Engineering Blockchain and Web3 Apps
Programming Assignment #3

For this project, you will be working on a web client and two Solidity contracts to implement a
decentralized cryptocurrency exchange. By the end of the project, your exchange will have much of
the functionality possessed by full fledged decentralized exchanges such as Uniswap. Additionally,
you will create your own ERC20 token, which you will then trade over your exchange.

Throughout this project, make sure to write code that is resilient against adversarial attacks.
Remember that attackers can call your smart contracts with arbitrary inputs, not just through the
provided user interface. As such, make liberal use of require statements to test any assumptions
baked into your code. There’s real fake money at stake here, so it should not be possible for an
enterprising attacker to rip off your exchange.

For most students, this project will likely represent their most comprehensive project imple-
mented so far in Solidity. As such, we encourage you to start early and ask questions. We will
guide you through implementing a decentralized exchange in several phases, and we believe your
end product will give you something to be very proud of! Let’s get started.

1 Getting Started

1. If you haven’t done so for the previous project, you’ll need to download and install Node.js
from https://nodejs.org/en/. Choose the LTS version (the one on the left).

2. If you haven’t done so for the previous project, run npm install -g ganache-cli to install
the Ganache CLI, which we will use to simulate a real Ethereum node on our local machines.
Then, run ganache-cli to run the node. You can stop the node at anytime with Ctrl-C.

3. Download the starter code from the class website and open it in your favorite IDE or text
editor (something like Sublime Text, Atom, or Visual Studio Code works nicely). Familiarize
yourself with the code base. For this project, you are expected to fill in the exchange.sol
and exchange. js files. You may add helper functions to these two files if needed.

4. Open https://remix.ethereun.org in your web browser. In the 'Deploy and Run Transac-
tion’ tab, set the environment to ’Ganache Provider’. This will launch a popup menu. On the
menu, make sure that the '‘Ganache JSON-RPC Endpoint’ is set to http://localhost:8545
— this should be the default — then click ’Ok’. This is where you will develop your smart
contract (which you will write in Solidity). In the ’Solidity Compiler’ tab, set the compiler
to version 0.8.0+.

5. Under the ”File explorers” tab on Remix, click the upload icon underneath ” default workspace.”
Upload the entire contracts, interfaces, and libraries directories from the starter code.
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After uploading, you should see the contracts/exchange.sol, contracts/token.sol, 1i-
braries/safe math.sol, and interfaces/erc20_interface.sol files in your Remix ”File
explorers” tab.

. Open index.html in your browser (works best in Chrome) to access the user interface through

which you can test your exchange. On this page, you can pick an address and add liquidity,
remove liquidity, and swap your token for ETH and vice-versa.

It’s very helpful to also open your browser’s JavaScript console, so that you can see con-
sole.log() messages and error messages. If everything so far is working, you should see no
errors in the console (you can safely ignore warnings).

. Implement code for the requirements outlined below. When you have your contract, compile

and deploy it, and then update the contract address and ABI at the top of exchange. js.
The ABI can be copied to the clipboard from the ’Solidity Compiler’ tab, and the contract
hash can be copied from the 'Deploy and Run Transactions’ tab. Note that the contract hash
is nmot the transaction hash of the transaction that created the contract.

2 Create and Deploy Your Own Token

In the first part of this project, you will create and deploy your own ERC20 token in Remix. ERC20,
as mentioned in class, is a standard for implementing fungible tokens. Luckily for us, much of the
code for ERC20 standard has already been written and is open source. In this project, we used the
ERC20 code from the OpenZeppelin project, which has been included with light modifications in
the token.sol file. Read through the starter code and make sure you understand how the functions
under the header "STANDARD ERC-20 IMPLEMENTATION” work.

Once you’ve read through the starter code, complete the following steps:

1.

Come up with a fun (but appropriate!) name for your token. Any name is fine, so feel free to
have fun and come up with something creative. Replace the name of your contract (currently
Token) with the name of your token. In addition, set the public string name to be the name of
your token. Replace the type of the private token variable in exchange.sol with the name
of your token contract. Lastly, update the token name variable at the top of exchange. js.

. Decide on a short symbol for your token (e.g. ETH, instead of Ethereum). Set the pub-

lic string symbol to be your symbol, and update the token_symbol variable at the top of
exchange. js.

. Take note of (but don’t change) the decimals variable. This variable exists because Solid-

ity does not have floating point types, so fractional tokens can’t be represented. As such,
instead of representing a fractional token as a decimal, we represent the tokens in units
of 10~ decimals  For example, if decimals is 18, then calling transfer(receiver, 1) will
transfer 1 * 10718 tokens to the receiver. This is analogous to using Wei as a subunit of
Ethereum, or Satoshis as a subunit of Bitcoin.

. Implement the mint (uint amount) and disable mint () functions. mint is a public function

that creates new tokens, adjusts the _totalSupply variable, and sends those tokens to the
administrator of the contract. disable mint makes it such that calling mint will never
succeed again. As such, your mint implementation must fail if disable mint has been called.
Also note the AdminOnly modifier on both functions - this makes it such that only the contract



administrator can call either one. The mint/disable mint paradigm is a simple way of
initially generating tokens and guaranteeing that the total supply will remain constant after
the supply of the token has been created.

5. Deploy your token contract. Copy the address and ABI of the token contract to the token_-
address and token_abi variables in exchange. js.

6. Lastly, copy the address of the token contract to the tokenAddr variable in exchange.sol.
Every time you redeploy your token contract, you must repeat this step.

After completing the above steps, you should have your own token all deployed on Remix!

You may now try deploying your exchange contract on Remix as well. Copy the address and
ABI of the token contract to the exchange address and exchange_abi variables in exchange. js.
All the functionality except initial pool setup (which we implemented for you) will be missing. That
said, if you have completed this section including the deployment process properly, you should see
no errors occur in your browser console and should see a 1-to-1 exchange rate between ETH and
your token. There should be 1 ETH and 1 of your tokens in under the ” Current Liquidity” display.

3 Setting Up Your Basic Exchange

In this part of the assignment, you will implement the basic functionality of your cryptocurrency
exchange. Our exchange is modeled after Uniswap V1, and we have linked the whitepaper on those
words and in the code for your reference. Your exchange will only allow for swaps between two
tokens: your token created in the previous section and test ETH. The changes in this section will
primarily affect two files: exchange. js and exchange.sol. Familiarize yourself with the starter
code for those files. Remember to use the SafeMath library for all arithmetic operations.

A decentralized exchange consist of two types of participants: liquidity providers and traders.
For a given exchange pool between two tokens, liquidity providers provide some equal value amount
of both types of liquidity (in your case, ETH and your own token). When traders swap between the
two currencies, they will add some amount of one currency to the liquidity pool, and will be sent
an equal value of the other currency from the pool. The exchange rate between the two currencies
is determined by some price curve. In our case, we are going to be using the constant product
formula:

Let x be the amount of currency A that is in the liquidity pool, and let y be the amount of
currency B. Let k& be some constant. After every swap, it must be true that

rxxy==%k

This means that, during each swap, the exchange must send out the correct amount of the
swapped to currency such that the pool always remains on the constant product curve. The price
of currency B in terms of currency A can the be calculated as x/y, whereas the price of currency
A in terms of currency B can be calculated as y/x. This means that every swap will change the
price of the cryptocurrency; this makes sense, as each swap is an indication of demand for a given
currency. The effects of each swap on the price of the currencies will be relevant in Section [4]

When a liquidity provider adds liquidity, they must provide equal values of currency A and B,
as determined by the current exchange rate. Note then that adding liquidity will not change the
exchange rate between the currencies, but will increase the value of the constant k. Similarly, when



a liquidity provider goes to withdraw their liquidity, they must withdraw equal values of currency
A and currency B. Therefore, k will decrease but the exchange rate will remain the same.

This has another notable consequence: since a liquidity provider can only withdraw equal values
of each currency, they are not actually entitled to withdraw their exact initial investment (in terms
of quantity of each token). Rather, providing liquidity is analogous to owning a percentage share
of the liquidity pool, which the provider is then entitled to withdraw at a later time. A liquidity
provider who provided 10 percent currency A and currency B is entitled to withdraw 10 percent
of each of the reserves for those currencies (assuming their percentage was not diluted by other
providers), even if 10 percent does not line up precisely with the quantities of each token they
provided. In this way, liquidity providers can suffer impermanent loss, if the value of what they are
entitled to withdraw is less than the value that they initially invested. If you are unfamiliar with
impermanent loss, review the lecture and section on decentralized exchanges.

With the above in mind, you will now implement the basic functionality of your exchange.
Also be aware that we take care of initializing the pool for you by implementing and calling your
createPool function. Initially, the first address in the list of addresses on index.html is the sole
liquidity provider of all ETH and tokens. In order for other addresses to obtain tokens and/or
provide liquidity, they must first swap for tokens on the exchange. In exchange.sol, implement
the following functions:

e function priceToken() public view returns (uint):

Determine the price per token in ETH based on the current exchange rate. Be sure to use
the SafeMath library when performing all arithmetic operations.

e function priceETH() public view returns(uint):

Determine the price per ETH in tokens based on the current exchange rate.

e function addLiquidity() external payable:

Add liquidity to the pool if the provider possesses sufficient ETH and tokens (otherwise the
transaction should fail). The caller will send ETH to the contract as the msg.value. The
contract should transfer the equivalent amount of tokens from the sender’s address to the
contract (using the token’s transfer or transferFrom method) and update the exchange
state accordingly. The transaction must fail if the provider’s funds are insufficient.

e function removelLiquidity(uint amountETH) public payable:

Remove liquidity from the pool (if the provider is entitled to remove given amount of liquidity)
and update the exchange state accordingly. The amount of liquidity to be removed is specified
by amountETH, and the provider also receives an equal value of your token.

e function removeAllLiquidity() external payable:

Remove the maximum amount of liquidity that the sender is allowed to remove and update
the exchange state accordingly.

e function swapTokensForETH(uint amountTokens) external payable:

Swap the given amount of tokens for the equivalent value of ETH and update the exchange
state accordingly. If the provider does not have sufficient tokens for the swap, the transaction
should fail. Additionally, if completing the swap would completely remove all ETH from
the pool, the transaction should fail to avoid having zero ETH and (therefore) an undefined
exchange rate.



e function swapETHForTokens() external payable:

Swap the given amount of ETH for the equivalent value in your token and update the exchange
state accordingly. The number of ETH provided to the contract is specified in msg.value.
If completing the swap would completely remove all tokens from the pool, the transaction
should fail to avoid having zero tokens and (therefore) an undefined exchange rate.

In each of the above functions, be sure that you are adjusting token_reserves, eth_reserves,
and/or k in the correct way such that the exchange is always remaining on the constant product
curve described above. Additionally, be sure that functions fail when the caller does not possess
sufficient funds. Finally, remember to set address tokenAddr to be your deployed token contract’s
address.

In addition to implementing the smart contract functions in Solidity, implement each of the cor-
responding functions in exchange.js. In most cases, this will just consist of calling your Solidity
function with the correct parameters. The (already implemented) approve method in token _con-
tract.sol will also be necessary in some cases. For now, you can ignore the maxSlippagePct
parameter in each JavaScript function. Make sure to come up with a fun name for your
exchange, which you can set in the exchange name variable.

Once you’ve fully implemented your smart contract and the corresponding JavaScript code,
deploy the contract, copy your ABI to the top of your exchange.js file, and copy the contract
address to the exchange address variable in exchange. js. If you reload index.html, you should
now be able to provide liquidity, remove liquidity, and perform swaps.

4 Handling Slippage

There is a significant issue with our exchange as we implemented it in Section [3| as it does not
account for ”slippage”. Recall that with every swap on a decentralized exchange, the price of each
asset will shift slightly. Since many users may be trying to swap currency at once on a decentralized
exchange, there may be a shift in the exchange rate between the submission of a swap transaction
and the actual processing of that transaction. This shift in the exchange rate between the exchange’s
quote price and actual price is called "slippage.” Slippage is of particular concern while trading
volatile assets. For example, if a user submits a swap transaction to swap some amount of currency
A for currency B, and then the price of currency B dramatically increases from the quote price,
the user might not actually wish to complete the swap transaction.

Additionally, not sufficiently handling opens users up to a type of attack known as a sandwich
attack. A sandwich attack works as follows:

1. Alice submits a swap transaction to convert some large amount of currency A into currency
B.

2. An adversary sees Alice’s transaction and front-runs it with a very large purchase of currency
B, thus raising the price of asset B.

3. Alice buys currency B at the new higher price, even further raising the price of currency B.

4. The attacker then immediately sells all their newly acquired currency B at the higher price,
making a quick profit.

Vulnerability to sandwich attacks is bad for users of a decentralized exchange, as users con-
sistently pay higher exchange rates than the true asset value. As such, it is important that we
upgrade our exchange to properly handle slippage and defend against sandwich attacks.



The most common defense against sandwich attacks is to allow users to set some maximum
slippage while submitting the transaction. This parameter, typically a percentage, will cause the
transaction to fail if the price of the assets has changed by more than the maximum allowed slippage.
This limits the damage that can be done by sandwich attacks and protects users who are swapping
volatile assets.

To implement a maximum slippage requirement, perform the following steps:

1. In exchange.sol, update each of your swap functions to take in a uint max_exchange rate
parameter. You may also pass in other parameters if needed for your design. While swapping,
the swap should fail if the current price of the new asset (i.e. the asset the user is swapping to)
has increased to more than the max exchange rate. Note that the price of the asset decreasing
is good for the user, so we don’t have to fail in that case. Be careful in your calculations,
as since maximum_exchange rate is an uint, you will need to divide by 100 at appropriate
times.

2. Update each of your addLiquidity and removeLiquidity functions to take in uint max_-
exchange rate and uint min_exchange rate parameters. You may also pass in other pa-
rameters if needed for your design. While providing liquidity, the transaction should fail if
the current price of the new asset (i.e. the asset the user is swapping to) has increased to
more than the maximum exchange rate or fallen below the minimum exchange rate. Sudden
price shifts in either direction can subject providers to impermanent loss before they deposit
their liquidity, so thus we want the liquidity providers to specify a maximum and minimum
exchange rate.

3. Now update your exchange.js file to communicate with the contract about the max/min
exchange rates. The maxSlippagePct parameter is provided, which represents the maximum
allowable percent price change before the transaction should fail. (The parameter is passed
as an int, not as a float- i.e. 4% is passed as 4, not 0.04). This parameter can be used in
each of the JavaScript functions to calculate the correct values for max_exchange rate and/or
min exchange rate, which can then be passed to the contract. The getPoolState function
that we provide to you may be useful here.

As always, after updating your contract make sure to recompile, redeploy, and copy the new
ABI and contract address to the variable at the top of your exchange. js file.

5 Rewarding Liquidity Providers

After completing the above sections, you now have a working exchange that allows users to limit the
amount of slippage they wish to tolerate! There is one more big issue, however. We have discussed
several times how liquidity providers are taking on risk in the form of impermanent loss. That is,
the value of their liquidity stake may decrease if the price of either asset changes. In practice, since
many cryptocurrencies are quite volatile, this is a level of risk that no liquidity provider would be
willing to take on for free.

As such, we need to incentivize liquidity providers to give liquidity to the pool. In real world
exchanges, liquidity providers are incentivized to provide liquidity because they receive a small fee
from every swap transaction. These fees are automatically reinvested into the liquidity pool on
behalf of each liquidity provider. When a provider goes to withdraw their liquidity, the amount
that they are entitled to withdraw includes all fees they have been awarded since providing their
liquidity.



You will now implement the same fee reward scheme for liquidity providers.

Note: This section will require you to design your own fee collection/distribution system. We
provide the requirements for said system below, and we will accept any design that fulfills the below
requirements.

Liquidity Rewards Requirements:

1.

Your pool must charge the person performing the swap some nonzero percent fee on every
swap transactionﬂ Fill in the swap fee numerator and swap fee denominator with a fraction
representing your chosen percentage. For example, for 5%, set swap fee numerator to 5 and
swap fee denominator to 100. This is needed as Solidity does not have floats.

. When a swap occurs, the value of tokens or ETH sent to the trader should be equal to (1-p)

times the value of the assets they are swapping, where p is the percent fee taken for liquidity
providers. For example, if the fee is 1% and a user is swapping 100 ETH for your tokens,
they should only be sent the equivalent of 99 ETH.

. When a fee is taken during a swap, it should be distributed to the liquidity providers such

that each provider should later be able to withdraw their original stake plus fees. Fees should
be distributed proportionally based on providers’ fractional share of the liquidity pool at the
time that the swap took place. It would be incorrect, for example, if a liquidity provider who
provided half of all liquidity in the pool at time ¢ was allowed to withdraw half of all fees
taken prior to time ¢. Liquidity providers should not have to take any additional steps to
claim their fees beyond calling removeLiquidity. Additionally, liquidity rewards should not be
sent out of the exchange to the providers each time a swap takes place, since doing so would
be prohibitively expensive in practice.

. Pending their withdrawal, all fees should be automatically reinvested into the pool on behalf

of each liquidity provider. That said, it is important to make sure that swaps never violate
the constant product curve of x * y = k. In the example from (2), if only 99 ETH’s worth of
tokens is leaving the pool, then we cannot immediately add 100 ETH to the pool or else k
will change. Instead, 99 ETH should be added to the pool immediately, whereas the 1 ETH
taken for liquidity provider rewards should be reinvested into the pool only when we can do
so without violating the constant product curve. As such, this fee reinvestment does not have
to happen during every single swap function, but it should happen shortly after it becomes
possible to do so without violating = *x y = k.

. While deciding between different design options, we encourage you to opt for the solution that

minimizes gas costs. We will not grade strictly on gas usage; however, you will be required
to justify your design decisions in the design doc in Section [7}

After designing and implementing the above section, you should have a fully working exchange!
Congratulations! Test your functions using the provided Ul in index.html, or write testing code
in JavaScript. Implementing this project represents a very impressive achievement, so give yourself
a pat on the back. In fact, with some security modifications, you can deploy both your token and
your exchange onto the Ethereum mainnet, and thus have an exchange you can call your own!

1For reference, the default fee on Uniswap is 0.3%, whereas centralized exchanges typically charge around 1-4%
to swap currencies



6 Note on Solidity and Javascript Decimals

Unlike most programming languages, Solidity does not support floating point arithmetic. Thus, all
ERC-20 tokens keep track of a decimals variable, which indicates how many decimals to the left
the numbers should be interpreted as. For example, ether uses 18 decimal points, so 1 ETH would
be represented as 1018 in the contract. Similarly, 1 wei = 10~ ETH, so 1 wei is represented as
just 1. Unfortunately, Javascript also has a limit to how large integers can be: Numbers. MAX_INT
= 9% 10'5. To balance out between the two, in our exchange, we initialize the pool to have 10'°
tokens, which means that the pool starts off with 1078 ETH and 10~® of your tokens.

The consequence of Solidity not supporting float operations is that all decimal numbers would
be truncated. For example, 5/2 = 2. This is why the decimals variable is needed, as representing
5 ETH as 5 % 10'® would lead to 5 % 10'¥/2 = 25 % 106, and since we know there are 18 decimal
places, we can see that this corresponds to 2.5 ETH, as desired. However, in some cases, underflow
can still occur, especially if the numerator is smaller than the denominator in the calculations and
thus leading to 0. In this case, you would need to be careful with the order of operations, such as
multiplying or adding first before dividing. In general, it is a good idea to delay division until as
late as possible to prevent encountering this rounding error.

In this project, we will not be testing you on overflow. Thus, when testing our your exchange, we
will choose values that won’t have your exchange exceed Javascript’s INT_MAX. However, we will
be checking your implementation to make sure you have accounted for underflow in your exchange.

7 Design Document
Please fill in DesignDoc.txt with your answers to the following questions:

1. Explain why adding and removing liquidity to your exchange does not change the exchange
rate.

2. Explain your scheme for rewarding liquidity providers and justify the design decisions you
made. How does it satisfy requirements (2)-(4) from Section

3. Describe at least one method you used to minimize your exchange contract’s gas usage. Why
was this method effective?

4. Optional Feedback

(a) How much time did you spend on the assignment?
(

)
b) What is one thing that would have been useful to know before starting the assignment?
(¢) If you could change one with about this assignment, what would you change?

)

(d) Please feel free to include any other feedback you may have.
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