
Engineering Blockchain and Web3 Apps

Programming Assignment #4

In this lab you’ll learn about

� circom, a tool for describing arithmetic circuits; and

� snarkjs, a tool for generating and verifying zk-SNARKs of circuit satisfaction.

You’ll use this knowledge to explore the implementation of private transactions by:

� crafting a simple version of the Tornado spend circuit; and

� generating a proof of validity for a Tornado withdraw.

1 Setup

To get your environment set up, do the following:

1. Install nodejs and npm.

2. Download and unzip the starter code.

3. Run npm install within the resulting folder.

4. Run npm test and verify that most of the tests fail, but not because of missing dependencies.

Note if tests fail because of dependency issues, you might be using an incompatible version of
snarkjs. Please use version 0.1.11 as specified in the package.json file. We also use our fork of
circom from alex-ozdemir/circom#cs251. Run npm list and verify that you have the right
versions of snarkjs and circom installed.

2 Learning about circom

First, follow the Iden3 circom tutorial at https://docs.iden3.io/circom-snarkjs/. You can
stop after the ”Verifying a proof” section.

Then, read our example circuits in circuits/example.circom and answer the questions in
artifacts/writeup.md.

Deliverables: artifacts/writeup.md

Then, demonstrate your knowledge of circom and snarkjsby creating a proof that 7×17×19 =
2261 (using the SmallOddFactors circuit). Store the verifier key in artifacts/verifier key -

factor.json and the proof in artifacts/proof factor.json.

Deliverables: artifacts/verifier key factor.json, artifacts/proof factor.json

1

https://docs.iden3.io/circom-snarkjs/


3 A Switching Circuit

3.1 IfThenElse

The IfThenElse circuit (located in circuits/spend.circom) verifies the correct evaluation of a
conditional expression. It has a single output, out, and three inputs:

� condition, which should be 0 or 1;

� true value, which out will be equal to if condition is 1; and

� false value, which out will be equal to if condition is 0.

IfThenElse additionally enforces that condition is indeed 0 or 1.
Implement IfThenElse.

Deliverables: IfThenElse in file circuits/spend.circom

3.2 SelectiveSwitch

The SelectiveSwitch takes two inputs and produces two outputs, flipping the order if a third
input is 1.
Implement SelectiveSwitch, making use of your IfThenElse circuit.

Deliverables: SelectiveSwitch in file circuits/spend.circom

3.3 A Spend Circuit

We are going to implement a simplified Tornado withdrawal as discussed in our lecture. The user
has a pair (nullifier, nonce) and this pair defines a coin as

coin = H(nullifier, nonce)

where H is a hash function. Each such coin occupies one leaf of a Merkle tree. The first coin is
placed in the left-most leaf of the Merkle tree, and every new coin is placed in the leaf immediately
to the right of the previous coin.

When withdrawing a coin, the coin owner uses its (nullifier, nonce) pair to prove to the
Tornado contract that the corresponding coin = H(nullifier, nonce) is one of the leaves of the
Merkle tree, without revealing which one.

What you will do in this assignment is craft an arithmetic circuit for verifying that a (nullifier, nonce)
pair corresponds to a coin in the Merkle tree. You will then reveal the nullifier publicly (allowing
everyone to verify that this nullifier hasn’t been spent already), and use a SNARK to prove the
existence of a nonce such that the corresponding coin is in the Merkle tree, in zero-knowledge.
The inputs to the circuit are thus:

� digest: the Merkle tree root digest (public);

� nullifier: the nullifier (public);

� nonce: the nonce (private); and

� Merkle path: a list of (direction, hash) pairs (private).

2



The circuit should verify that H(nullifier, nonce) is a leaf in a Merkle tree whose root hash
is the provided digest. Specifically, the circuit should verify that the provided (private) Merkle
path is a valid Merkle proof for the coin H(nullifier, nonce).

You should implement the verification circuit, Spend, in circuits/spend.circom.
For the hash function H used to define the coin and the Merkle tree, use the hash function Mimc2

whose circuit has been included into the file. You should make use of your SelectiveSwitch circuit
to handle the directions properly.

Deliverables: Spend in file circuits/spend.circom

4 Computing the Spend Circuit Input

The only task that remains is writing a program that computes the Merkle path for a given
nullifier/coin.

Implement this by implementing the computeInput function in src/compute spend input.js.
This function takes the following inputs:

� depth: the depth of the Merkle tree.

� coins: a list of coins. Some are created by you, and are an array of two elements (the
nullifier and nonce). Others were not created by you and are an array of a single value—
the coin.

� nullifier: the nullifier to compute the circuit inputs for.

The function should return a JSON object suitable as input to the Spend circuit.
To assist you, we’ve provided a SparseMerkleTree class, which you will find in src/sparse -

merkle tree.js. For the commitment hash-function, use mimc2, which has been included in the
file.

Deliverables: src/compute spend input.js

5 Proving a Withdrawal

Finally, use your input computer, circom, and snarkjs to create a SNARK proving the presence
of the nullifier ”10137284576094” in Merkle tree of depth 10 corresponding to the transcript
test/compute spend input/transcript3.txt. Use a depth of 10 (you’ll find a depth-10 instan-
tiation of your Spend circuit in test/circuits/spend10.circom), and place your verifier key in
artifacts/verifier key spend.json and your proof in artifacts/proof spend.json.

Deliverables: artifacts/verifier key spend.json, artifacts/proof spend.json

6 Testing

You can, of course, check your proofs using snarkjs.
We’ve also provided a few unit tests for the various components of your system, which can be

run using npm test

3



7 Debugging Tips

Your version of circom supports the log (1 argument) function, which prints its argument.

4


	Setup
	Learning about circom
	A Switching Circuit
	IfThenElse
	SelectiveSwitch
	A Spend Circuit

	Computing the Spend Circuit Input
	Proving a Withdrawal
	Testing
	Debugging Tips
	Setting Up Your Basic Exchange
	Handling Slippage
	Rewarding Liquidity Providers
	Note on Solidity and Javascript Decimals
	Design Document

