
Efficiently, Effectively Detecting
Mobile App Bugs with AppDoctor

Gang Hu Xinhao Yuan Yang Tang Junfeng Yang
Columbia University

{ganghu,xinhaoyuan,ty,junfeng}@cs.columbia.edu

Abstract
Mobile apps bring unprecedented levels of convenience, yet
they are often buggy, and their bugs offset the convenience
the apps bring. A key reason for buggy apps is that they
must handle a vast variety of system and user actions such
as being randomly killed by the OS to save resources, but
app developers, facing tough competitions, lack time to thor-
oughly test these actions. AppDoctor is a system for effi-
ciently and effectively testing apps against many system and
user actions, and helping developers diagnose the resultant
bug reports. It quickly screens for potential bugs using ap-
proximate execution, which runs much faster than real exe-
cution and exposes bugs but may cause false positives. From
the reports, AppDoctor automatically verifies most bugs and
prunes most false positives, greatly saving manual inspec-
tion effort. It uses action slicing to further speed up bug di-
agnosis. We implement AppDoctor in Android. It operates as
a cloud of physical devices or emulators to scale up testing.
Evaluation on 53 out of 100 most popular apps in Google
Play and 11 of the most popular open-source apps shows
that, AppDoctor effectively detects 72 bugs—including two
bugs in the Android framework that affect all apps—with
quick checking sessions, speeds up testing by 13.3 times,
and vastly reduces diagnosis effort.

1. Introduction
Mobile apps are a crucial part of the widely booming mo-
bile ecosystems. These apps absorb many innovations and
greatly improve our lives. They help users check emails,
search the web, social-network, process documents, edit pic-
tures, access (sometimes classified [16]) data, etc. Given the
unprecedented levels of convenience and rich functionality

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys 2014, April 13–16, 2014, Amsterdam, Netherlands.
Copyright c© 2014 ACM 978-1-4503-2704-6/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592798.2592813

of apps, it is unsurprising that Google Play [24], the app store
of Android, alone has over 1 M apps with tens of billions of
downloads [5].

Unfortunately, as evident by the large number of negative
comments in Google Play, apps are frequently buggy, and
the bugs offset the convenience the apps bring. A key reason
for buggy apps is that they must correctly handle a vast va-
riety of system and user actions. For instance, an app may
be switched to background and killed by a mobile OS such
as Android at any moment, regardless of what state the app
is in. Yet, when the user reruns the app, it must still restore
its state and proceed as if no interruption ever occurred. Un-
like most traditional OS which support generic swapping of
processes, a mobile OS can kill apps running in background
to save battery and memory, while letting them backup and
restore their own states. App developers must now correctly
handle all possible system actions that may pause, stop, and
kill their apps—the so-called lifecycle events in Android—at
all possible moments, a very challenging problem. On top of
these system actions, users can also trigger arbitrary UI ac-
tions available on the current UI screen. Unexpected user ac-
tions also cause various problems, such as security exploits
that bypass screen locks [11, 50].

Testing these actions takes much time. Testing them over
many device configurations (e.g., screen sizes), OS versions,
and vendor customizations takes even more time. Yet, many
apps are written by indie developers or small studios with
limited time and resource budget. Facing tough competi-
tions, developers often release apps under intense time-to-
market pressure. Unsurprisingly, apps are often under-tested
and react oddly to unexpected actions, seriously degrading
user experience [31].

We present AppDoctor, a system for efficiently and ef-
fectively testing apps against many system and user actions,
and helping developers diagnose the resultant bug reports.
It gains efficiency using two ideas. First, it uses approxi-
mate execution to greatly speed up testing and reduce di-
agnosis effort. Specifically, it quickly screens for potential
bugs by performing actions in approximate mode—which
run much faster than actions in faithful mode and can ex-
pose bugs but allow false positives (FPs). For example, in-

stead of waiting for more than two seconds to inject a long-
click action on a GUI widget, AppDoctor simply invokes
the widget’s long-click event handler. Invoking the handler
is much faster but allows FPs because the handler may not
be invoked at all even if a user long-clicks on the widget—
the app’s GUI event dispatch logic may ignore the event
or send the event to other widgets. Given a set of bug re-
ports detected through approximate executions, AppDoctor
reduces the FPs caused by approximation as follows. Based
on the traces of actions in bug reports, AppDoctor automat-
ically validates most bugs by generating testcases of low-
level events such as key presses and screen touches (e.g.,
a real long click). These testcases can be used by develop-
ers to reproduce the bugs independently without AppDoctor.
Moreover, AppDoctor automatically prunes most FPs with
a new algorithm that selectively switches between approxi-
mate and faithful executions. By coupling these two modes
of executions, AppDoctor solves a number of problems of
prior approaches which either require much manual effort to
inspect bug reports or are too slow (§3).

Approximate execution is essentially a “bloom filter”
approach to bug detection: it leverages approximation for
speed, and validates results with real executions. Like prior
work [14, 15], it generates testcases to help developers in-
dependently reproduce bugs. Unlike prior work, it generates
event testcases and aggressively embraces approximation.

Second, AppDoctor uses action slicing to speed up repro-
ducing and diagnosing app bugs. The trace leading to a bug
often contains many actions. A long testcase makes it slow to
reproduce a bug and isolate the cause. Fortunately, many ac-
tions in the trace are not relevant to the bug, and can be sliced
out from the trace. However, doing so either requires pre-
cise action dependencies or is slow. To solve this problem,
AppDoctor again embraces approximation, and employs a
novel algorithm and action dependency definition to effec-
tively slice out many unnecessary actions with high speed.

We explicitly designed AppDoctor as a dynamic tool (i.e.,
it runs code) so that it can find many bugs while emitting few
or no FPs. We did not design AppDoctor to catch all bugs
(i.e., it has false negatives). An alternative is static analy-
sis, but a static tool is likely to have difficulties understand-
ing the asynchronous, implicit control flow due to GUI event
dispatch. Moreover, a static tool cannot easily generate low-
level event testcases for validating bugs. AppDoctor does not
use symbolic execution because symbolic execution is typ-
ically neither scalable nor designed to catch bugs triggered
by GUI event sequences. As a result, the bugs AppDoctor
finds are often different from those found by static analysis
or symbolic execution.

We implement AppDoctor in Android, the most popular
mobile platform today. It operates as a cloud of mobile de-
vices or emulators to further scale up testing, and supports
many device configurations and Android OS versions. To in-
ject actions, it leverages Android’s instrumentation frame-

work [3], avoiding modifications to the OS and simplifying
deployment.

Evaluation on 53 of the top 100 apps in Google Play
and 11 of the most popular open-source apps shows that
AppDoctor effectively detected 72 bugs in apps with tens
of millions of users, built by reputable companies such as
Google and Facebook; it even found two bugs in the An-
droid framework that affect all apps; its approximate execu-
tion speeds up testing by 13.3 times; out of the 64 reports
generated from one quick checking session, it verified 43
bugs and pruned 16 FPs automatically, and left only 5 re-
ports for developer inspection; and its action slicing tech-
nique reduced the average length of traces by 4 times, further
simplifying diagnosis.

Next section gives some background. §3 describes two
examples to illustrate AppDoctor’s advantages over prior ap-
proaches. §4 presents an overview of AppDoctor, §5 approx-
imate execution, §6 action slicing, and §7 implementation.
§8 shows the results. §9 discusses limitations, and §10 re-
lated work. §11 concludes.

2. Background
In Android, an app organizes its logic into activities, each
representing a single screen of UI. For instance, an email
app may have an activity for user login, another for listing
emails, another for reading an email, and yet another for
composing an email. The number of activities varies greatly
between apps, from a few to more than two hundred, de-
pending on an app’s functionality. All activities run within
the main thread of the apps.

An activity contains widgets users interact with. Android
provides a set of standard widgets [4], such as buttons, text
boxes, seek bars (a slider for users to select a value from
a range of values), switches (for users to select options),
and number pickers (for users to select a value from a set
of values by touching buttons or swiping a touch screen).
Widgets handle a standard set of UI actions, such as clicks
(press and release a widget), long-clicks (press, hold, and
release a widget), typing text into text boxes, sliding seek
bars, and toggling switches.

Users interact with widgets by triggering low-level
events, including touch events (users touching the device’s
screen) and key events (users pressing or releasing keys).
Android OS and apps work together to compose the low-
level events into actions and dispatch the actions to the cor-
rect widgets. This dispatch can get quite complex because
developers can customize widgets in many different ways.
For instance, they can override the low-level event handlers
to compose the events into non-standard actions or forward
events to other widgets for handling. Moreover, they can cre-
ate GUI layout with one widget covering another at runtime,
so the widget on top receives the actions.

Users also interact with an activity through three special
keys of Android. The Back key typically causes Android to

onCreate

onStart

onResume

onPause

onStop

onDestroy

onRestart

activity in foreground

Figure 1: Android activity lifecycles [1]. Boxes represent lifecycle
event handlers. Arrows are possible status transition paths.

go back to the previous activity or undo a previous action.
The Menu key typically pops up a menu widget listing ac-
tions that can be done within the current activity, The Search
key typically starts a search in the current app. These keys
present a standard, familiar interface for Android users.

Besides user actions, an activity handles a set of systems
actions called the lifecycle events [1]; Figure 1 shows these
events and the names of their event handlers. Android uses
these events to inform an activity about status changes in-
cluding when (1) the activity is created (onCreate), (2) it
becomes visible to the user but may be partially covered
by another activity (onStart and onRestart), (3) it be-
comes the app running in foreground and receives user ac-
tions (onResume), (4) it is covered by another activity but
may still be visible (onPause), (5) it is switched to the back-
ground (onStop), and (6) it is destroyed (onDestroy).

Android dispatches lifecycle events to an activity for
many purposes. For instance, an activity may want to read
data from a file and fill the content to widgets when it is
first created. More crucially, these events give an activity a
chance to save its state before Android kills it.

User actions, lifecycle events, and their interplay can be
arbitrary and complex. According to our bug results, many
popular apps and even the Android framework sometimes
failed to handle them correctly.

3. Examples
This section describes two examples to illustrate the advan-
tages of AppDoctor over prior approaches. The first exam-
ple is an Android GUI framework bug AppDoctor automat-
ically found and verified and the second example is a FP
AppDoctor automatically pruned.
Bug example. This bug is in Android’s code for handling
an app’s request of a service. For instance, when an app
attempts to send a text message and asks the user to choose a
text message app, the app calls Android’s createChooser
method. Android then displays a dialog containing a list of
apps. When there is no app for sending text messages, the
dialog is empty. If at this moment, the user switches the app

to the background, waits until Android saves the app’s state
and stops the app, and then switches the app back to the
foreground, the app would crash trying to dereference null.

One approach to finding app bugs is to inject low-level
events such as touch and key events using tools such as Mon-
key [47] and MonkeyRunner [40]. This approach typically
has no FPs because the injected events are as real as what
users may trigger. It is also simple, requiring little infrastruc-
ture to reproduce bugs, and the infrastructure is often already
installed as part of Android. Thus, diagnosing bugs detected
with this approach is easy.

However, this approach is quite slow because some low-
level events take a long time to inject. Specifically for this
bug, this approach needs time at three places. First, to detect
this bug, it must wait for a sufficiently long period of time
for Android to save the app state and stop the app. In our
experiments, this wait is at least 5 seconds. Second, this ap-
proach does not know when the app has finished processing
an event, so it has to conservatively wait for some time after
each event until the app is ready for the next event. This wait
is at least 6s. Third, without knowing what actions it can
perform, it typically blindly injects many redundant events
(e.g., clicking at points within the same button which causes
the same action), while missing critical ones (e.g., stopping
the app while the dialog is displayed in this bug).

AppDoctor solves all three problems. It approximates the
effects of the app stop and start by directly calling the app’s
lifecycle event handlers, running much faster and avoiding
the long wait. It detects when an action is done, and imme-
diately performs the next action. It also understands what
actions are available to avoid doing much redundant work. It
detected this bug when checking the popular app Craigslist
and a number of other apps. (To avoid inflating our bug
count, we counted all these reports as one bug in our evalua-
tion in §8.1.) This bug was previously unknown to us. It was
was recently fixed in the Android repository. AppDoctor not
only found this bug fast, but also generated an event testcase
that can reliably reproduce this problem on “clean” devices
that do not have AppDoctor installed, providing the same
level of diagnosis help to developers as Monkey.
FP example. Another approach to test apps is to drive app
executions by directly calling the app’s event handlers (e.g.,
by calling the handler of long-click without doing a real
long-click) or mutating an app’s data (e.g., by setting the
contents of a text box directly). A closed-source tool Ap-
pCrawler [7] appears to do so. However, this approach suf-
fers from FPs because the actions it injects are approximate
and may never occur in real executions. A significant pos-
sibility of FP means that developers must inspect the bug
reports, requiring much manual effort. To illustrate why this
approach has FPs, we describe an FP AppDoctor encoun-
tered and automatically pruned.

This FP is in the MyCalendar app. It has a text box
for users to input their birth month. It customizes this

App

Explore

Diagnose

Slice Replay

Auto
Pruned

FPs

Auto
Verified
Bugs

Bug
Reports

Manual

Developer
patch

Figure 2: AppDoctor workflow.

text box by allowing users to select the name of a month
only using a number picker it displays, ensuring that the
text box’s content can only be the name of one of the
12 months. When AppDoctor checked this app with ap-
proximate actions, it found an execution that led to an
IndexOutOfBoundException. Specifically, it found that
this text box was marked as editable, so it set the text to
“test,” a value users can never possibly set, causing the crash.
Tools that directly call event handlers or set app data will suf-
fer from this FP. Because of the significant possibility of FPs
(25% in our experiments; see §8), users must inspect these
tools’ reports, a labor-intensive, error-prone process.

Fortunately, by coupling approximate and faithful execu-
tions, AppDoctor automatically prunes this FP. Specifically,
for each bug report detected by performing actions in ap-
proximate mode, AppDoctor validates it by performing the
actions again in faithful mode. For this example, AppDoctor
attempted to set the text by issuing low-level touch and key
events. It could not trigger the crash again because the app
correctly validated the input, so it automatically classified
the report as an FP.

App input validation is just one of the reasons for FPs.
Another is the complex event dispatch logic in Android and
apps. A widget may claim that it is visible and its event han-
dlers are invokable, but in real execution a user may never
trigger the handlers. For instance, one GUI widget W1 may
be covered by another W2, so the OS does not invoke W1’s
handlers to process user clicks. However, AppDoctor can-
not rule out W1 because visibility is only part of the story,
and W2 may actually forward the events to W1. Precisely
determining whether an event handler can be triggered by
users may require manually deciphering the complex OS and
app’s event dispatch logic. AppDoctor’s coupling of approx-
imate and faithful executions solves all these problems with
one stone.

4. Overview
This section gives an overview of AppDoctor. Figure 2
shows its workflow. Given an app, AppDoctor explores pos-
sible executions of the app on a cloud of physical devices and
emulator instances by repeatedly injecting actions. This ex-
ploration can use a variety of search algorithms and heuris-

tics to select the actions to inject (§7.4). To quickly screen
for potential bugs, AppDoctor performs actions in approxi-
mate mode during exploration (§5.2). For each potential bug
detected, it emits a report containing the failure caused by
the bug and the trace of actions leading to the failure.

Once AppDoctor collects a set of bug reports, it runs
automated diagnosis to classify reports into bugs and FPs by
replaying each trace several times in approximate, faithful,
and mixed mode (§5.3). It affords to replay several times
because the number of bug reports is much smaller than
the number of checking executions. It also applies action
slicing to reduce trace lengths, further simplifying diagnosis
(§6). It outputs (1) a set of auto-verified bugs accompanied
with testcases that can reproduce the bugs on clean devices
independent of AppDoctor, (2) a set of auto-pruned FPs so
developers need not inspect them, and (3) a small number of
reports marked as likely bugs or FPs with detailed traces for
developer inspection.

AppDoctor focuses at bugs that may cause crashes. It tar-
gets apps that use standard widgets and support standard ac-
tions. We leave it for future work to support custom check-
ers (e.g., a checker that verifies the consistency of app data),
widgets, and actions. AppDoctor automatically generates
typical inputs for the actions it supports (e.g., the text in a
text box; see §7.6), but it may not find bugs which requires a
specific input. These as well as other limitations may lead to
false positives (see §9).

5. Approximate Execution
This section presents AppDoctor’s approximate execution
technique. We start by introducing the actions AppDoctor
supports (§5.1), and then discuss the explore (§5.2) and the
diagnosis stages (§5.3).

5.1 Actions

AppDoctor supports 20 actions, split into three classes. The
7 actions in the first class run much faster in approximate
mode than in faithful mode. The 5 actions in the second
class run identically in approximate and faithful modes. The
8 actions in the last class have only approximate modes.

We start with the first class. The first 4 actions in this class
are GUI events on an app’s GUI widgets, and the other 3 are
lifecycle events. For each action, we provide a general de-
scription, how AppDoctor performs it in approximate mode,
how AppDoctor performs it in faithful mode, and the main
reason for FPs.
LongClick. A user presses a GUI widget for a
time longer than 2 seconds. In approximate mode,
AppDoctor calls the widget’s event handler by calling
widget.performLongClick. In faithful mode, AppDoctor
sends a touch event Down to the widget, waits for 3 seconds,
and then sends a touch event Up. The main reason for FPs
is that, depending on the event dispatch logic in Android
OS and the app (§2), the touch events may not be sent to
the widget, so the LongClick handler of the widget is not

invoked in a real execution. A frequent scenario is that the
widget is covered by another widget, so the widget on top
intercepts all events.
SetEditText. A user sets the text of a TextBox. In approx-
imate mode, AppDoctor directly sets the text by calling
the widget’s method setText. In faithful mode, AppDoctor
sends a series of low-level events to the text box to set text.
Specifically, it sends a touch event to set the focus to the text
box, Backspace and Delete keys to erase the old text, and
other keys to type the text. The main reason for FPs is that
developers can customize a text box to allow only certain
text to be set. For instance, they can validate the text or over-
ride the widget’s touch event handler to display a list of texts
for a user to select.
SetNumberPicker. A user sets the value of a number picker.
In approximate mode, AppDoctor directly sets the value by
calling the widget’s method setValue. In faithful mode,
AppDoctor sends a series of touch events to press the buttons
inside the number picker to gradually adjust its value. The
main reason for FPs is similar to that of SetEditText where
developers may allow only certain values to be set.
ListSelect. A user scrolls a list widget and selects an item in
the list. In approximate mode, AppDoctor calls the widget’s
setSelection to make the item show up on the screen and
select it. In faithful mode, AppDoctor sends a series of touch
events to scroll the list until the given item shows up. The
main reason for FPs is that developers can customize the list
widget and limit the visible range of the list to a user.
PauseResume. A user switches an app to the background
(e.g., by running another app) for a short period of time,
and then switches back the app (see lifecycle events in §2).
Android OS pauses the app when the switch happens, and
resumes it after the app is switched back. In approximate
mode, AppDoctor calls the foreground activity’s event han-
dlers onPause and onResume to emulate this action. In
faithful mode, AppDoctor starts another app (currently An-
droid’s Settings app for configuring system-wide parame-
ters), waits for 1s, and switches back. The main reason for
FPs is that developers can alter the event handlers called to
handle lifecycle events.
StopStart. This action is more involved than PauseResume.
It occurs when a user switches an app to the background
for a longer period of time, and then switches back. Since
the time the app is in background is long, Android OS
saves the app’s state and destroys the app to save mem-
ory. Android later restores the app’s state when the app is
switched back. In approximate mode, AppDoctor calls the
following event handlers of the current activity: onPause,
onSaveInstanceState, onStop, onRestart, onStart,
and onResume. In faithful mode, AppDoctor starts another
app, waits for 10s, and switches back. The main reason for
FPs is that developers can alter the event handlers called to
handle lifecycle events.

Relaunch. This action is even more involved than StopStart.
It occurs when a user introduces some configuration changes
that cause the current activity to be destroyed and recreated.
For instance, a user may rotate her device (causing the activ-
ity to be destroyed) and rotate it back (causing the activity
to be recreated). In approximate mode, AppDoctor calls An-
droid OS’s recreate to destroy and recreate the activity. In
faithful mode, AppDoctor injects low-level events to rotate
the device’s orientation twice. The main reason for FPs is
that apps may register their custom event handlers to han-
dle relaunch-related events, so the activities are not really
destroyed and recreated.

All these 7 actions in the first class run much faster in
approximate mode than in faithful mode, so AppDoctor runs
them in approximate mode during exploration. AppDoctor
supports a second class of 5 actions for which invoking
their handlers is as fast as sending low-level events. Thus,
AppDoctor injects low-level events for these actions in both
approximate and faithful modes.
Click. A user quickly taps a GUI widget. In both modes,
AppDoctor sends a pair of touch events, Down and Up, to
the center of a widget.
KeyPress. A user presses a key on the phone, like the Back
key or the Search key. AppDoctor sends a pair of key events
Down and Up with the corresponding key code to the app.
This action sends only special keys because standard text
input is handled by SetEditText.
MoveSeekBar. A user changes the value of a seek bar wid-
get. In both modes, AppDoctor calculates the physical posi-
tion on the widget that corresponds to the value the user is
setting, and send a pair of touch event Down and Up on that
position to the widget.
Slide. A user slides her finger on the screen. AppDoctor first
sends a touch event Down on the point where the slide starts.
Then AppDoctor sends a series of touch event Move on the
points along the slide. Finally, AppDoctor sends a touch
event Up on the point where the slide stops. AppDoctor
supports two types of slides: horizontal and vertical.
Rotate. A user changes the orientation of the device.
AppDoctor injects a low-level event to rotate the device’s
orientation.

AppDoctor supports a third class of 8 actions caused by
external events in the execution environment of an app, such
as the disconnection of the wireless network. AppDoctor
injects them by sending emulated low-level events to an app,
instead of for example disconnecting the network for real.
We discuss three example actions below.
Intent. An app may run an activity in response to a request
from another app. These requests are called intents in An-
droid. Currently AppDoctor injects all intents that an app
declares to handle, such as viewing data, searching for me-
dia files, and getting data from a database.

appdoctor.explore once() { // returns a bug trace
trace = {};
appdoctor.reset init state();
while (app not exit and action limit not reached) {

action list = appdoctor.collect();
action = appdoctor.choose(action list);
appdoctor.perform(action, APPROX);
trace.append(action);
if (failure found)

return trace;
}
}

Figure 3: Algorithm to explore one execution for bugs.

Network. AppDoctor injects network connectivity change
events, such as the change from wireless to 3G and from
connected to disconnected status.
Storage. AppDoctor injects storage related events such as
the insertion or removal of an SD card.

5.2 Explore

When AppDoctor explores app executions for bugs, it runs
the actions described in the previous subsection in approx-
imate mode for speed. Figure 3 shows AppDoctor’s algo-
rithm to explore one execution of an app for bugs. It sets the
initial state of the app, then repeatedly collects the actions
that can be done, chooses one action, performs the action in
approximate mode, and checks for bugs. If a failure such as
an app crash occurs, it returns a trace of actions leading to
the failure.

To explore more executions, AppDoctor runs this algo-
rithm repeatedly. It collects available actions by travers-
ing the GUI hierarchy of the current activity leveraging the
Android instrumentation framework (§7.1). AppDoctor then
chooses one of the actions to inject. By configuring how to
choose actions, AppDoctor can implement different search
heuristics such as depth-first search, breadth-first search, pri-
ority search, and random walk (§7.4). AppDoctor performs
the action as soon as the previous action is done, further im-
proving speed (§7.5).

5.3 Diagnosis

The bug reports detected by AppDoctor’s exploration are not
always true bugs because the effects of actions in approxi-
mate mode are not always reproduced by the same actions
in faithful mode. Manually inspecting all bug reports would
be labor-intensive and error-prone, raising challenges for
time and resource-constrained app developers. Fortunately,
AppDoctor automatically classifies bug reports for the de-
velopers using the algorithm shown in Figure 4, which re-
duced the number of reports developers need to inspect by
13.6× in our evaluation (§8.4).

This algorithm takes an action trace from a bug report,
and classifies the report into four types: (1) verified bugs

appdoctor.diagnose(trace) { // returns type of bug report
// step 1: tolerate environment problems
if (not appdoctor.reproduce(trace, APPROX))

return PRUNED FP;
// step 2: auto-verify bugs
trace = appdoctor.slice(trace); // described in Section 6
if (appdoctor.reproduce(trace, FAITHFUL)) {

testcase = appdoctor.to monkeyrunner(trace);
if (MonkeyRunner reproduces the failure with testcase)

return VERIFIED BUG;
else return LIKELY BUG;
}
// step 3: auto-prune FPs
for (action1 in trace) {

appdoctor.reset init state();
// replay actions in approximate mode, except action1
for (action2 in trace) {

if (action2 != action1)
appdoctor.perform(action2, APPROX);

else
appdoctor.perform(action2, FAITHFUL);

if (replay diverges) break;
}
if (failure disappears)

return PRUNED FP; // action1 is the culprit
}
return LIKELY FP;
}

Figure 4: Algorithm to diagnose one trace.

(real bugs reproducible on clean devices), (2) pruned false
positives, (3) likely bugs, and (4) likely false positives. Type
1 and 2 need no further manual inspection to classify (for
verified bugs, developers still have to pinpoint the code
responsible for the bugs and patch it). The more reports
AppDoctor places in these two types, the more effective
AppDoctor is. Type 3 and 4 need some manual inspection,
and AppDoctor’s detailed action trace and suggested types
of the reports help reduce inspection effort.

As shown in the algorithm, AppDoctor automatically di-
agnoses a bug report in three steps. First, it does a quick
filtering to prune false positives caused by Android emu-
lator/OS/environment problems. Specifically, it replays the
trace in approximate mode, checking whether the same
failure occurs. If the failure disappears, then the report is
most likely caused by problems in the environment, such as
bugs in the Android emulator (which we did encounter in
our experiments) or temporary problems in remote servers.
AppDoctor prunes these reports as FPs.

Second, it automatically verifies bugs. Specifically, it
simplifies the trace using the action slicing technique de-
scribed in the next section, and replays the trace in faith-
ful mode. If the same failure appears, then the trace almost

always corresponds to a real bug. AppDoctor generates a
MonkeyRunner testcase, and verifies the bug using clean de-
vices independent of AppDoctor. If it can reproduce the fail-
ure, it classifies the report as a verified bug. The testcase
can be sent directly to developers for reproducing and di-
agnosing the bug. If MonkeyRunner cannot reproduce the
failure, then it is most likely caused by the difference in how
AppDoctor and MonkeyRunner wait for an action to finish.
Thus, AppDoctor classifies the report as a likely bug, so de-
velopers can inspect the trace and modify the timing of the
events in the MonkeyRunner testcase to verify the bug.

Third, AppDoctor automatically prunes FPs. At this
point, the trace can be replayed in approximate mode, but
not in faithful mode. If AppDoctor can pinpoint the action
that causes this divergence, it can confirm that the report is
an FP. Specifically, for each action in the trace (action1 in
Figure 4), AppDoctor replays all other actions in the trace
in approximate mode except this action. If the failure dis-
appears, AppDoctor finds the culprit of the divergence, and
classifies the report as a pruned FP. If AppDoctor cannot find
such an action, it classifies the report as a likely FP for fur-
ther inspection.

6. Action Slicing

AppDoctor uses action slicing to remove unnecessary ac-
tions from a trace before determining whether the trace is
a bug or FP (slice in Figure 4). This technique brings two
benefits. First, by shortening the trace, it also shortens the
final testcase (if the report is a bug), reducing developer di-
agnosis effort. Second, a shorter trace also speeds up replay.

Slicing techniques [30, 54] have been shown to effec-
tively shorten an instruction trace by removing instructions
irrelevant to reaching a target instruction. However, these
techniques all hinge on a clear specification of the dependen-
cies between instructions, which AppDoctor does not have
for the actions in its traces. Thus, it appears that AppDoctor
can only use slow approaches such as attempting to remove
actions one subset by one subset to shorten the trace.

Our insight is that, because AppDoctor already provides
an effective way to validate traces, it can embrace ap-
proximation in slicing as well. Specifically, given a trace,
AppDoctor applies a fast slicing algorithm that computes a
minimal slice assuming minimal, approximate dependencies
between actions. It validates whether this slice can reproduce
the failure. If so, it returns this slice immediately. Otherwise,
it applies a slow algorithm to compute a more accurate slice.

Figure 5 shows the fast slicing algorithm. It takes a trace
and returns a slice of the trace containing actions necessary
to reproduce the failure. It starts by putting the last action
of the trace into slice because the last action is usually
necessary to cause the failure. It then iterates through the
trace in reverse order, adding any action that the actions in
the slice approximately depend on.

appdoctor.fast slice(trace) {
slice = {last action of trace};
for (action in reverse(trace))

if (action in slice)
slice.add(get approx depend(action, trace));

return slice;
}
get approx depend(action, trace) {

for (action2 in trace) {
if (action is enabled by action2)

return action2;
if (action is always available

&& action2.state == action.state)
return action2;

}
}

Figure 5: Fast slicing algorithm to remove actions from trace.

S1 S2 S3

a2 a3

a4

a1 a1 a1

a4

Figure 6: Type 1 action dependency. Si represents app states, and ai

represents actions. Bold solid lines are the actions in the trace, thin
solid lines the other actions available at a given state, and dotted
lines the action dependency. a4 depends on a2 because a2 enables
a4.

S1 S2 S3

a1

a2 a3 a4
S2

a1 a1 a1

a3

Figure 7: Type 2 action dependency. a1 depends on a2 because a1

is performed in S2, and a2 is the action that first leads to S2.

The key of this algorithm is get approx depend for
computing approximate action dependencies. It leverages
an approximate notion of an activity’s state. Specifically,
this state includes each widget’s type, position, and content
and the parent-child relationship between the widgets. It
also includes the data the activity saves when it is switched
to background. To obtain this data, AppDoctor calls the
activity’s onPause, onSaveInstanceState and onResume
handler. This state is approximate because the activity may
hold additional data in other places such as files.

Function get approx depend considers only two types
of dependencies. First, if an action becomes available at
some point, AppDoctor considers this action depending on
the action that “enables” this action. For instance, suppose a

Click action is performed on a button and the app displays a
new activity. We say that the Click enables all actions of the
new activity and is depended upon by these actions. Another
example is shown In Figure 6. Action a4 becomes available
after action a2 is performed, so AppDoctor considers a4
dependent on a2.

Second, if an action is always available (e.g., a user can
always press the Menu key regardless of which activity is in
foreground) and is performed in some state S2, then it de-
pends on the action that first creates the state S2 (Figure 7).
For instance, suppose a user performs a sequence of actions
ending with action a2, causing the app to enter state S2 for
the first time. She then performs more actions, causing the
app to return to state S2, and performs action a1 “press the
Menu key.” get approx depend considers that action a1
depends on action a2. The intuition is that the effect of an
always available action usually depends on the current app
state, and this state depends on the action that leads the app
to this state.

When the slice computed by fast slicing cannot reproduce
the failure, AppDoctor tries a slower slicing algorithm by
removing cycles from the trace, where a cycle is a sequences
of actions starts and ends at the same state. For instance,
Figure 7 contains a cycle (S2 → S3 → S2). If a sequence
of actions do not change the app state, discarding them
should not affect the reproducibility of the bug. If the slower
algorithm also fails, it falls back to the slowest approach.
It iterates through all actions in the trace, trying to remove
them one subset by one subset.

Our results show that fast slicing works very well. It
worked for 43 out of 61 traces. The slower version worked
for 10 more. Only 8 needed the slowest version. Moreover, it
reduced the mean trace length from 38.71 to 10.03, making
diagnosis much easier.

7. Implementation
AppDoctor runs on a cluster of Android devices or emu-
lators. Figure 8 shows the architecture. A controller mon-
itors multiple agents and, when some agents become idle,
commands these agents to start checking sessions based on
developer configurations. The agents can run on the same
machine as the controller or across a cluster of machines,
enabling AppDoctor to scale. Each agent connects to a de-
vice or an emulator via the Android Debug Bridge [2]. The
agent installs to the devices or emulators the target app to
check and an instrumentation app for collecting and per-
forming actions. It then starts and connects to the instrumen-
tation app, which in turn starts the target app. The agent then
explores possible executions of the target app by receiving
the list of available actions from the instrumentation app and
sending commands to the instrumentation app to perform ac-
tions on the target app.

The agent runs in a separate process outside of the em-
ulator or the device for robustness. It tolerates many types

Controller

Agent

Agent

Instrumentation
App

Reflection

Android OS

Instrumentation
Framework

Target App

Android Device or Emulator

Figure 8: AppDoctor architecture. Dotted lines in the “Anrdoid
Device or Emulator” box indicates tight coupling of components.

of failures including Android system failures and emulator
crashes. Furthermore, it enables the system to keep infor-
mation between checking executions, so AppDoctor can ex-
plore a different execution than previously explored (§7.4).

The controller contains 188 lines of Python code. The
agent contains 3701 lines of Python code. The instrumenta-
tion app contains 7259 lines of Java code. The remainder of
this section discusses AppDoctor’s implementation details.

7.1 Instrumentation App

To test an app, AppDoctor needs to monitor the app’s state,
collect available actions from the app, and perform actions
on the app. The Android instrumentation framework [3] pro-
vides interfaces for monitoring events delivered to an app
and injecting events into the app. We built the instrumenta-
tion app using this framework. It runs in the same process as
the target app for collecting and performing actions. It also
leverages Java’s reflection mechanism to collect other infor-
mation from the target app that the Android instrumentation
framework cannot collect. Specifically, it uses reflection to
get the list of widgets of an activity and directly invoke an
app’s events handlers even if they are private or protected
Java methods. The instrumentation app enables developers
to write app-specific checkers, which we leave for future
work.

7.2 App Repacking and Signing

For security purposes, Android requires that the instrumen-
tation app and the target app be signed by the same key. To
work around this restriction, AppDoctor unpacks the target
app and then repacks and signs the app using its own key.
Furthermore, since AppDoctor needs to communicate with
the instrumentation app through socket connections, it uses
ApkTool [12] to add network permission to the target app.

7.3 Optimizations

We implemented two optimizations in AppDoctor to further
speedup the testing process. First, AppDoctor pre-generates
a repository of cleanly booted emulator snapshots, one per
configuration (e.g., screen size and density). When check-
ing an app, AppDoctor simply starts from the specific snap-

shot instead of booting an emulator from scratch, which can
take 5 minutes. Second, to check multiple executions of an
app, AppDoctor reuses the same emulator instance without
starting a new one. To reset the app’s initial state (§5.2), it
simply kills the app process and wipes its data. These two
optimizations minimize the preparation overhead and ensure
that AppDoctor spends most of the time checking apps.

7.4 Exploration Methods

Recall that when AppDoctor explores possible executions of
an app, it can choose the next action to explore using dif-
ferent methods (Figure 3). It currently supports four meth-
ods: interactive, scripted, random, and systematic. With the
interactive method, AppDoctor shows the list of available
actions to the developer and lets her decide which one to
perform, so she has total control of the exploration process.
This method is most suitable for diagnosing bugs. With the
scripted method, developers write scripts to select actions,
and AppDoctor runs these test scripts. This method is most
suitable for regression and functional testing. With the ran-
dom method, AppDoctor randomly selects an action to per-
form. This method is most suitable for automatic testing.
With the systematic method, AppDoctor systematically enu-
merates through the actions for bugs using several search
heuristics, including breadth-first search, depth-first search,
and developers written heuristics. This method is most suit-
able for model checking [21, 26, 32, 41, 44, 51, 52].

7.5 Waiting for Actions to Finish

Recall that AppDoctor performs actions on the target app
as soon as the previous action is done. It detects when the
app is done with the action using the Android instrumen-
tation framework’s waitForIdle function, which returns
when the main thread—the thread for processing all GUI
events—is idle. Two apps, Twitter and ESPN, sometimes
keep the main thread busy (e.g., during the login activity
of Twitter), so AppDoctor falls back to waiting for a cer-
tain length of time (3 seconds). Apps may also run asyn-
chronous tasks in background using Android’s AsyncTask
Java class, so even if their main threads are idle, the over-
all event processing may still be running. AppDoctor solves
this problem by intercepting asynchronous tasks and waiting
for them to finish. Specifically, AppDoctor uses reflection to
replace AsyncTask with its own to monitor all background
tasks and wait for them to finish.

7.6 Input Generation

Apps often require inputs to move from one activity to
another. For instance, an app may ask for an email ad-
dress or user name. AppDoctor has a component to gen-
erate proper inputs to improve coverage. It focuses on text
boxes because they are the most common ways for apps to
get texts from users. Android has a nice feature that sim-
plifies AppDoctor’s input generation. Specifically, Android
allows developers to specify the type of a text box (e.g.,

email addresses and integers), so that when a user starts
typing, Android can display the keyboard customized for
the type of text. Leveraging this feature, AppDoctor auto-
matically fills many text boxes with texts from a database
we pre-generated, which includes email addresses, num-
bers, etc. To further help developers test apps, AppDoctor
allows developers to specify input generation rules in the
form of “widget-name:pattern-of-text-to-fill.” In
our experiments, the most common use of this mecha-
nism is to specify login credentials. Other than text boxes,
developers may also specify rules to generate inputs for
other actions, including the value set by SetNumberPicker,
the item selected by ListSelect and the position set by
MoveSeekBar. By default, AppDoctor generates random in-
puts for these three actions. Note that AppDoctor can lever-
age symbolic execution [14, 22] to generate inputs that ex-
ercise tricky code paths within apps, which we intend to ex-
plore in future work. However, our current mechanisms suf-
fice to detect many bugs because, based on our experience,
apps treat many input texts as “black boxes,” and simply
store and display the texts without actually using them in
any fancy way.

7.7 Replay and Nondeterminism

Recall that, at various stages, AppDoctor replays a trace to
verify if the trace can reproduce the corresponding failure.
This replay is subject to the nondeterminism in the target
app and environment. A plethora of work has been done
in deterministic record-replay [20, 27, 34, 43]. Although
AppDoctor can readily leverage any of these techniques, we
currently have not ported them to AppDoctor. For simplicity,
we implemented a best-effort replay technique and replayed
every trace 20 times.

7.8 Removing Redundant Reports

One bug may manifest multiple times during exploration,
causing many redundant bug reports. After collecting reports
from all servers, AppDoctor filters redundant reports based
mainly on the type of the failure and the stack trace and
keeps five reports per bug.

7.9 Extracting App Information

AppDoctor uses ApkTool [12] to unpack the target app for
analysis. It processes AndroidManifest.xml to find nec-
essary information, including target app’s identifier, startup
activity, and library dependencies. It then uses this informa-
tion to start the target app on configurations with the required
libraries. AppDoctor analyzes resource files to get the sym-
bolic names corresponding to each widget, enabling devel-
opers to refer to widgets by symbolic names in their testing
scripts (§7.4) and input generation rules (§7.6).

8. Evaluation
We evaluated AppDoctor on a total of 64 popular apps
from Google Play, including 53 closed-source apps and 11

open-source ones, listed in §8.1. We selected the closed-
source apps as follows. We started from the top 100 popular
apps in Nov 2012, then excluded 31 games that use custom
GUI widgets written from scratch which AppDoctor does
not currently handle, 3 apps that require bank accounts or
paid memberships, 2 libraries that do not run alone, 8 apps
with miscellaneous dependencies such as requiring text mes-
sage authentication, and 3 apps that do not work with the
Android instrumentation framework. We selected 11 open-
source apps also based on popularity. Their source code sim-
plifies inspecting the cause of the bugs detected. We picked
the most popular apps because they are well tested, present-
ing a solid benchmark suite of AppDoctor’s bug detection
capability.

We ran several quick checking sessions on these apps.
Each session ran for roughly one day and had 165,000 exe-
cutions, 2,500 per app. These executions were run on a clus-
ter of 14 Intel Xeon servers. Each execution ran until 100 ac-
tions were reached or the app exited. Each session detected
a slightly different set of bugs because checking executions
used heuristics. Except §8.1 which reports cumulative bug
results over all sessions, all other subsections report results
from the latest session.

The rest of this section focuses on four questions:
§8.1: Can AppDoctor effectively detect bugs?
§8.2: Can AppDoctor achieve reasonable coverage?
§8.3: Can AppDoctor greatly speed up testing?
§8.4: Can AppDoctor reduce diagnosis effort?

8.1 Bugs Detected

AppDoctor found a total of 72 bugs in 64 apps. Of these
bugs, 67 are new and the other 5 bugs were unknown to
us but known to the developers. We have reported 9 new
bugs in the open-source apps to the developers because these
bugs are easier to diagnose with source code and the apps
have public websites for reporting bugs. The developers
have fixed 2 bugs and confirmed two more. Of the 5 bugs
unknown to us but known to the developers, 4 were fixed in
the latest version, and the other 1 was reported by users but
without event traces to reproduce the bugs.

Table 1 shows the bug count for each app we checked.
We also show the number of users obtained from Google
Play to show the popularity of the apps. The results show
that AppDoctor can find bugs even in apps that have
tens of millions of users and built by reputable compa-
nies such as Google and Facebook. AppDoctor even found
two bugs in the Android framework that affect all apps.
AppDoctor found no bugs in 24 apps: WordSearch, Flixster,
Adobe Reader, BrightestFlaghlight, Ebay, Skype, Pinter-
est, Spotify, OI Shopping List, Daily Money, Dropbox,
Midomi, Groupon, Speedtest, ColorNote, Voxer, RedBox,
Lookout, Facebook Messenger, Devuni Flashlight, Go SMS,
Wikipedia, Ultimate StopWatch and Wells Fargo.

We inspected all of the bugs found in the open-source
apps to pinpoint their causes in the source code. Table 2

App Bugs Users (M) Open? Hints
Android 2 n/a
Google Maps 3 500 ∼ 1000
Facebook 2 500 ∼ 1000 L, D
Pandora 1 100 ∼ 500 L
Twitter 1 100 ∼ 500 L
Google Translate 3 100 ∼ 500
Shazam 3 100 ∼ 500
Sgiggle 2 100 ∼ 500
Advanced Task Killer 1 50 ∼ 100
Barcode Scanner 1 50 ∼ 100
Zedge 1 50 ∼ 100
Amazon Kindle 1 50 ∼ 100 L
Yahoo Mail 3 50 ∼ 100 L
TuneIn Player 1 50 ∼ 100
Walk Band 2 50 ∼ 100 D
PhotoGrid 1 50 ∼ 100
Kik Messenger 3 50 ∼ 100 L
Logo Quiz 2 10 ∼ 50
Zynga Words 2 10 ∼ 50 D
Amazon 2 10 ∼ 50 L
Mobile Bible 3 10 ∼ 50
MyCalendar 1 10 ∼ 50 L
Dictionary 1 10 ∼ 50
GasBuddy 1 10 ∼ 50
ooVoo 1 10 ∼ 50 L
iHeartRadio 1 10 ∼ 50
IMDB Mobile 1 10 ∼ 50
ESPN Sports 2 10 ∼ 50
Craigslist 2 10 ∼ 50
TextGram 1 10 ∼ 50
Google MyTracks 2 10 ∼ 50 Yes
Terminal Emulator 1 10 ∼ 50 Yes
Fandango 2 10 ∼ 50 L, D
DoubleDown 1 5 ∼ 10
OI FileManager 2 5 ∼ 10 Yes
MP3 Ringtone Maker 2 1 ∼ 5
BlackFriday 6 1 ∼ 5
ACV Comic Viewer 2 1 ∼ 5 Yes
OpenSudoku 1 1 ∼ 5 Yes
OI Notepad 1 0.1 ∼ 0.5 Yes
OI Safe 1 0.1 ∼ 0.5 Yes

Table 1: Each app’s bug count. First row lists the bugs AppDoctor
found in the Android framework, which affect almost all apps.
Number of users is in millions. The “Open?” column indicates
whether the app is open source. “Hints” lists additional information
we added: “L” for login credentials (§7.6) and “D” for delays (§7.7).

shows the details of these bugs. Most of the bugs are caused
by accessing null references. The common reasons are that
the developers forget to initialize references, access refer-
ences that have been cleaned up, miss checks of null ref-
erences, and fail to check certain assumptions about the en-
vironments. Most of these bugs can be triggered only under
rare event sequences.

We describe two interesting bugs. The first is Bug 11 in
Table 2, a bug in the Android framework. AppDoctor was

App Bug Description Status
1 Google MyTracks Pressing ‘Search’ button bypassed License dialog and environment check, causing a

crash
Fixed

2 OI File Manager Checked for NullPointerException in doInBackground() but missed in onPostExecute() Fixed
3 Terminal Emulator Rare event sequence led to access of discarded variable Confirmed
4 OI File Manager Rare event order led to use of uninitialized variable Confirmed
5 ACV Comic Viewer Incorrect assumption of the presence of Google Services caused a crash Reported
6 ACV Comic Viewer Failed to check for the failure of opening a file due to lack of permission, causing a

crash
Reported

7 OI Notepad Failed to check for the availability of another software after rotation, while checked
before rotation

Reported

8 OpenSudoku Failed to check for the failure of loading a game, which was caused by the deletion of
the game

Reported

9 OI Safe Rare event sequence led to access of discarded variable Reported
10 Google MyTracks Dismissing a dialog which had been removed from the screen due to lifecycle events Known
11 Android Rare event order led to a failed check in Android code Known

Table 2: All bugs found in open-source app. We list one Android framework bug (Bug 11) because AppDoctor found this bug when testing
OpenSudoku and Wikipedia. The bug was reported by others, but the report contained no event traces causing the bug.

able to generate a testcase that reliably reproduces the bug on
OpenSudoku, Wikipedia, Yahoo Mail, Shazam, Facebook,
and Pinterest. We counted this bug as one bug to avoid
inflating our bug count. To trigger this bug in OpenSudoku,
a user selects a difficulty level of the game, and presses the
Back key of the phone quickly, which sometimes crashes
the app. The cause is that when an app switches from one
activity to another, many event handlers are called. In the
common case, these event handlers are called one by one in
order, which tends to be what developers test. However, in
rare cases, another event handler, such as the handler of the
Back key in OpenSudoku, may jump into the middle of this
sequence while the app is in an intermediate state. If this
handler refers to some part of the app state, the state may be
inconsistent or already destroyed, causing a crash. This bug
was reported to the Android bug site, but no event sequences
were provided on how the bug might be triggered, and the
bug is still open. We recently reported the event sequence to
trigger this bug, and are waiting for developers to reply.

The second is a bug in Google Translate, the most popu-
lar language translation app in Android, closed source, and
built by Google. This bug causes Google Translate to crash
after a user presses the Search key on the phone at the wrong
moment. When a user first installs and runs Google Trans-
late, it pops up a license agreement dialog with an Accept
and a Decline button. If she presses the Accept button, she
enters the main screen of Google Transate. If she presses the
Decline button, Google Translate exits and she cannot use
the app. However, on Android 2.3, if the user presses the
Search button, the dialog is dismissed, but Google Translate
is left in a corrupted state, and almost always crashes after
a few events regardless of what the user does. We inspected
the crash logs and found that the crashes were caused by
accessing uninitialized references, indicating a logic bug in-

 0

 20

 40

 60

 80

 100

A
ct

iv
ity

 c
ov

er
ag

e
(%

)

Apps

average = 66.7%

Figure 9: Activity coverage on apps. Each bar represents an app.

side Google Translate. This bug is specific to Android 2.3,
and does not occur in Android 4.0 and 4.2.

AppDoctor found a similar bug in Google MyTracks
(Bug 1 in Table 2). Unlike the bug in Google Translate, this
bug can be triggered in Android 2.3, 4.0, and 4.2. We re-
ported it and, based on our report, developers have fixed it
and released a new version of the app.

8.2 Coverage

We measured AppDoctor’s coverage from the latest 1-day
checking session. We used two metrics. First, we measured
AppDoctor’s coverage of activities by recording the activ-
ities AppDoctor visited, and comparing them with all the
activities in the apps. We chose this metric because once
AppDoctor reaches an activity, it can explore most actions
of the activity. Figure 9 shows the results. With only 2,500
executions per app, AppDoctor covered 66% of the activities
averaged over all apps tested, and 100% for four apps.

To understand what caused AppDoctor to miss the other
activities, we randomly sampled 12 apps and inspected their
disassembled code. The four main reasons are: (1) dead
code (Lookout, Facebook, Flixster, OI Shopping List); (2)
hardware requirement (e.g., PandoraLink for linking mobile
devices with cars) not present (Sgiggle, Pandora, Brightest
Flashlight); (3) activities available only to developers or pre-

 0

 10

 20

 30

 40

 50

 60

S
pe

ed
up

 (t
im

es
)

Executions

average = 6.0x

average = 13.3x

approximate vs. faithful
approximate vs. monkeyrunner

Figure 10: Speedup of approximate execution. The x-axis rep-
resents all executions in one checking session. Solid line shows
speedup between approximate and faithful modes, and dotted line
between approximate mode and MonkeyRunner.

mium accounts (Lookout, Groupon, Flixster, Facebook Mes-
senger, Photogrid, Fandango), and (4) activities available af-
ter a nondeterministic delay (Groupon, Midomi, Pandora).

Second, we also evaluated AppDoctor’s false negatives
by running it on 6 bugs in five open-source apps, including
two bugs in KeePassDroid (a password management app)
and one bug each in OI Shopping List, OI Notepad, OI Safe
(another password management app), and OI File Manager.
We picked these bugs because they are event-triggered bugs,
which AppDoctor is designed to catch. AppDoctor found
5 out of the 6 bugs. It missed one bug in KeePassDroid
because it treated 2 different states as the same and pruned
the executions that trigger the bug.

8.3 Speedup

AppDoctor’s speedup comes from (1) actions run faster in
approximate mode and (2) it performs the next action as soon
as the previous one finishes. Figure 10 shows the speedup
caused by the two factors. For each of the 165,000 execu-
tions from the latest AppDoctor checking session, we mea-
sured the time it took to complete this execution in (a) ap-
proximate mode, (a) faithful mode, and (c) MonkeyRunner.
The difference between (a) and (b) demonstrates the speedup
from approximate execution. The difference between (a) and
(c) demonstrates the speedup from both approximate execu-
tion and AppDoctor’s more efficient wait method. As shown
in Figure 10, approximate execution yields 6.0× speedup,
and the efficient wait brings the speedup to 13.3×. Since
most executions do not trigger bugs, AppDoctor spends ma-
jority of time in approximate mode, so this result translates at
least 13.3× speedup over MonkeyRunner, “at least” because
MonkeyRunner blindly injects events whereas AppDoctor
does so systematically.

8.4 Automatic Diagnosis

We evaluated how AppDoctor helps diagnosis using the re-
ports from the last checking session. We focus on: (1) how
many reports AppDoctor can automatically verify; (2) for

Reports

Approx. Replayed

Faithfully Replayed

VERIFIED_BUG

PRUNED_FP

Auto Pruning

64

61

47

43

16

14

LIKELY_BUG 4

LIKELY_FP 1

13

3

Figure 11: Auto-diagnosis results. Number of bug reports are
shown at each step. White boxes are automatically classified.
Shaded boxes need manual inspection.

the reports AppDoctor cannot verify, whether they are FPs
or bugs; (3) what causes FPs; and (4) how effective action
slicing is at pruning irrelevant events.

Figure 11 shows AppDoctor’s automatic diagnosis re-
sults based on the latest checking session, which reduced the
number of bug reports to inspect from 64 to only 5, 12.8×
reduction. AppDoctor initially emitted 64 bug reports on all
64 apps in the latest session. Of these reports, it could replay
61 in approximate mode, and discarded the other 3 reports
as false positives. It then simplified the 61 reports and man-
aged to replay 47 in faithful mode. Based on the 47 faith-
fully replayed reports, it generated MonkeyRunner testcases
and automatically reproduced 43 bugs on clean devices, ver-
ifying that these 43 reports are real bugs. 4 MonkeyRunner
testcases did not reproduce the bugs, so AppDoctor flagged
them as needing manual inspection. Out of the 14 reports
that could be replayed in approximate mode but not in faith-
ful mode, AppDoctor automatically pruned 13 false posi-
tives. The remaining one it could not prune was due to a
limitation in our current implementation of the faithful mode
of ListSelect (§5.1). Selecting an item by injecting low-level
events involves two steps: scrolling the list to make the item
show up, and moving the focus to the selected item. We im-
plemented the first step by injecting mouse events to scroll
the list, but not the second step because it requires exter-
nal keyboard or trackball support, which we have not added.
AppDoctor flagged this report as needing manual inspection.
Thus, out of 64 reports, AppDoctor automatically classified
59, leaving only 5 for manual inspection.

The 5 reports that need manual inspection contain 4 Mon-
keyRunner testcases and 1 report caused by ListSelect. We
manually inspected the MonkeyRunner testcases and mod-
ified one line each to change the timing of an event. The
modified testcases verified the bugs on real phones. For the
one report caused by ListSelect, we manually reproduced it
on real phones. Thus, all of these 5 reports are real bugs.

The total number of bugs AppDoctor found in this session
is (43 + 5) = 48, lower than 72, the total number of bugs over
all sessions, because each session may find slightly different
set of bugs due to our search heuristics.

AppDoctor automatically pruned 13 FPs in this session,
demonstrating the benefit of faithful replay. 6 are caused

by approximate long click, 5 approximate configuration
change, and 2 approximate text input.

9. Limitations
Currently, AppDoctor supports system actions such as Stop-
Start and Relaunch, and common GUI actions such as
Click and LongClick. Adding new standard actions is easy.
AppDoctor does not support custom widgets developed from
scratch because these widgets receive generic events such as
Click at (x, y) and then use complex internal logic to de-
termine the corresponding action. AppDoctor also does not
support custom action handlers on custom widgets created
from standard widgets. Its input generation is incomplete.
Symbolic execution [29] will help solve this problem. If an
app talks to a remote server, AppDoctor does not control the
server. AppDoctor’s replay is not fully deterministic, which
may cause AppDoctor to consider a real bug as a false pos-
itive and prune it out, but this problem can be solved by
previous work [20, 23, 49]. AppDoctor leverages Android
instrumentation which instruments only Jave-like bytecode,
so AppDoctor has no control over the native part of the apps.
These limitations may cause AppDoctor to miss bugs.

10. Related Work
To our knowledge, no prior systems combined approximate
and faithful executions, systematically tested against lifecy-
cle events, identified the problem of FPs caused by approx-
imate executions, generated event testcases, or provided so-
lutions to automatically classify most reports into bugs and
FPs and to slice unnecessary actions from bug traces.

Unlike static tools, AppDoctor executes the app code and
generates inputs. As a result, AppDoctor can provide an
automated script to reproduce the bug on real devices, which
static tools cannot do. Moreover, AppDoctor automatically
verifies the bugs it finds, so all the verified bugs are not false
positives and do not need manual inspection, unlike reports
from static tools. Android apps are event-driven, and their
control flow is hidden behind complex callbacks and inter
process calls. Static tools often have a hard time analyzing
event-driven programs, generate exceedingly many FPs that
bury real bugs.

Fuzz testing [28, 47] feeds random inputs to programs.
Without knowledge of the programs, this approach has dif-
ficulties getting deep into the program logic. Model-based
testing has been applied to mobile systems [9, 35, 37, 45].
They automatically inject GUI actions based on a model of
the GUI. To extract this model, various techniques are used.
Robotium [6] uses reflection to collect widgets on the GUI.
Dynamic crawlers [9, 35, 37] collects available events from
GUI widgets, an approach AppDoctor also takes. Some use
static analysis to infer possible user actions for each wid-
get [53]. Regardless of how they compute models, they do
actions either in faithful mode (i.e., inject low-level events)
or in approximate mode (i.e., directly calling handlers), but
not both. As illustrated in §3, they suffer from either low

speed or high manual inspection effort. Moreover, none of
them systematically tests for life cycle events. Interestingly,
despite the significant FP rate (25% in our experiments), no
prior systems that inject actions in approximate mode noted
this problem, likely due to poor checking coverage. For ex-
ample, DynoDroid [37] caught only 15 bugs in 1050 apps.

Several systems [10, 19, 38] leverage symbolic execution
to check apps or GUI event handlers. The common approach
is to mark the input to event handlers as symbolic, and
explore possible paths within the handlers. These systems
tend to be heavyweight and are subject to the undecidable
problem of constraint solving. The event-driven nature of
apps also raises challenges for these systems, as tracing
the control flow through many event handlers may require
analyzing complex logic in both the GUI framework and the
apps. Thus, these systems often use approximate methods
to generate event sequences, which may not be feasible,
causing FPs. Authors of a workshop paper [39] describe
test drivers that call event handlers, including lifecycle event
handlers, to drive symbolic execution. However, they call
lifecycle event handlers only to set up an app to receive
user actions. They do not systematically test how the app
reacts to these events. Nor did they present an implemented
system. Symbolic execution is orthogonal to AppDoctor: it
can help AppDoctor handle custom widgets and actions (§9),
and AppDoctor can help it avoid FPs by generating only
feasible event sequences.

Mobile devices are prone to security and privacy is-
sues. TaintDroid [18], PiOS [17] and CleanOS [46] lever-
age taint tracking to detect privacy leakages. Malware de-
tectors, RiskRanker [25] and Crowdroid [13], use both static
and dynamic analysis to identify malicious code. Mobile de-
vices are prone to abnormal battery drain caused by apps or
configurations. Prior work [36, 42] detects or diagnoses ab-
normal battery problems.

Action slicing shares the high-level concept with program
slicing [8, 30, 33, 48], which removes unnecessary instruc-
tions from programs, paths, or traces. Different from pro-
gram slicing, action slicing prunes actions, rather than in-
structions. It embraces approximation to aggressively slice
out actions and replay to validate the slicing results.

11. Conclusion

We presented AppDoctor, a system for efficiently and effec-
tively testing Android apps and helping developers diagnose
bug reports. AppDoctor uses approximate execution to speed
up testing and automatically classify most reports into bugs
or false positives. It uses action slicing to remove unneces-
sary actions from bug traces, further reducing diagnosis ef-
fort. AppDoctor works on Android, and operates as a device
or emulator cloud. Results show that AppDoctor effectively
detects 72 bugs in 64 of the most popular apps, speeds up
testing by 13.3 times, and vastly reduces diagnosis effort.

Acknowledgments
We thank Charlie Hu (our shepherd), Xu Zhao, and the
anonymous reviewers for their many helpful comments.
This work was supported in part by AFRL FA8650-11-
C-7190, FA8650-10-C-7024, and FA8750-10-2-0253; ONR
N00014-12-1-0166; NSF CCF-1162021, CNS-1117805,
CNS-1054906, and CNS-0905246; NSF CAREER; AFOSR
YIP; Sloan Research Fellowship; and Google.

References
[1] Activity Class in Android Developers Site. http:

//developer.android.com/reference/
android/app/Activity.html.

[2] Android Debug Bridge in Android Developers Site.
http://developer.android.com/tools/help/
adb.html.

[3] Android instrumentation framework. http://
developer.android.com/reference/android/
app/Instrumentation.html.

[4] Building Blocks in Android Developers Site. http:
//developer.android.com/design/building-
blocks/.

[5] Google Play Hits 1 Million Apps. http://mashable.
com/2013/07/24/google-play-1-million.

[6] Robotium framework for test automation. http://www.
robotium.org.

[7] Testdroid: Automated Testing Tool for Android. http://
testdroid.com.

[8] AGRAWAL, H., AND HORGAN, J. R. Dynamic program
slicing. In ACM SIGPLAN Notices (1990), vol. 25, ACM,
pp. 246–256.

[9] AMALFITANO, D., FASOLINO, A. R., TRAMONTANA, P.,
DE CARMINE, S., AND MEMON, A. M. Using GUI rip-
ping for automated testing of Android applications. In Pro-
ceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering (2012), pp. 258–261.

[10] ANAND, S., NAIK, M., HARROLD, M. J., AND YANG, H.
Automated concolic testing of smartphone apps. In Pro-
ceedings of the 20th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (SIGSOFT ’12/FSE-
20).

[11] Lock Screen Security Hole Found On Some Android-Powered
Samsung Galaxy Phones. http://techcrunch.com/
2013/03/20/tell-me-if-youve-heard-this-
one-before-lock-screen-security-flaw-
found-on-samsungs-android-phones.

[12] android-apktool. http://code.google.com/p/
android-apktool/.

[13] BURGUERA, I., ZURUTUZA, U., AND NADJM-TEHRANI, S.
Crowdroid: behavior-based malware detection system for An-
droid. In Proceedings of the 1st ACM workshop on Secu-
rity and privacy in smartphones and mobile devices (2011),
pp. 15–26.

[14] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: unas-
sisted and automatic generation of high-coverage tests for

complex systems programs. In Proceedings of the Eighth
Symposium on Operating Systems Design and Implementation
(OSDI ’08) (Dec. 2008), pp. 209–224.

[15] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L.,
AND ENGLER, D. R. EXE: automatically generating in-
puts of death. In Proceedings of the 13th ACM conference
on Computer and communications security (CCS ’06) (Oct.–
Nov. 2006), pp. 322–335.

[16] U.S. government, military to get secure Android phones.
http://www.cnn.com/2012/02/03/tech/
mobile/government-android-phones.

[17] EGELE, M., KRUEGEL, C., KIRDA, E., AND VIGNA, G.
PiOS: Detecting privacy leaks in iOS applications. In Pro-
ceedings of the Network and Distributed System Security Sym-
posium (NDSS ’11) (2011).

[18] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: an
information-flow tracking system for realtime privacy mon-
itoring on smartphones. In Proceedings of the Ninth Sym-
posium on Operating Systems Design and Implementation
(OSDI ’10) (2010), pp. 1–6.

[19] GANOV, S., KILLMAR, C., KHURSHID, S., AND PERRY,
D. E. Event listener analysis and symbolic execution for test-
ing GUI applications. In Proceedings of the 11th International
Conference on Formal Engineering Methods: Formal Meth-
ods and Software Engineering (2009), ICFEM ’09.

[20] GEORGES, A., CHRISTIAENS, M., RONSSE, M., AND

DE BOSSCHERE, K. JaRec: a portable record/replay envi-
ronment for multi-threaded Java applications. Softw. Pract.
Exper. 34, 6 (2004), 523–547.

[21] GODEFROID, P. Model checking for programming languages
using verisoft. In Proceedings of the 24th Annual Symposium
on Principles of Programming Languages (POPL ’97) (Jan.
1997), pp. 174–186.

[22] GODEFROID, P., KLARLUND, N., AND SEN, K. DART:
Directed automated random testing. In Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI ’05) (June 2005), pp. 213–
223.

[23] GOMEZ, L., NEAMTIU, I., AZIM, T., AND MILLSTEIN, T.
RERAN: timing- and touch-sensitive record and replay for
Android. In Proceedings of the 35rd International Conference
on Software Engineering (ICSE ’13) (2013), pp. 72–81.

[24] Google Play. https://play.google.com/store.

[25] GRACE, M., ZHOU, Y., ZHANG, Q., ZOU, S., AND JIANG,
X. RiskRanker: scalable and accurate zero-day Android mal-
ware detection. In Proceedings of the 10th international con-
ference on Mobile systems, applications, and services (2012),
pp. 281–294.

[26] GUO, H., WU, M., ZHOU, L., HU, G., YANG, J., AND

ZHANG, L. Practical software model checking via dynamic
interface reduction. In Proceedings of the 23rd ACM Sym-
posium on Operating Systems Principles (SOSP ’11) (Oct.
2011), pp. 265–278.

[27] GUO, Z., WANG, X., TANG, J., LIU, X., XU, Z., WU, M.,
KAASHOEK, M. F., AND ZHANG, Z. R2: An application-

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/reference/android/app/Instrumentation.html
http://developer.android.com/reference/android/app/Instrumentation.html
http://developer.android.com/reference/android/app/Instrumentation.html
http://developer.android.com/design/building-blocks/
http://developer.android.com/design/building-blocks/
http://developer.android.com/design/building-blocks/
http://mashable.com/2013/07/24/google-play-1-million
http://mashable.com/2013/07/24/google-play-1-million
http://www.robotium.org
http://www.robotium.org
http://testdroid.com
http://testdroid.com
http://techcrunch.com/2013/03/20/tell-me-if-youve-heard-this-one-before-lock-screen-security-flaw-found-on-samsungs-android-phones
http://techcrunch.com/2013/03/20/tell-me-if-youve-heard-this-one-before-lock-screen-security-flaw-found-on-samsungs-android-phones
http://techcrunch.com/2013/03/20/tell-me-if-youve-heard-this-one-before-lock-screen-security-flaw-found-on-samsungs-android-phones
http://techcrunch.com/2013/03/20/tell-me-if-youve-heard-this-one-before-lock-screen-security-flaw-found-on-samsungs-android-phones
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/
http://www.cnn.com/2012/02/03/tech/mobile/government-android-phones
http://www.cnn.com/2012/02/03/tech/mobile/government-android-phones
https://play.google.com/store

level kernel for record and replay. In Proceedings of the
Eighth Symposium on Operating Systems Design and Imple-
mentation (OSDI ’08) (Dec. 2008), pp. 193–208.

[28] HU, C., AND NEAMTIU, I. Automating GUI testing for
Android applications. In Proceedings of the 6th International
Workshop on Automation of Software Test (2011), pp. 77–83.

[29] JEON, J., MICINSKI, K. K., AND FOSTER, J. S. SymDroid:
Symbolic execution for Dalvik bytecode.

[30] JHALA, R., AND MAJUMDAR, R. Path slicing. In Proceed-
ings of the ACM SIGPLAN 2005 Conference on Program-
ming Language Design and Implementation (PLDI ’05) (June
2005), pp. 38–47.

[31] KHALID, H. On identifying user complaints of iOS apps. In
Proceedings of the 35rd International Conference on Software
Engineering (ICSE ’13) (2013), pp. 1474–1476.

[32] KILLIAN, C., ANDERSON, J. W., JHALA, R., AND VAH-
DAT, A. Life, death, and the critical transition: Finding live-
ness bugs in systems code. In Proceedings of the Fourth
Symposium on Networked Systems Design and Implementa-
tion (NSDI ’07) (Apr. 2007), pp. 243–256.

[33] KOREL, B., AND LASKI, J. Dynamic program slicing. Inf.
Process. Lett. 29, 3 (1988), 155–163.

[34] LAADAN, O., VIENNOT, N., AND NIEH, J. Transparent,
lightweight application execution replay on commodity mul-
tiprocessor operating systems. In Proceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’10) (June 2010), pp. 155–
166.

[35] LEE, K., FLINN, J., GIULI, T., NOBLE, B., AND PEPLIN,
C. AMC: Verifying User Interface Properties for Vehicular
Applications. In Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services
(2013), MobiSys ’13.

[36] MA, X., HUANG, P., JIN, X., WANG, P., PARK, S., SHEN,
D., ZHOU, Y., SAUL, L. K., AND VOELKER, G. M. eDoctor:
Automatically Diagnosing Abnormal Battery Drain Issues on
Smartphones. In NSDI’13 (2013).

[37] MACHIRY, A., TAHILIANI, R., AND NAIK, M. Dynodroid:
an input generation system for android apps. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software
Engineering (2013), ESEC/FSE 2013, pp. 224–234.

[38] MIRZAEI, N., MALEK, S., PĂSĂREANU, C. S., ESFAHANI,
N., AND MAHMOOD, R. Testing Android apps through
symbolic execution. In The Java Pathfinder Workshop 2012
(2012), JPF 2012.

[39] MIRZAEI, N., MALEK, S., PĂSĂREANU, C. S., ESFAHANI,
N., AND MAHMOOD, R. Testing Android apps through
symbolic execution. SIGSOFT Softw. Eng. Notes 37, 6 (Nov.
2012).

[40] monkeyrunner. http://developer.android.com/
tools/help/monkeyrunner_concepts.html.

[41] MUSUVATHI, M., PARK, D. Y., CHOU, A., ENGLER, D. R.,
AND DILL, D. L. CMC: A pragmatic approach to model
checking real code. In Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation (OSDI ’02)
(Dec. 2002), pp. 75–88.

[42] PATHAK, A., JINDAL, A., HU, Y. C., AND MIDKIFF, S. P.
What is keeping my phone awake?: characterizing and detect-
ing no-sleep energy bugs in smartphone apps. In Proceedings
of the 10th international conference on Mobile systems, appli-
cations, and services (2012), pp. 267–280.

[43] RONSSE, M., AND DE BOSSCHERE, K. RecPlay: a fully in-
tegrated practical record/replay system. ACM Trans. Comput.
Syst. 17, 2 (1999), 133–152.

[44] SIMSA, J., GIBSON, G., AND BRYANT, R. dBug: Systematic
Testing of Unmodified Distributed and Multi-Threaded Sys-
tems. In The 18th International SPIN Workshop on Model
Checking of Software (SPIN’11) (2011), pp. 188–193.

[45] TAKALA, T., KATARA, M., AND HARTY, J. Experiences of
system-level model-based GUI testing of an Android applica-
tion. In Proceedings of the 2011 Fourth IEEE International
Conference on Software Testing, Verification and Validation
(2011), ICST ’11.

[46] TANG, Y., AMES, P., BHAMIDIPATI, S., BIJLANI, A.,
GEAMBASU, R., AND SARDA, N. CleanOS: limiting mobile
data exposure with idle eviction. In Proceedings of the Tenth
Symposium on Operating Systems Design and Implementation
(OSDI ’12) (2012), pp. 77–91.

[47] UI/Application Exerciser Monkey. http://developer.
android.com/tools/help/monkey.html.

[48] WEISER, M. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering (ICSE ’81)
(Mar. 1981), pp. 439–449.

[49] WU, M., LONG, F., WANG, X., XU, Z., LIN, H., LIU, X.,
GUO, Z., GUO, H., ZHOU, L., AND ZHANG, Z. Language-
based replay via data flow cut. In Proceedings of the 18th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT ’10/FSE-18), pp. 197–206.

[50] YANG, J., CUI, A., STOLFO, S., AND SETHUMADHAVAN,
S. Concurrency attacks. In the Fourth USENIX Workshop on
Hot Topics in Parallelism (HOTPAR ’12) (June 2012).

[51] YANG, J., SAR, C., AND ENGLER, D. Explode: a
lightweight, general system for finding serious storage system
errors. In Proceedings of the Seventh Symposium on Oper-
ating Systems Design and Implementation (OSDI ’06) (Nov.
2006), pp. 131–146.

[52] YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M.
Using model checking to find serious file system errors. In
Proceedings of the Sixth Symposium on Operating Systems
Design and Implementation (OSDI ’04) (Dec. 2004), pp. 273–
288.

[53] YANG, W., PRASAD, M. R., AND XIE, T. A grey-box ap-
proach for automated GUI-model generation of mobile appli-
cations. In Proceedings of the 16th international conference
on Fundamental Approaches to Software Engineering (2013),
FASE’13.

[54] ZHANG, X., AND GUPTA, R. Cost effective dynamic pro-
gram slicing. In Proceedings of the ACM SIGPLAN 2004 Con-
ference on Programming Language Design and Implementa-
tion (PLDI ’04) (2004), pp. 94–106.

http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

	1 Introduction
	2 Background
	3 Examples
	4 Overview
	5 Approximate Execution
	5.1 Actions
	5.2 Explore
	5.3 Diagnosis

	6 Action Slicing
	7 Implementation
	7.1 Instrumentation App
	7.2 App Repacking and Signing
	7.3 Optimizations
	7.4 Exploration Methods
	7.5 Waiting for Actions to Finish
	7.6 Input Generation
	7.7 Replay and Nondeterminism
	7.8 Removing Redundant Reports
	7.9 Extracting App Information

	8 Evaluation
	8.1 Bugs Detected
	8.2 Coverage
	8.3 Speedup
	8.4 Automatic Diagnosis

	9 Limitations
	10 Related Work
	11 Conclusion

