining the latter
is not difficult. Persistent performance problems are typically
eliminated before release, so the remaining issues are often
non-deterministic, only occur with specific input events (e.g.,
typing special characters), and disappear with other events.

The quality of the Argus diagnosis results is affected by
edge annotation accuracy. Beam search helps tolerate errors by
inspecting multiple paths, but its settings can affect diagnosis
effectiveness, as discussed in Section 6.

Argus addresses performance issues that are reflected in
the underlying execution sequences and CPU time. It does
not handle performance issues due to contentions among
userspace threads or incorrect settings of UI elements.

Argus supports closed-source applications and libraries, but
its tracing infrastructure requires slight source-level kernel
modifications. System libraries such as CoreFoundation are
patched at the binary level. Binary instrumentation could also
be used to implement kernel changes, but is more cumbersome.
Vendors of proprietary OSes have incentives to enhance their
existing tracing mechanisms, and may conceivably adopt
Argus kernel modifications.

We have not yet ported Argus to other OSes, but modern
OSes share many similarities and provide tracing facilities
that can support Argus, such as ETW [39] in Windows and
LTTng in Linux [4]. Therefore, we are hopeful that our ideas
are generally applicable to other OSes.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11B12
Issue Id

0

10

20

30

40

50

60

70

80

P
e
rc

e
n
t

(%
)

Callstack similarity

Acquire worker threads

Wait on task's end

Kernel task delegate

Figure 10: Potential weak edges pruned.

20K

40K

60K

C
P
U

 T
im

e
 (

s
)

Sys time w/ Argus

User time w/ Argus

Sys time w/o Argus

User time w/o Argus

a b c d e f g h i j k l m
Benchmark Id

0K

2K

4K

a:webrtc
b:dromaeo
c:blink_perf
d:speedometer
e:octan.desktop
f:memory_desktop
g:smoothness.oop_rasterization.top_25_smooth

h:v8.browsing_desktop
i:page_cycler_v2.typical_2
j:dummy_benchmark.histogram
k:system_health.memory_desktop
l:loading.desktop.network_serv
m:rasterize&record_micro.top_25

Figure 11: CPU overhead.

2,500K

5,000K
With Argus

Without Argus

200K

400K

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

a b c d e f g h i j k
Benchmark Id

0K

20K

a:seq_write_char
b:seq_write_block
c:seq_rewrite
d:seq_read_char
e:seq_read_block

f:seq_file_create
g:seq_file_delete
h:random_file_create
i:random_file_delete
j:iozone_init_write
k:iozone_rewrite

Figure 12: I/O overhead.

9 Related Work
Many causal tracing solutions have been proposed for
networked and distributed systems, including Magpie [14],
XTrace [27], Dapper [44], and Pivot Tracing [38]. These
systems typically attach metadata to each request, propagate
the metadata to all components, and stitch the traces. This
approach assumes (1) the system is composed of white-box
components that can be easily modified; (2) these components
communicate in uniform interfaces. Neither assumption is
true for desktop systems. Magpie [14] does not use metadata
propagation but assumes a manual schema to extract and join
events from different components’ logs. The extracted traces
are limited by what each component chooses to log. However,
desktop components typically are packaged as release builds
that only log critical events, and logging practices among
components vary greatly, which makes writing uniform
schema difficult, time-consuming, and fragile.

Some causal tracing tools have been developed for mobile
applications. AppInsight [40] interposes on the interface
between applications and Windows Mobile frameworks and
assumes that applications follow the event callback program-
ming idiom. Panappticon [56] traces low-level events in
Android and assumes two asynchronous programming idioms,
message queue and thread pooling. Neither of these approaches
is effective for desktop applications such as those in macOS.

Profiling or static code analysis are typically ineffective
for detecting performance issues [23, 34]. Several solu-
tions [29,54] detect performance anomalies by leveraging logs
and call stacks. Other works [21, 24, 42, 50] apply machine
learning methods to identify anomalous events. Yu et al. [52]
study the performance impact of Windows device drivers in
real-world execution traces and propose to extract wait graphs
from the execution traces. Several solutions [15–17] infer
models from logs for distributed and concurrent systems, and
use them to automate the detection of anomalous behavior
when systems are exposed to new workloads and environments.
These systems are orthogonal to Argus, as Argus’s goal is to
diagnose an already-detected performance anomaly.

Argus is complementary to the work on concurrency bugs
and race detection [18,25,26,33,36,47,48,51,53]. The former
typically checks one (server) program, while Argus targets
desktop applications where the defect often involves user inter-

action events, daemons, external frameworks or other applica-
tions. The latter usually focuses on testing and eliminating bugs
before software is released, while Argus focuses on helping de-
velopers diagnose performance issues in the wild. Argus also
addresses performance issues caused by other types of bugs.

10 Conclusions and Future Work

Argus is the first comprehensive causal tracing system to diag-
nose performance anomalies in complex desktop applications.
We observe that although causal tracing is powerful and exten-
sively studied in distributed systems, it is brittle when applied
to desktop systems due to inherent tracing inaccuracies. Argus
addresses this problem by introducing annotated trace graphs
with strong and weak edges to account for these inaccuracies.
Argus pairs annotated trace graphs with a novel beam search
diagnosis algorithm and subgraph comparison mechanism
to determine causal paths in the presence of these inaccura-
cies. We have implemented Argus across multiple versions of
macOS and evaluated its effectiveness on complex desktop ap-
plications. Argus successfully pinpoints the root causes for 12
real-world performance issues in these applications, many of
which had remained open for several years. Argus imposes less
than 5% CPU overhead, making it fast enough for regular use.

We believe Argus’s strong and weak edge notions and
inaccuracy-tolerant diagnosis algorithm may extend beyond
the scope of desktop systems. In causal tracing of distributed
systems, many solutions assume systems are perfectly
instrumented, but in practice this is not the case. We plan to
explore using Argus’s techniques in the context of distributed
systems as an area of future work.

Acknowledgments
We thank our shepherd, Pedro Fonseca, and the anonymous re-
viewers for their valuable feedback. This work was supported
in part by NSF grants CCF-1918400, CNS-1563555, CNS-
1564055, CNS-1942794, CNS-1910133, and CCF-1918757,
ONR grants N00014-16-1-2263 and N00014-17-1-2788,
a JP Morgan Faculty Research Award, and a DiDi Faculty
Research Award.

References

[1] Catapult : Chromium benchmark. https://chromium.

googlesource.com/catapult.

[2] Chromium issue 115920: Response time can be really
long with some IMEs (e.g. Pinyin IME (Apple), Sogou
Pinyin IME). https://bugs.chromium.org/p/chromium/
issues/detail?id=115920.

[3] Kernel probes (Kprobes). https://www.kernel.org/

doc/html/latest/trace/kprobes.html.

[4] LTTng: Linux tracing toolkit - next generation.
https://lttng.org.

[5] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.php/Main_Page.

[6] Quiver: Crash when applying bullet points on multiple
lines of text. https://github.com/HappenApps/Quiver/
issues/21.

[7] Quiver: The programmer’s notebook. https:

//happenapps.com.

[8] Sequel-Ace fix reconnect timeout - accept SSH
password after network connection reset. https:

//github.com/Sequel-Ace/Sequel-Ace/pull/772.

[9] TeXstudio freezes when bib file is updated in the
background. https://github.com/texstudio-org/

texstudio/issues/288.

[10] Apple. Activity monitor user guide: Run system
diagnostics in activity monitor on mac. https:

//support.apple.com/guide/activity-monitor/

run-system-diagnostics-actmntr2225/mac.

[11] Apple. Cocoa fundamentals guide. https://developer.
apple.com/library/archive/documentation/Cocoa/

Conceptual/CocoaFundamentals/Introduction/

Introduction.html.

[12] Apple. Instruments overview. https://help.apple.

com/instruments/mac/current/#/dev7b09c84f5.

[13] Apple. trace: configure, record, and display kernel
trace events. https://opensource.apple.com/source/

system_cmds/system_cmds-671.10.3/trace.tproj.

[14] Paul Barham, Austin Donnelly, Rebecca Isaacs, and
Richard Mortier. Using Magpie for request extraction
and workload modelling. In Proceedings of the 6th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI’04), pages 259 – 272, San
Francisco, CA, USA, December 2004.

[15] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and
Arvind Krishnamurthy. Inferring models of concurrent
systems from logs of their behavior with csight. In
Proceedings of the 36th International Conference
on Software Engineering (ICSE’14), page 468–479,
Hyderabad, India, May 2014.

[16] Ivan Beschastnikh, Yuriy Brun, Michael D Ernst, Arvind
Krishnamurthy, and Thomas E Anderson. Mining tempo-
ral invariants from partially ordered logs. In Workshop on
Managing Large-scale Systems via the Analysis of Sys-
tem Logs and the Application of Machine Learning Tech-
niques (SLAML’11), Cascais, Portugal, October 2011.

[17] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider,
Michael Sloan, and Michael D. Ernst. Leveraging
existing instrumentation to automatically infer invariant-
constrained models. In Proceedings of the 19th ACM
SIGSOFT Symposium on Foundations of Software
Engineering (FSE’11), pages 267–277, Szeged, Hungary,
September 2011.

[18] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings
of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’08), page 209–224,
San Diego, CA, USA, December 2008.

[19] Don Capps, Carol Capps, Darren Sawyer, Jerry Lohr,
George Dowding, Gary Little, Capps Capps, Robin
Miller, Sorin Faibish, Raymond Wang, Tanmay Wagh-
mare, Yansheng Zhang, Vernon Miller, Nick Principe,
Zach Jones, Udayan Bapat, William Norcott, Isom Craw-
ford, Kirby Collins, Al Slater, Scott Rhine, Mike Wis-
ner, Ken Goss, Steve Landherr, Brad Smith, Mark Kelly,
Alain Dr. CYR,Randy Dunlap,Mark Montague,Dan Mil-
lion, Gavin Brebner, Jean-Marc Zucconi, Jeff Blomberg,
Halevy. Benny, Dave Boone, Erik Habbinga, Kris
Strecker, Walter Wong, Joshua Root, Fabrice Bacchella,
Zhenghua Xue, Qin Li, Darren Sawyer, Vangel Bojaxhi,
Ben England, Lapa. Vikentsi, and Alexey Skidanoy. IO-
zone filesystem benchmark. https://www.iozone.org/.

[20] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando
Fox, and Eric Brewer. Pinpoint: Problem determination
in large, dynamic internet services. In Proceedings
of the 32nd IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’02), pages
595–604, Bethesda, MD, USA, June 2002.

[21] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie
Symons, and Jeffrey S. Chase. Correlating instru-
mentation data to system states: A building block for
automated diagnosis and control. In Proceedings of the
6th USENIX Symposium on Operating Systems Design

 https://chromium.googlesource.com/catapult
 https://chromium.googlesource.com/catapult
https://bugs.chromium.org/p/chromium/issues/detail?id=115920
https://bugs.chromium.org/p/chromium/issues/detail?id=115920
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://lttng.org
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/HappenApps/Quiver/issues/21
https://github.com/HappenApps/Quiver/issues/21
https://happenapps.com
https://happenapps.com
https://github.com/Sequel-Ace/Sequel-Ace/pull/772
https://github.com/Sequel-Ace/Sequel-Ace/pull/772
https://github.com/texstudio-org/texstudio/issues/288
https://github.com/texstudio-org/texstudio/issues/288
https://support.apple.com/guide/activity-monitor/run-system-diagnostics-actmntr2225/mac
https://support.apple.com/guide/activity-monitor/run-system-diagnostics-actmntr2225/mac
https://support.apple.com/guide/activity-monitor/run-system-diagnostics-actmntr2225/mac
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/Introduction/Introduction.html
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://opensource.apple.com/source/system_cmds/system_cmds-671.10.3/trace.tproj
https://opensource.apple.com/source/system_cmds/system_cmds-671.10.3/trace.tproj
https://www.iozone.org/

and Implementation (OSDI’04), pages 231–244, San
Francisco, CA, USA, December 2004.

[22] Russell Coker. Bonnie++ benchmarking.
https://www.coker.com.au/bonnie++/.

[23] Charlie Curtsinger and Emery D. Berger. COZ: Finding
code that counts with causal profiling. In Proceedings
of the 25th ACM Symposium on Operating Systems
Principles (SOSP’15), pages 184–197, Monterey, CA,
USA, October 2015.

[24] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
Deeplog: Anomaly detection and diagnosis from system
logs through deep learning. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS’17), page 1285–1298,
Dallas, TX, USA, October 2017.

[25] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. Find-
ing complex concurrency bugs in large multi-threaded
applications. In Proceedings of the 6th European
Conference on Computer Systems (EuroSys’11), pages
215–228, Salzburg, Austria, April 2011.

[26] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo
Rodrigues. A study of the internal and external effects of
concurrency bugs. In Proceedings of the 40th IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN’10), pages 221–230, Chicago, IL, USA,
June 2010.

[27] Rodrigo Fonseca, George Porter, Randy H. Katz,
Scott Shenker, and Ion Stoica. X-trace: A pervasive
network tracing framework. In Proceedings of the 4th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI’07), pages 271–284, Cambridge,
MA, USA, April 2007.

[28] Susan L. Graham, Peter B. Kessler, and Marshall K.
Mckusick. Gprof: A call graph execution profiler. In
Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction (SIGPLAN’82), page 120–126,
Boston, MA, USA, June 1982.

[29] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and
Tao Xie. Performance debugging in the large via mining
millions of stack traces. In Proceedings of the 34th Inter-
national Conference on Software Engineering (ICSE’12),
pages 145–155, Zurich, Switzerland, June 2012.

[30] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. A file
is not a file: Understanding the I/O behavior of Apple
desktop applications. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP’11),
page 71–83, Cascais, Portugal, October 2011.

[31] Galen Hunt and Doug Brubacher. Detours: Binary
interception of win32 functions. In Proceedings of the
3rd USENIX Windows NT Symposium, pages 135–143,
Seattle, WA, USA, July 1999.

[32] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison
Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong,
Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod
Venkataraman, Kaushik Veeraraghavan, and Yee Jiun
Song. Canopy: An end-to-end performance tracing
and analysis system. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP’17),
pages 34–50, Shanghai, China, October 2017.

[33] Oren Laadan, Nicolas Viennot, Chia-Che Tsai, Chris
Blinn, Junfeng Yang, and Jason Nieh. Pervasive
detection of process races in deployed systems. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP’11), pages 353–367, Cascais,
Portugal, October 2011.

[34] Bozhen Liu and Jeff Huang. D4: Fast concurrency debug-
ging with parallel differential analysis. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18), pages
359–373, Philadelphia, PA, USA, June 2018.

[35] Ramón Medrano Llamas. iBench: The Cocoa
Benchmark. https://ibench.sourceforge.io.

[36] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from mistakes: A comprehensive study on real
world concurrency bug characteristics. In Proceedings
of the 13th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS’08), pages 329–339, Seattle, WA,
USA, March 2008.

[37] Jonathan Mace and Rodrigo Fonseca. Universal context
propagation for distributed system instrumentation.
In Proceedings of the 13th European Conference on
Computer Systems (EuroSys’18), pages 1–18, Porto,
Portugal, April 2018.

[38] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing. In Proceedings of the 25th ACM Sympo-
sium on Operating Systems Principles (SOSP’15), pages
378–393, Monterey, CA, USA, October 2015.

[39] Microsoft. Event tracing for windows. https://docs.

microsoft.com/en-us/windows-hardware/drivers/

devtest/event-tracing-for-windows--etw-, 2002.

[40] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal,
Ratul Mahajan, Ian Obermiller, and Shahin Shayandeh.
AppInsight: Mobile app performance monitoring in the
wild. In Proceedings of the 10th USENIX Symposium

https://www.coker.com.au/bonnie++/
https://ibench.sourceforge.io
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-

on Operating Systems Design and Implementation
(OSDI’12), pages 107–120, Hollywood, CA, USA,
October 2012.

[41] Patrick Reynolds, Charles Edwin Killian, Janet L Wiener,
Jeffrey C Mogul, Mehul A Shah, and Amin Vahdat. Pip:
Detecting the unexpected in distributed systems. In Pro-
ceedings of the 3rd USENIX Symposium on Networked
Systems Design and Implementation (NSDI’06), pages
115–128, San Jose, CA, USA, May 2006.

[42] Ali G. Saidi, Nathan L. Binkert, Steven K. Reinhardt,
and Trevor Mudge. Full-system critical path analysis.
In Proceedings of the 2008 IEEE International Sympo-
sium on Performance Analysis of Systems and software
(ISPASS’08), pages 63–74, Austin, TX, USA, April 2008.

[43] Raja R. Sambasivan, Ilari Shafer, Jonathan Mace,
Benjamin H. Sigelman, Rodrigo Fonseca, and Gre-
gory R. Ganger. Principled workflow-centric tracing
of distributed systems. In Proceedings of the 7th ACM
Symposium on Cloud Computing (SoCC’16), pages
401–414, Santa Clara, CA, USA, October 2016.

[44] Benjamin H. Sigelman, Luiz André Barroso, Mike
Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure.
Technical report, Google, April 2010.

[45] The LLDB Team. The LLDB Debugger.
https://lldb.llvm.org/.

[46] Eno Thereska, Brandon Salmon, John Strunk, Matthew
Wachs, Michael Abd-El-Malek, Julio Lopez, and
Gregory R. Ganger. Stardust: Tracking activity in a
distributed storage system. In Proceedings of the Joint In-
ternational Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’06/Performance’06),
pages 3–14, Saint Malo, France, June 2006.

[47] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn,
and Satish Narayanasamy. Detecting and surviving data
races using complementary schedules. In Proceedings
of the 23rd ACM Symposium on Operating Systems
Principles (SOSP’11), pages 369–384, Cascais, Portugal,
October 2011.

[48] Jingyue Wu, Heming Cui, and Junfeng Yang. Bypassing
races in live applications with execution filters. In Pro-
ceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’10), pages
135––149, Vancouver, BC, Canada, October 2010.

[49] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan
Zhou, and Zhiqiang Ma. Ad Hoc synchronization
considered harmful. In Proceedings of the 9th USENIX

Symposium on Operating Systems Design and Imple-
mentation (OSDI’10), pages 163–176, Vancouver, BC,
Canada, October 2010.

[50] Wei Xu, Ling Huang, Armando Fox, David Patterson,
and Michael I. Jordan. Detecting large-scale system
problems by mining console logs. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles
(SOSP’09), pages 117–132, Big Sky, MT, USA, October
2009.

[51] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and
Gilles Pokam. Maple: A coverage-driven testing tool
for multithreaded programs. In Proceedings of the
ACM International Conference on Object Oriented
Programming Systems Languages and Applications
(OOPSLA’12), pages 485–502, Tucson, AZ, USA,
October 2012.

[52] Xiao Yu, Shi Han, Dongmei Zhang, and Tao Xie.
Comprehending performance from real-world execution
traces. In Proceedings of the 19th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’14), pages
193–206, Salt Lake City, UT, USA, February 2014.

[53] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack:
Efficient detection of data race conditions via adaptive
tracking. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP’05), pages
221–234, Brighton United Kingdom, October 2005.

[54] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu,
Michael M. Lee, Xiaoming Tang, Yuanyuan Zhou, and
Stefan Savage. Be conservative: Enhancing failure
diagnosis with proactive logging. In Proceedings of
the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’12), pages 293–306,
Hollywood, CA, USA, October 2012.

[55] Benito van der Zander, Jan Sundermeyer, Danel
Braun, and Tim Hoffmann. TeXstudio: LaTeX made
comfortable. https://www.texstudio.org.

[56] Lide Zhang, David R. Bild, Robert P. Dick, Z. Morley
Mao, and Peter Dinda. Panappticon: Event-based tracing
to measure mobile application and platform performance.
In Proceedings of 2013 International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Montreal, QC, Canada, September
2013.

https://lldb.llvm.org/
https://www.texstudio.org

	Introduction
	Motivation and Observations
	Overview of Argus
	Argus Tracer
	Argus Grapher
	Argus Debugger
	Causal Path Search—Beam Search
	Subgraph Comparison
	Debug Information
	Diagnosis for Spinning Pinwheel in macOS

	Evaluation
	Diagnosis Effectiveness
	Comparing with Other Approaches
	Mitigation of Trace Graph Inaccuracies
	Performance

	Discussion and Limitations
	Related Work
	Conclusions and Future Work

