
Engineering Blockchain and Web3 Apps

Programming Assignment #2

In this assignment, you’ll use Solidity and web3.js to implement a complex decentralized ap-
plication, or DApp, on Ethereum. You will write both a smart contract and the user client that
accesses it, learning about ’full-stack’ development of a DApp. To save you time, please read the
whole assignment - especially the notes section - before you start development.

1 Blockchain Splitwise

We want to create a decentralized system to track debit and credit - a blockchain version of Splitwise.
If you haven’t heard of the app, it’s a simple way to keep track of who owes who money within
a group of people (maybe after splitting lunch, groceries, or bills). To illustrate the application,
consider the following scenario.

Alice, Bob and Carol are all friends who like to go out to eat together. Bob paid for lunch last
time he and Alice went out to eat, so Alice owes Bob $10. Similarly, Carol paid when she and Bob
went out to eat, and so Bob owes Carol $10.

Now, imagine Carol runs short on cash, and borrows $10 from Alice. Notice that at this point,
instead of each person paying back their ’loan’ at some point, they could just all agree that nobody
owes anyone. In other words, whenever there is a cycle of debt, we can just remove it from our
bookkeeping, making everything simpler and reducing the number of times cash needs to change
hands.

We will build a decentralized way to track who owes what to who, so that no trusted third
party has to be relied upon. It will be efficient: it won’t cost an exorbitant amount of gas to store
this data. No value will get transferred ’on the blockchain’ using this app; the only ether involved
will be for gas.

Because it’s on the blockchain, when Carol picks up the check for her and Bob’s meal, she can
ask Bob to submit an IOU (which he can do using our DApp), and she can verify that he indeed
has. The public on-chain storage will serve as a single source of truth for who owes who. Later,
when the cycle illustrated above gets resolved, Carol will see that Bob no longer owes her money.

As part of this application, we will also build a user interface that computes useful information
for the user and allows non-programmers to use the DApp.

2 Getting Started

1. Install the prerequisite software: you’ll need to download and install Node.js from https:

//nodejs.org/en/. Choose the LTS version (the one on the left).

2. Run npm install -g ganache-cli to install the Ganache CLI, which we will use to simulate
a real Ethereum node on our local machines. Then, run ganache-cli to run the node. You
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can stop the node at anytime with Ctrl-C. If npm fails to install Ganache due to a lack of
permissions, you can run npm again as root with sudo npm install -g ganache-cli.

3. Download and extract the starter code from the course website.

4. Open https://remix.ethereum.org in your web browser. In the ’Deploy and Run Transac-
tions’ tab (on the left hand of the page), set the environment to ’Ganache Provider’. This will
launch a popup menu. On the menu, make sure that the ’Ganache JSON-RPC Endpoint’ is
set to http://localhost:8545 – this should be the default – then click ’Ok’. This Remix IDE is
where you will develop your smart contract (which you will write in Solidity). Confirm that
the environment remains set as Ganache Provider. If you see a popup that begins
”Error while connecting to the provider, provider not connected”, please try again using the
latest version of Firefox. We have found that it works the most consistently.

5. Open the index.html file in your web browser (you should see a page titled ”Blockchain
Splitwise”). If your browser defaults to searching for index.html on Google, you can open the
file directly by clicking on it in your file system. It’s very helpful to also open your browser’s
JavaScript console, so that you can see error messages (there’s a link on how to do this at the
end of this document). If everything so far is working, you should see no errors in the console
(you will probably see a warning; this is fine, see the the notes at the end for more details).

6. Open the starter code directory in your favorite IDE or text editor (something like Sublime
Text, Atom, or Visual Studio Code works nicely). You’ll be modifying only script.js to
build the client, but looking at the other files may help. There are places in script.js

marked with functions to modify - please do not modify any of the other code. Feel free to
add helper functions.

7. Peruse the starter code, the web3.js API, and the Solidity documentation. Think carefully
about the overall design of your system before you write code. What data should be stored
on chain? What computation will be done by the contract vs. on the client?

8. Implement code for the requirements outlined below. When you have your contract, deploy
it, and then update the contract hash and ABI in script.js. The ABI can be copied
to the clipboard from the ’Solidity Compiler’ tab, and the contract hash can be copied from
the ’Deployed Contracts’ panel in the ”Deploy and Run Transactions” tab. Note that the
contract hash is not the transaction hash of the transaction that created the contract.

Note on OS: All of the above steps should work on Unix-based systems and Windows. The
commands we ask you to execute will work in a standard Unix terminal and the Windows Command
Prompt.

3 Requirements

The project has two major components: a smart contract, written in Solidity and running on the
blockchain, and a client running locally in a web browser, that observes the blockchain using web3.js
and can call functions in the smart contract.
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3.1 Functions in the Client

Please note, all the client functions we ask you to implement are given as async functions in the
starter code. This means they return a Promise by default. Our grading system will assume a
Promise is returned from each client function. For more about async functions, Promises, and
await, see the reference at the bottom of this handout.

1. getUsers(): Returns a Promise for a list of addresses. You can have this return either:
’everyone who has ever sent or received an IOU’ OR ’everyone currently owing or being owed
money’. You may find this useful as a helper for other functions

2. getTotalOwed(): Returns a Promise for the total amount that the given user owes.

3. getLastActive(user): Returns a Promise for a UNIX timestamp (seconds since Jan 1, 1970)
of the last recorded activity of this user (either sending an IOU or being listed as ’creditor’
on an IOU). Returns null if no activity can be found.

4. add IOU(creditor, amount): Submits an IOU to the contract, with the passed creditor and
amount. See note about resolving loops below.

3.2 Functions in the contract

1. lookup(address debtor, address creditor) public view returns (uint32 ret): Re-
turns the amount that the debtor owes the creditor.

2. add IOU(address creditor, uint32 amount, ...): Informs the contract that msg.sender
now owes amount more dollars to creditor. It is additive: if you already owed money, this
will add to that. The amount must be positive. You can make this function take any number
of additional arguments. See note about resolving loops below.

You are welcome to write more helpers for either the client or contract. The client can call
contract functions with BlockchainSplitwise.methods.functionname(arguments).call() and
BlockchainSplitwise.methods.functionname(arguments).send(). Please see documentation
here for how to use send and call to call your Solidity contract functions from the client with
web3.js. Make sure you know what the difference is between those two methods. Remember that
the client functions will be written in JavaScript, and the contract functions will be written in
Solidity.

4 Resolving Loops of Debt

It’s helpful to think of the IOUs as a graph of debt. That is, say that each user is a node, and
each weighted directed edge from A to B with weight X represents the fact ’A owes $X to B’. We

will write this as A
X→ B. We want our app to ’resolve’ any cycles in this graph by subtracting the

minimum of all the weights in the cycle from every step in the cycle (thereby making at least one
step in the cycle have weight ’0’).

For example, if A
15→ B and B

11→ C, when C goes to add C
16→ A, the actual balances will be

updated to reflect that A
4→ B, B

0→ C, and C
5→ A.
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The requirement is that if any potential cycles are formed when you are about to add an IOU
using the client (add IOU), you must ’resolve’ at least one of them. You do not need to worry about
complex cases involving multiple loops, or optimizing which path to take (something like max flow)
in those cases. You can assume that as a precondition to both contract functions (add IOU and
lookup), there are no cycles in the graph. Finally, you can also assume that any cycle found will
be somewhat small (say, less than 10).

We provide you with a breadth-first search algorithm in the code – to use it, pass in a start
and end node, and a function to get the ’neighbors’ of any given node. You are free to not use this
implementation as well.

It’s up to you to implement this resolution securely. It should not be possible for a malicious
client to somehow ’wipe away’ their debt once it is posted.

We can now illustrate exactly how you can pay back an IOU in this system. Say Alice borrowed
$10 from Bob; now, she wants to pay Bob back in cash. When Alice gives Bob $10 in cash, Bob

will add an IOU for $10 with the creditor as Alice. This will create a cycle: specifically, A
10→ B

and B
10→ A. By the cycle resolution requirements above, this will end with A

0→ B and B
0→ A.

5 Overall Requirements

You are welcome to write your contract in any way you like, as long as it has the specified lookup
and add IOU functions. Your goal is to write a contract that minimize the amount of storage and
computation used by both contract functions. This will minimize gas costs.

You can assume that the transaction volume is small enough that it’s feasible to search the
whole blockchain on the client, but you should not assume that the only users are the ones in
your wallet - in other words, web3.eth.getAccounts() does not contain every possible user of the
system

6 Submitting your Code

Your submission will be evaluated on whether it correctly answers queries and whether it incurs a
reasonable amount of gas. Before submitting, please make sure to copy and paste your
contract’s Solidity code from Remix into mycontract.sol.
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7 Notes

Students are encouraged to use the course discussion board to ask questions and exchange ideas.

7.1 System Architecture

� You should decide on what data structure(s) will be stored on the blockchain first. Think
carefully about what you information you need to provide to the client. You don’t need to
use any particularly fancy data structures. Your decision may make the implementation more
difficult, so you should be okay with going back and changing your architecture.

� We have not mentioned what to do in the case of a cycle formed between just two people.
We recommend designing your system so that this is not a special case - when the debtor has
’paid back’ the creditor, the creditor simply attempts to add an IOU in the opposite direction,
triggering cycle resolution and ending with both owing 0 to each other. We also recommend
that you avoid any concept of ’negative’ debt, as this can over-complicate things.

� Remember when optimizing for gas cost that functions run on the client are free – they incur
no cost.

� We suggest that after designing your system, you start by writing and thoroughly debugging
the contract in Remix. You can call functions in the lower left panel, and switch accounts
using the ’Account’ selector in the top left. To copy the addresses to your clipboard, you can
click the copy icon next to the selector. Once you’re certain the contract works as intended,
then you should start writing the client.

� You don’t need a massive amount of code to complete the assignment. Our solution is about
40 lines of Solidity and about 70 new lines of JavaScript (not including the ABI).

7.2 Practical Development & Debugging

� To debug client-side code, make liberal use of console.log. You should see the results of
the calls and the line number they originated from in your browser’s JavaScript console.

� Warnings about synchronous XMLHttpRequest are fine to ignore. Errors about not connect-
ing to localhost:8545 are usually because you don’t have ganache-cli running.

� Solidity has a very useful function require that will allow you to check precondition.

� Click on ”listen on all transactions” in the Remix console (bottom middle of the screen) to
see incoming requests to your deployed contracts.

� If you want to just debug your contract, you can click on the ”Debug” button next to incoming
requests in the Remix console and replay the function calls step by step.

� The client functions must return Promises for some other value. For more information about
promises and asynchronous code, please see the references at the bottom of this handout. We
have also provided a sanity check test function that should enable you to understand how we
will test your code. You are encouraged to write other tests, but please make sure your code
passes the provided sanity check before submitting.
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� The ABI decoder will decode function inputs in all lower case. To accommodate this, the
starter code attempts to return all values as their lower case version using the function
toLowerCase(). Remember to keep your upper and lower case values straight. Each func-
tion should work regardless of the case of the alphabetic characters passed in as part of a
hexadecimal value.

� Please make sure to compile and test your Solidity contracts with the 0.8.9 compiler version.
This should be the default, but double check in the Compilation tab on Remix.

� web3.js version 1.3 should be included in the starter code in the web3.min.js and web3.min.js.map
files. Please don’t change or remove these files. If you get any strange errors if may be because
you are not running version 1.3 of web3.js. Versions 0.X of web3.js have entirely different
syntax. To double check what version you’re running, call console.log(web3.version).

8 References

� You can read about how to open the JavaScript console of your browser here.

� The web3.js API is here.

� A guide to async/await in Javascript here.

� A guide to Promises in Javascript here.

� The Remix documentation is here.

� The Solidity v0.8.9 documentation is here.

� To have code on your local computer automatically sync to Remix, check out remixd here.

6

https://webmasters.stackexchange.com/questions/8525/how-do-i-open-the-javascript-console-in-different-browsers
https://web3js.readthedocs.io/en/v1.2.9/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://remix-ide.readthedocs.io/en/latest/index.html
https://docs.soliditylang.org/en/v0.8.9/
https://www.npmjs.com/package/@remix-project/remixd

	 Blockchain Splitwise
	Getting Started
	Requirements
	Functions in the Client
	Functions in the contract

	Resolving Loops of Debt
	Overall Requirements
	Submitting your Code
	Notes
	System Architecture
	Practical Development & Debugging

	References

