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Abstract. Due to the inherent robustness of segmentation, traditional methods
fail to attack it in a few steps. We demonstrate a simple and effective method that
changes the nuisance factors to fool semantic segmentation models in a single
step, even if the models have been adversarially trained for defense. By training
conditional generative models with a designed adversarial loss, we can generate
realistic adversarial attack by changing nuisance factors. Our method does not
require neural network back-propagation, which is even faster than fast gradient
sign method (FGSM). We validate our approach on the popular Cityscapes and
ADE20K datasets, and demonstrate better attack success rate compared to the
existed adversarial attacks for semantic segmentation including PGD, Houdini
and DAG with over 100x speed-up, which is the first method that can attack
semantic segmentation models online.
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1 Introduction

Generating successful adversarial attacks often requires a large number of optimization
steps [2]. Past work assumed that the attacker has unlimited time and computational
budget. However, this is not always true in practice. For example, if the attacker is
trying to fool an autonomous-driving car online under limited resources, the attacker
will have little time to optimize the adversarial noise before the car going away. Existing
successful attack requires more than 30 seconds on a single NVIDIA TITAN Xp GPU,
which is slow given the frame rate [12, 21] for current self-driving cars.

The real-world deep learning models are getting increasingly complex. The com-
plexity of the tasks not only strengthens models’ inherently robustness themselves [1,
14], but also slow down the optimization speed for the attacker, preventing successful
online adversarial attack. Semantic segmentation is a key task for autonomous cars,
which are shown to be inherently robust [1, 3] due to the high dimensional output [14].
Existing methods require hundreds of steps to attack semantic segmentation models [3,
26], which is slow considering the computational cost of back-propagating through the
large semantic segmentation models.

A large amount of efforts have been made to defend neural networks against these
adversarial attacks, which further rising the need for more attack steps [13, 27, 15]. Ro-
bust models are trained such that they are not easily evaded by adversarial examples
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Fig. 1. Our one step attack Vs. existed segmentation attacks under limited time budget
(1s).The 15* column shows the FGSM adversarial example and attack result. The 274 apd 374
columns show the DAG and Houdini generated adversarial examples and corresponding attack
results. The 4" column shows advGAN generated attack image and prediction. The 5t column
shows our unrestricted adversarial image and result. By changing the nuisance factors (color, il-
lumination, texture) of each object, our attack is successful while the existing methods fail to fool
the semantic segmentation model in real time.

[5,17,13]. Although these defense methods improve the models’ robustness, they are
mostly limited to addressing norm-bounded attacks such as PGD [13]. Recently, unre-
stricted adversarial attacks are proposed [19], where the attack images modify the nui-
sance factors. The generated images still contain consistent semantic information with
the original images from the human perspective. The unrestricted adversarial attacks are
powerful to attack existing models given it can also change the texture, lighting, color,
etc [22], which can expose more vulnerabilities of a given machine learning model.
However, given each query, existing method requires to optimize the latent space with
back-propagation for many steps [19].

In this paper, we propose to generate effective and realistic unrestricted attack in
a single forward inference step (Figure 1). By training the state-of-the-art conditional
generative networks with an adversarial loss, we steer the generator to generate realistic
attack images that fool the semantic segmentation model. To ensure the semantic con-
sistency between our generated images and the groundtruth images, we conditional on
the true semantic labels during the training phase.

While previous methods focus on the attack success rate, we are the first one to con-
sider adversarial attack in an online fashion under limited time. We believe considering
the attack time and computational budget is part of the key for practical adversarial
attack in the real world. Empirical results on two real-world datasets, Cityscapes and
ADE20K, show that our attack methods is up to 100 times faster than existing attacks
for segmentation tasks, while keeping semantic consistent with the original image and
improving the attack success rate up to 41%.

2 Related Work

Adversarial Attacks. Adversarial examples are carefully crafted to mislead the mod-
els’ predictions, while still perceived identical or similar semantics with original images
to the human. There are a few studies focused on the adversarial attack on modern se-
mantic segmentation networks. [1] conducted the first systematic analysis about the
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effect of multiple adversarial attack methods on different modern semantic segmenta-
tion network architectures across two large-scale datasets. [26] proposed a new attack
method called Dense Adversary Generation(DAG), which generates a group of adver-
sarial examples for a bunch of state-of-the-art segmentation and detection deep net-
works. [3] further advanced the restricted attacks using surrogate Houdini loss func-
tions for semantic segmentation to make non-differential IOU loss to be approximate
differential, however, due to the expensive computationally, traditional norm-bounded
attack methods, such as PGD [13], are more widely used in practise.

Generative Adversarial Network (GAN), popular for image manipulation [28, 11,
7,30], image-to-image translation [8,23, 18], etc., was also leveraged to generate ad-
versarial examples. Xiao et al. [24] proposed AdvGAN to generate norm-bounded per-
turbation for the classification task. Song et al. [19] used GAN to generate unrestricted
adversarial attacks for image classification. However, none of the methods are effective
for online attack setting for segmentation tasks.

3 Method

We introduce our methodology for generating unrestricted adversarial examples for
semantic segmentation.We leverage a conditional Generative Adversarial Networks.
While existing conditional GAN aims to synthesize realistic images that fool the dis-
criminator, our method also requires to fool the segmentation model. We add an addi-
tional loss function to fool both the discriminator and the segmentation model. The rest
of the section describes the steps in details.

Conditional Generative Adversarial Networks. A Conditional Generative Adversar-
ial Network [16] consists of a generator G and a discriminator D and they are both
conditioned on auxiliary information y. Combining random noise z and extra infor-
mation y as input, G is able to map it to a realistic image. The discriminator aims
to distinguish the real images and synthetic images from the Generator. G and D corre-
spond to a minimax two-player game and can be formalized as ming maxp V(G, D) =
Exn Pyosa(x)[10g D(2|y)] + E,op_(z)[log(1 — D(G(x]y, 2)))]. We use the ground-truth
prediction as the condition y to ensure the semantic consistency between the generated
image and the ground-truth image.

Variational Inference. The nuisance factors of the generated image are encoded in the
latent noise z. We leverage a Variational Auto-Encoder [9] to learn the posterior of the
hidden noise z that generate successful adversarial attack, where an encoder E encodes
the input image into a noise space which generates image with style that can attack
successfully.

Unrestricted Adversarial Loss. In practice, we use the SPADE architecture [18], where
the SPADE generator is trained to mislead the prediction of target segmentation net-
work. We introduce the target segmentation network into the training phase and aim
to maximize the loss of the segmentation model while keeping the quality and seman-
tic meaning of the synthetic images. We denote the target segmentation network by .S,
SPADE generator by G, input semantic label by y, and the hidden state vector by z. We
select Dice Loss [20] as the objective function f. We define the untargeted version of
Unrestricted Adversarial Loss as follows:

LATK = _EZNPz(z) 1Og f(S(G(.I‘|y,Z)),y) (1)
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Fig. 2. Visual Results on Cityscapes: The 1° row is the real images in Cityscapes validation
set, which is never seen during our training phase. The 2" row is our unrestricted adversarial
examples that only change nuisance factors. The 3"d row is the corresponding segmentation
results. Given a new street scene, our method can fool the segmentation model online.

The complete objective function of ours then can be written as:

min(( max k; Lean(G, Do) + e HZ2 Lru(G, D)) + MLvaa(G)

+ XNLirp(E) + AsLark (S, G)) ()

We follow the definition of feature matching loss £, and perceptual loss Ly g
in [23]. The feature matching loss, Lrn (G, Dy) = E(y 1) ZL e |D,(j)(y,x) -

D,(:)(s7 G(y))||1]. is able to stabilizes the GAN training by minimizing the distance
between features of synthesis and real images from multiple layers of the discriminator.
The VGG perceptual loss (Lyca(G) = Zé\i’:l) Sval |FO () — FO(G(y))|1]) plays
a similar role as £ s by introducing a pretrained VGG network.

Why it is fast. We train the above generator on the training set offline. During the
inference time, we forward the query image to the encoder F and generate the latent
noise which can produce attack, and use the generator to decode that image into the
real-world attack image. The whole process only contains the forward computation,
without any backward optimization. Our method can be further accelerated using tools
such as TensorRT for fast forward.

4 Experimental Set-up

Datasets. We evaluate our method on two large image segmentation datasets: Citsy-
capes [4] and ADE20K [31].

Baseline Models. We compare our attacks with traditional norm-bounded attacks in
two settings: (i) real images with perturbation and (ii) GAN-generated clean images
with perturbation. For (ii), we generate clean images with vanilla SPADE and then
add norm-bounded perturbation over the synthetic images. For a better comparison,
we choose the same segmentation networks as target networks for each dataset as [18]
mentioned: DRN-D-105 [29] for Cityscapes, Upernet-101 for ADE20K [25].
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Fig. 3. Visual Results on ADE20K. By changing nuisance factors of the real images, such as the
color of the bed, our method fools the semantic segmentation model.

We also compare our attack with GAN-based attack [24] on Cityscapes: Adv-
GAN. We adapt the GAN structure for the segmentation task. We reproduce Adv-
GAN with two different hyper-parameter settings (Aqq» = —1, —100). For Song et
al.’s [19] method, we set the dimension of input random noise z to 256. We run SPADE
with 50 epochs and then run another 50 epochs to optimize the adversarial loss on
Cityscapes.(see Table 3).

‘We also consider DAG [26] and Houdini [3], two state-of-the-art adversarial attacks
for semantic segmentation as our baseline methods on Cityscapes. For DAG, we set
hyper-parameter v = 0.5 and number of iteration N = 200 as author suggests in [26].
For Houdini, we replace the loss function to surrogate Houdini loss in PGD attack with
setting /o, norm bound size € = §, number of iteration N = 300. Since Houdini and
DAG are both white-box attack, we also choose DRN-D-105 [29] for Cityscapes as our
target segmentation network for a fair comparison.

Evaluation metric. We evaluate the effectiveness of our attack by following metrics:
(1) Attack Success Rate(ASR): Due to the dense output property of the semantic seg-
mentation task, the evaluation of the attack success rate is different from that of the
classification [19]. In this paper, we consider an attack is successful if over 95% pixels
in an image are mis-segmented.

(2) Mean Intersection-over-Union (mloU): For measuring the effect of different attack
methods on the target networks, we measure the drop in recognition accuracy using
mloU score which is widely used in semantic segmentation tasks [4,31]—lower mloU
score indicates better adversarial example.

(3) Fréchet Inception Distance (FID): We use FID [6] to compute the distance between
the distribution of our adversarial examples and the distribution of the real images;
small FID stands for the high quality of generated images.

(4)Amazon Mechanical Turk (AMT): AMT is used to verify the success of our unre-
stricted adversarial attack. Here, we randomly select 250 generated adversarial images
under two experimental settings from each dataset to generate AMT assignments. Each
assignment is answered by 3 different workers and each worker has 3 minutes to make
decision. We use the result of a majority vote as each assignment’s final answer.
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Table 1. Comparison with norm-bounded attacks Compared to norm-bounded attacks
(FGSM,PGD) with bound size 8, our method achieves significantly higher attack success
rates(ASR), larger mloU drop and low FID on Cityscapes(DRN-105) and ADE20K(Upernet-
101) dataset.

DRN-105(Cityscapes) | Upernet-101(ADE20K)
Method ASR mloU  FID Time\Method ASR mloU  FID Time
FGSM+Real Image 0% 0.196 - 0.5s/Image |FGSM+Real Image 2.6% 0.178 - 0.5s/Image
FGSM+Vanilla SPADE 0% 0.152 82.144 1s/Image|FGSM+Vanilla SPADE  2.6% 0.152 60.563 1s/Image
PGD+Real Image 22.2% 0.036 - 30s/Image|PGD+Real Image 11.5% 0.070 - 34s/Image
PGD+Vanilla SPADE ~ 43.4% 0.022 69.162  31s/Image|PGD+Vanilla SPADE  24.2% 0.020 62.289  33s/Image

Ours 84.4% 0.01 67.302 0.25s/Image‘Ours 57.7% 0.011 53.49 0.32s/Image

Table 2. FID Comparison between our method Model . .
and state-of-art semantic image synthesis mod- Dataset Vanilla SPADE  Pix2PixHD = CRN  Ours
els.Our method outperforms Pix2PixHD and CRN

and achieve comparable FID with vanilla SPADE Cityscapes ‘ 62.939 95.0 104.7 67.302
on Cityscapes and ADE20K. ADE20K 33.9 818 733 5349

(5)Running Time: We measure the running time of different attack methods for gener-
ating a single adversarial example.

S Experiment Result

Evaluating Generated Adversarial Images. Here, we compare our attack with norm
bounded adversarial attacks, including FGSM and PGD [5, 13], for two datasets. We
set the [, norm bound size € to 8 for both FGSM and PGD. We set the number of step
for PGD as 12 [10, 1] . We apply FGSM and PGD on both real images and synthetic
images by vanilla SPADE, and compare their attack success rate, mloU scores FID and
running time with ours. The results (see Table 1) show that PGD and FGSM attacks can
barely attack target networks even with large time budge. In detail, PGD takes about
30s to generate perturbation for each real and synthetic image and achieves 22.2% and
43.4% ASR on DRN-105 on Cityscapes. In contrast, our method achieves 84.4% ASR
with 0.25s/Image on DRN-105, 57.7% ASR with 0.32s/Image on Upernet-101.
Compare to vanilla SPADE, the FID of our adversarial examples increases slightly
(62.939 to 67.302 on Cityscapes,see Table 2) indicating our samples have comparable
quality and variety. Note that we only train our method half epochs as reported in [18]
and achieve 53.49 FID on ADE20K, still smaller than other leading semantic image
synthetic models. Figure 2, 3 show qualitative results.
GAN-based and Segmentation Adversarial Attack. We compare the attack success
rate, mloU drop and performance between AdvGAN [24],Houdini [3],DAG [26], Song’s
attack [19] and ours (see Table 3). For AdvGAN, we also set the same bound size(8) as
in the traditional norm-bound attack. With suggested hyper-parameter setting in [24],
although AdvGAN has comparable time cost(0.2s/Image) with our method, AdvGAN
generated examples only show a 0% attack success rate and 0.264 mloU score. After
adjusting the hyper-parameter, generated adversarial examples can achieve 7.8% attack
success rate, but still worse than ours. Similar to AdvGAN, Song’s attack also shows
limited effectiveness on segmentation tasks.(0% ASR and 0.461 mIoU ). From our ex-
perimental results, it turns out that the effectiveness of current GAN-based attacks are
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Method Bound Size  ASR mloU Performance Table 3. Comparison with GAN-based and seg-
mentation attacks on DRN-105. We present the
mloU score , attack success rate and performance

AdvGAN 8 0% 0.264  0.2s/Image

AquAN (Aady =-100) 8 7.8% 0.055  0.2s/Image of Houdini [3],DAG [26],Song’s unrestricted at-
Houdini 8 80.4% 0.013  40s/Image tack [19] and AdvGAN [24] on Cityscapes.

DAG - 73.8% 0.014  30s/Image

Song’s Attack - 0% 0.461  35s/Image

Ours - 84.4% 0.01 0.25s/Image

Table 4. Results of AMT study: We present the details of AMT evaluation results on Cityscapes and ADE20K datasets.

Semantic Consistence Test ‘ Fidelity AB Test

Datasets True Positive True Negative False Positive False Negative Accuracy \ Ours Vs. Vanilla SPADE Ours Vs. Real Images

Cityscapes 124 112 1 13 94.4% 68.4% 49.2%
ADE20K 125 120 0 5 98.0% 75.2% 46.6%

even worse than the traditional norm-bound attacks, showing that its applicability to
only classification tasks. Compared to Houdini and DAG, our attack also shows better
attack result (4% higher than Houdini, 10.6% higher than DAG for attack success rate).
Meanwhile, our method is over 100 times faster than both DAG and Houdini while
generating adversarial examples. In conclusion, ours can generate adversarial examples
successfully in an effective manner.

Human Evaluation. Using Amazon Mechanical Turk (AMT), we evaluate how a hu-
man perceives generated adversarial images (see Table 4). A detailed result is presented
in the Supplementary part. This is done in two settings:

(1) Semantic Consistency Test: We give AMT workers a pair of images: a generated ad-
versarial image and a semantic label and ask them if the semantic meaning of given syn-
thetic image is consistent with the given semantic label. We notice that users can iden-
tify the semantic meaning of our adversarial examples precisely (94.4% for Cityscapes,
98.0% for ADE20K). This shows that our attack does not change the semantic meaning
of the original input.

(2) Fidelity AB Test: We compare the visual fidelity of ours with real images. We give
workers the semantic ground truth label, our generated adversarial image and real im-
age and ask them to select the more appropriate image corresponding to the ground
truth label. 49.2% and 46.6% users favor our examples over real images for Cityscapes
and ADE20K dataset which shows that our generated adversarial examples are indis-
tinguishable for human.

Attack Under Defense. We show that our unrestricted adversarial examples can attack
the models adversarial trained with norm-bounded adversarial images successfully [5].
We follow the setting introduced by [13] during the adversarial training. After the train-
ing phase, we use PGD with the same setting to generate norm-bounded perturbation
and add it on both real and synthetic images by vanilla SPADE. We find that real and
synthesized images with perturbation make mloU decrease to 0.325 and 0.225 on ro-
bust DRN-105, 0.239 and 0.197 on robust Upernet-101, respectively. In contrast, our
adversarial examples can achieve 0.033 mloU score on robust DRN-105, and 0.024 on
robust Upernet-101 indicating that our examples can successfully surpass the robust
models trained with norm-bounded adversarial examples. More detail settings can be
found in the supplementary materials.
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