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Abstract—Fuzzing is an effective software testing technique
to find bugs. Given the size and complexity of real-world
applications, modern fuzzers tend to be either scalable, but not
effective in exploring bugs that lie deeper in the execution, or
capable of penetrating deeper in the application, but not scalable.

In this paper, we present an application-aware evolutionary
fuzzing strategy that does not require any prior knowledge of the
application or input format. In order to maximize coverage and
explore deeper paths, we leverage control- and data-flow features
based on static and dynamic analysis to infer fundamental prop-
erties of the application. This enables much faster generation of
interesting inputs compared to an application-agnostic approach.
We implement our fuzzing strategy in VUzzer and evaluate it
on three different datasets: DARPA Grand Challenge binaries
(CGC), a set of real-world applications (binary input parsers),
and the recently released LAVA dataset. On all of these datasets,
VUzzer yields significantly better results than state-of-the-art
fuzzers, by quickly finding several existing and new bugs.

I. INTRODUCTION

Fuzzing is a testing technique to catch bugs early, before
they turn into vulnerabilities. However, existing fuzzers have
been effective mainly in discovering superficial bugs, close to
the surface of software (low-hanging bugs) [13], [17], while
struggling with more complex ones. Modern programs have
a complex input format and the execution heavily depends
on input values conforming to the format. Typically, a fuzzer
blindly mutates values to generate new inputs. In this (pes-
simistic) scenario, most of the resulting inputs do not conform
to the input format and are rejected in the early stages of
the execution. This makes a traditional random fuzzer often
ineffective in finding bugs that hide deep in the execution.

State-of-the-art fuzzers such as AFL [52] employ evolu-
tionary algorithms to operate valid input generation. Such
algorithms employ a simple feedback loop to assess how good
an input is. In detail, AFL retains any input that discovers a
new path and mutates that input further to check if doing so
leads to new basic blocks. While simple, this strategy cannot
effectively select the most promising inputs to mutate from
the discovered paths. In addition, mutating an input involves
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answering two questions: where to mutate (which offset in the
input) and what value to use for the mutation? The problem
is that AFL is completely application-agnostic and employs
a blind mutation strategy. It simply relies on generating a
huge amount of mutated inputs in the hope of discovering
a new basic block. Unfortunately, this approach yields a slow
fuzzing strategy, which can only discover deep execution paths
by sheer luck. Fortunately, we can increase the efficiency of
AFL-like fuzzers manifold by accounting for information that
answers the questions above.

In this direction, the use of symbolic and concolic execu-
tion has shown promising results [33], [47]. Driller [47] uses
concolic execution to enable AFL to explore new paths when
it gets stuck on superficial ones. However, fuzzers like AFL
are designed to target arbitrarily large programs and, in spite
of several advancements, the application of symbolic/concolic
techniques to such programs remains a challenge [10]. For
example, Driller was benchmarked with 126 DARPA CGC
binaries [15] and when AFL got stuck on 41 such binaries, its
concolic engine could only generate new meaningful inputs
from 13 of such binaries. The results reported in the LAVA
paper [17] evidence similar problems with symbolic execution
approaches. In another recent study [50], the authors reported
that symbolic execution-based input generation (using KLEE)
is not very effective at exploring meaningful and deeper paths.
In essence, while combining fuzzing with symbolic execution
is an interesting research area, this approach also significantly
weakens one of fuzzing’s original key strengths: scalability.

In this paper, we present VUzzer, an application-aware
evolutionary fuzzer which is both scalable and fast to discover
bugs deep in the execution. In contrast to approaches that
optimize the input generation process to produce inputs at max-
imum rates, our work explores a new point in the design space,
where we do more work at the front-end and produce fewer
but better inputs. The key intuition is that we can enhance the
efficiency of general-purpose fuzzers with a “smart” mutation
feedback loop based on control- and data-flow application
features without having to resort to less scalable symbolic
execution. We show that we can extract such features by
lightweight static and dynamic analysis of the application
during fuzzing runs. Our control-flow features allow VUzzer
to prioritize deep (and thus interesting) paths and deprioritize
frequent (and thus uninteresting) paths when mutating inputs.
Our data-flow features allow VUzzer to accurately determine
where and how to mutate such inputs.

Thanks to its application-aware mutation strategy, VUzzer
is much more efficient than existing fuzzers. We evalu-



ated the performance of VUzzer on three different datasets:
a) the DARPA CGC binaries [15], a collection of artificially
created interactive programs designed to assess bug-finding
techniques; b) a set of Linux programs with varying de-
grees of complexity (djpeg, mpg321, pdf2svg, gif2png,
tcpdump, tcptrace) and c) the recently released binaries
from the LAVA team [17], a number of Linux utilities with
several injected bugs. In our experiments on the different
datasets, we outperformed AFL by generating orders of mag-
nitude fewer inputs, while finding more crashes. For example,
in mpg321', we found 300 unique crashes by executing 23K
inputs, compared to 883K inputs to find 19 unique crashes
with AFL.

Contributions: We make the following contributions:

1) We show that modern fuzzers can be “smarter” without
resorting to symbolic execution (which is hard to scale).
Our application-aware mutation strategy improves the
input generation process of state-of-the-art fuzzers such
as AFL by orders of magnitude.

2) We present several application features to support mean-
ingful mutation of inputs.

3) We evaluate VUzzer, a fully functional fuzzer that imple-
ments our approach, on three different datasets and show
that it is highly effective.

4) To foster further research in the area and in support of
open science, we are open sourcing our VUzzer prototype,
available at https://www.vusec.net/projects/fuzzing.

II. BACKGROUND

In this section, we cover the background required for our
discussion of VUzzer in subsequent sections.

A. A Perspective on Fuzzing

Fuzzing is a software testing technique aimed at finding
bugs in an application [35], [48]. The crux of a fuzzer is
its ability to generate bug triggering inputs. From an input
generation perspective, fuzzers can be mutation- or generation-
based. Mutation-based fuzzers start with a set of known inputs
for a given application and mutate these inputs to generate new
inputs. In contrast, generation-based fuzzers first learn/acquire
the input format and generate new inputs based on this format.
VUzzer is a mutation-based fuzzer.

With respect to input mutation, fuzzers can be classified as
whitebox, blackbox and greybox. A whitebox fuzzer [21], [22],
[26] assumes access to the application’s source code—allowing
it to perform advanced program analysis to better understand
the impact of the input on the execution. A blackbox fuzzer [1],
[39] has no access to the application’s internals. A greybox
fuzzer aims at a middle ground, employing lightweight pro-
gram analysis (mainly monitoring) based on access to the
application’s binary code. VUzzer is a greybox fuzzer.

Another factor that influences input generation is the appli-
cation exploration strategy. A fuzzer is directed if it generates
inputs to traverse a particular set of execution paths [20]-[22],
[26], [38]. A coverage-based fuzzer, on the other hand, aims at
generating inputs to traverse different paths of the application
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in the hope of triggering bugs on some of these path [14], [28],
[44], [47], [52]. VUzzer is a coverage-based fuzzer.

By definition, a coverage-based fuzzer aims at maximizing
the code coverage to trigger paths that may contain bugs. To
maximize code coverage, the fuzzer tries to generate inputs
such that each input (ideally) executes a different path. There-
fore, it is of paramount importance for a fuzzer to account for
the gain obtained for each generated input, a property that we
term input gain (1G). IG is defined as the ability of an input
to discover a new path either by executing new basic blocks
or increase the frequency of previously executed basic blocks
(e.g., loop execution).

Obviously, a coverage-based fuzzer is effective if it fre-
quently generates inputs with non-zero IG. It is not hard to
notice that the ability to generate inputs with non-zero IG
requires addressing our two questions in Section I (where
and what to mutate). Unfortunately, most existing fuzzers,
especially mutation-based ones make little effort to achieve
this goal. For example, let us consider the code snippet in
Listing. 1.

...

2read (fd, buf, size);

3if (buf[5] == 0xD8 && buf[4] == OxFF) // notice the order of CMPs
4 . some useful code ...

Selse
6 EXIT_ERROR(”Invalid file\n”);

Listing 1. Simple multibyte IF condition.
In this code, buf contains tainted data from the input. On
this simple code, AFL runs for hours without making any
progress to go beyond i f condition. The reason for this rather
pessimistic behavior is twofold: (i) AFL has to guess the FFD8
byte sequence exactly right; (ii) AFL has to find the right
offsets (4 & 5) to mutate. As AFL is a coverage-based fuzzer,
for an input which fails the ¢f condition and thus results in a
new path (the else branch), AFL may focus on exploring this
new path even if the path leads to an error state. In such case,
AFL gets stuck in the else branch. Symbolic execution-based
solutions such as Driller [47] may help AFL by providing an
input with the right byte at the right offset. However, this is not
a definitive solution, because, with this new input, AFL again
starts mutating at random. In the process, it may try mutating
these offsets again, wasting processing power and time.
;r'e'a-id(fd ,buf ,size);
ii'f” ()
5 if (...) // nested IF
2} else { o
8
9}

Listing 2. Nested-level conditions and deeper paths
Now consider another simple (pseudo) code snippet, in List-
ing. 2. At line 5, there is another multibyte ¢ f condition on the
input bytes, which is nested in the outer 7 f. As AFL will likely
fail to satisfy the branch constraint, it will generate inputs that
traverse the else branch. As there is code to explore in the
else branch, AFL will not be able to prioritize efforts to target
the if branch. It is hard to impart such knowledge to AFL
even via symbolic execution. As a result, any bug inside the
nested ¢f code region may remain hidden. In another case,



when AFL gets stuck at the if condition at line 5, symbolic
execution-based approaches such as Driller [47] will try to
find new paths by sequentially negating path conditions. In
this process, they may negate constraints at line 4 to find a
new path, which may lead to some error handling code. AFL,
however, has no knowledge of such error handling code and,
as a result, it will start exploring in that direction. In general,
there are several complex real-world code constructs that may
hinder the progress of coverage-based fuzzers.

In order to understand such code constructs, we will walk
through a more complex code snippet presented in Listing 3.
Although VUzzer does not require source code, we use high-
level C code for better illustration. The code reads a file and,
based on certain bytes at fixed offsets in the input, it executes
certain paths.

lint main(int argc, char sxargv){
2 unsigned char buf[1000];
3 int i, fd, size, val;
4 if ((fd = open(argv[1], ORDONLY)) == —1)
5 exit(0);
6 fstat(fd, &s);
7 size = s.st_size;
8 if (size > 1000)
9 return —1;
10 read (fd, buf, size);
11 if (buf[l] == OxEF && buf[0] == OxFD) // notice the order of CMPs
12 printf (”Magic bytes matched!\n”);
13 else
14 EXIT_ERROR(”Invalid file\n”);
15 if (buf[10] == "% && buf[l1] == '@") {
16 printf(”2nd stop: on the way...\n”);
17 if (strncmp(&buf[15], "MAZE”, 4) == 0) // nested IF
18 ... some bug here ...
19 else {
20 printf(”you just missed me...\n”);
21 ... some other task
22 close(fd); return O;
23 }
24 } else {
25 ERROR(”Invalid bytes”);
26 ... some other task ...
27 close(fd); return O;
28
29 close(fd); return O;
30}
Listing 3. Motivating example that illustrates issues in existing fuzzers

It is interesting to note that, when we ran the code snippet
in Listing 3 with AFL [52], we could not reach the buggy state
within 24 hours. What is so special about this code snippet and
what is missing in fuzzers like AFL? We address this question
by considering the following code properties:

1) Magic bytes: The second and the first byte are first
compared to validate the input (line 11). If these bytes
are not properly set at certain input offsets, the input
is discarded immediately. In our example, offset 1 is
checked first and offset 0 next. We observed this behavior
in real applications, such as the djpegq utility. This also
explains that it took millions of inputs for AFL to generate
a valid jpeg image®. As AFL is not application-aware, it
has no idea of such bytes and offsets. It will simply keep
on guessing a valid combination of bytes and offsets.

2) Deeper execution: In order to go deeper in the execution,
one has to get past another check at line 15, which
compares offsets 10 and 11 (note that such offsets may
be read from the input and thus vary across inputs, unlike
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the case of magic bytes). Irrespective of the result of this
check, a new path is taken. However, the t rue branch
will lead to buggy spot at line 18. Again, when processing
this example, AFL spends a long time guessing the valid
combination of bytes and offsets. In general, after a few
iterations of input generation, a large percentage of inputs
will be falling into the error-handling code. AFL and
any other coverage-based fuzzer that searches for new
basic blocks are likely to further explore from such inputs
as these inputs have indeed found new code. However,
if we consider the exploration of more meaningful and
interesting paths, reusing such inputs yields no benefit
and hinders further exploration of the application code.

3) Markers: In order to reach the buggy spot at line 18, there
is a branch constraint to satisfy at line 17. It should be
noted that such bytes may not be present at fixed offsets,
but rather work as markers for certain fields in many input
formats, such as JPEG, PNG, or GIF. Miller & Peterson
show that the presence (and absence) of such markers has
a direct impact on the executed code [36]. As often such
markers are multibytes, AFL struggles with generating
such bytes to execute certain paths.

4) Nested conditions: In the context of coverage-based
fuzzing, each path is important. However, reaching certain
paths may be more difficult than others. For example, in
order to reach line 18, an input has to satisfy the check
at line 17, which is only triggered when the constraint
at line 15 is satisfied. Therefore, in order to increase the
chance of reaching line 18, we need to fuzz any input that
reaches line 15 more often. In the case of AFL, even if it
passes or fails constraints at line 15, it discovers new paths
in both cases and it tries to fuzz inputs corresponding to
both the branches with equal probability. In this process, it
spends a long time mutating the input executing the easier
path and thereby minimizing the chances of reaching
line 18. This is the result of spending less time in
satisfying the constraint at line 17. Clearly, this strategy
is not able to prioritize efforts to focus on the interesting
path. A better strategy would be to optimize efforts based
on the control-flow characteristics of the application.

Interestingly, one of the LAVA authors noted similar issues
with AFL in a recently published post [16]. This supports
our observation that black/greybox fuzzers like AFL tend to
be application-agnostic, which makes them significantly less
effective at discovering hard-to-reach bugs.

We note that some of the issues discussed above can be, in
principle, handled by symbolic/concolic-based approaches [9],
[20], [22], [33] such as Driller [47]. Driller combines AFL
and concolic execution to explore deeper execution paths.
With symbolic execution, we may be able to learn magic
bytes quickly and assist AFL in crossing the first hurdle at
line 11. However, AFL will get stuck again in the following
lines. Moreover, this combination is again agnostic to nested
conditions and thus path prioritization remains an issue. A
more general and practical problem is the poor scalability
of symbolic execution-based solutions. Although not an issue
in this small motivating example, real-world applications are
complex enough to drive symbolic execution into a state-
explosion scenario. This is evident from the results presented
in the Driller paper [47]: out of 41 binaries from DARPA
CGC, Diriller’s concolic engine could generate new meaningful



inputs only for 13 binaries. Another study [50] empirically
established that symbolic execution is not suitable for finding
inputs that explore interesting paths. Therefore, in spite of
promising results on CGC binaries, the poor scalability of
symbolic/concolic execution-based approaches is still a strong
limiting factor on real-world applications.

B. Evolutionary Input Generation

Despite some pitfalls, AFL is a very promising fuzzer. The
success of AFL is mainly attributed to its feedback loop, i.e,
incremental input generation. In the case of our motivating
example, it is almost impossible to generate an input that
will reach the buggy state in one mutation. This motivated
us to adopt an evolutionary fuzzing strategy, that is a fuzzing
strategy that relies on an evolutionary algorithm (EA) for input
generation. In the following, we briefly describe the main
steps that a typical EA follows (see Algorithm 1). In the later
sections, we will refer to these steps while detailing the main
components of VUzzer.

Algorithm 1 Pseudo-code of a typical evolutionary algorithm

INITIALIZE population with seed inputs
repeat
SELECT!1 parents
RECOMBINE parents to generate children
MUTATE parents/children
EVALUATE new candidates with FITNESS function
SELECT?2 fittest candidates for the next population
until TERMINATION CONDITION is met
return BEST Solution

Every EA starts with a set of initial inputs (seeds), which
undergo the evolutionary process as follows. With some se-
lection probability, one or two inputs (parents) are selected
(SELECT1 state). Such inputs are then processed by two
genetic operators, namely crossover (RECOMBINE state) and
mutation (MUTATE state). In crossover, two inputs are com-
bined by choosing an offset (cut-point) and exchanging the
corresponding two parts to form two children. In mutation,
we apply several mutation operators (like addition, deletion,
replacement of bytes) on a single parent input to form one
child. With this strategy, we get a new set of inputs which
undergo the evaluation state (EVALUATE). In this state, we
monitor the execution of each new input based on a set of
properties. These properties are used in a fitness function to
assess the suitability of the input. We choose the input with
the highest fitness score for the next generation of inputs. The
whole process continues until a termination condition is met:
either the maximum number of generations is reached or the
objective is met (in case of fuzzing, a crash is found).

III. OVERVIEW

To address the challenges mentioned in the previous sec-
tion, we propose VUzzer, an application-aware evolutionary
fuzzer. Figure 1 provides an overview of its main components.
As VUzzer is an evolutionary fuzzer, there is a feedback loop
to help generate new inputs from the old ones. When generat-
ing new inputs, VUzzer considers features of the application
based on its execution on the previous generation of inputs. By
considering such features, we make the feedback loop “smart”
and help the fuzzer find inputs with non-zero IG with high
frequency.

evolutionary fuzzing
loop close

Crossover

Interesting offsets
detection

Mutation

Fitness function

Static analysis

BB weights
CMP imm

| Knowledge

Magic bytes
LEA offsets

Fitness
list

Knowledge Knowledge

Fig. 1. A high-level overview of VUzzer. BB: basic block, CMP imm: cmp
instruction with one immediate operand, DTA: dynamic taint analysis, LEA:
load effective address instruction.

A. Features

The two main components of VUzzer are a static analyzer
(shown on the left) and the main (dynamic) fuzzing loop
(shown on the right). We use these components to extract
a variety of control- and data-flow features from the appli-
cation. Figure 1 shows that VUzzer continuously pumps this
information back into the evolutionary mutation and crossover
operators to help generate better inputs in the next generation.
We first introduce the features and then discuss the static
analyzer and the main fuzzing loop.

Data-flow features: Data-flow features provide infor-
mation about the relationship between input data and com-
putations in the application. VUzzer extracts them using well-
known techniques such as taint analysis and uses them to infer
the structure of the input in terms of the types of data at certain
offsets in the input. As an example, it finds input bytes that
determine branches (“branch constraints”) by instrumenting
each instruction of the cmp family of the x86 ISA to determine
which input bytes (offsets) it uses and against which values
it compares them. In this way, VUzzer can determine which
offsets are interesting to mutate and what values to use at
those offsets (providing partial answers to the questions in
Section I). VUzzer is now able to mutate more sensibly by
targeting such offsets more often and by using the intended
values at those offsets to satisfy branch constraints. Doing
so solves the problem of magic bytes, without resorting to
symbolic execution.

Likewise, VUzzer monitors the 1ea instruction to check if
the index operand is tainted. If so, it can determine that the
value at the corresponding offset is of type int and mutate
the input accordingly. Besides these two simple, but powerful
features, many others are possible.

Control-flow features: Control-flow features allow
VUzzer to infer the importance of certain execution paths.
For example, Figure 2 shows a simplified CFG of the code in
Listing 3. Inputs that exercise error blocks are typically not
interesting. Therefore, identifying such error-handling blocks
may speed up the generation of interesting inputs. We show
how we detect error-handling code in the following sections.
For now, we assume that we can heuristically identify the basic



blocks containing error handlers.

Another example concerns the reachability of nested
blocks. Any input that reaches block F' is more likely to
descend deeper into the code than an input that reaches block
H, since the latter is not nested. We use control-flow features
to deprioritize and prioritize paths. As enumerating all the
possible paths in the application is infeasible, we implement
this metric by assigning weights to individual basic blocks.
Specifically, basic blocks that are part of error-handling code
get a negative weight, while basic blocks in hard-to-reach code
regions obtain a higher weight.

Fig. 2. A high-level CFG of the code shown in Listing 3. The number
at each edge denotes the probability of the corresponding branch outcome.
The number at each node denotes the overall probability of reaching the
corresponding basic block. For example, if all edge probabilities are 0.5 and
the program can reach a node Na either from Np directly or indirectly via
N1, the node probability of N2 <— 0.5+ 0.5%0.5 = 0.75. The number next
to the node probability is the assigned weight.

Figure 1 shows that a single iteration of fuzzing consists
of several steps. VUzzer expects an initial pool SI of valid
inputs, called seed inputs. The first step is to perform an
intraprocedural static analysis to derive a few control-flow
and data-flow features (Section III-B), which is followed by
the main evolutionary fuzzing loop. In the remainder of this
section, we walk through all the steps to describe the whole
process.

B. The static analyzer

At the beginning of the fuzzing process, we use a
lightweight intraprocedural static analysis to (i) obtain
immediate values of the cmp instructions by scanning the
binary code of the application and (ii) compute the weights
for the basic blocks of the application binary.

The presence of many immediate values from cmp in-
structions in the application’s code typically indicates that the
application expects the input to have many of these values at
certain offsets. For example, the analysis for the program in
Listing 3 yields a list Lpp of weights for each basic block and
a list L, of byte sequences containing {OxEF, O0xFD,
%, @, MAZE}. To determine the basic block weights, we
model the CFG of each function as a Markov model and

compute the probability p; of reaching each basic block b in a
function. We then calculate the weight w;, of each basic block
b as 1/py. Thus, the lower the probability of reaching a basic
block, the higher the weight. Using this model, the probability
and the weight of each basic block is shown next to each node
in Figure 2 (see Section IV-A3). We observe that, for example,
the probability of reaching basic block G is less than that of
reaching basic block F', which in turn has lower probability
than basic block H. VUzzer uses these lists in later steps of
the fuzzing loop.

C. The main fuzzing loop

We describe the main fuzzing loop by using the steps
in Algorithm 1. Before the main loop starts, we execute the
application with the set of seed inputs SI to infer an initial
set of control-flow and data-flow features. For all the inputs in
S, we run dynamic taint analysis (DTA) to capture common
characteristics of valid inputs. Specifically, we do so for
the magic-byte and error-handling code detection mentioned
earlier. Using these features, we generate an initial population
of inputs as part of the INITIALIZE step in Algorithm 1. Note
that our magic-byte detection ensures that these new inputs
cross the first such check of the application. As DTA has a
high overhead, we use it as sparingly as possible after the
main loop starts.

Input execution: We execute the application with each
of the inputs from the previous step and generate the corre-
sponding traces of executed basic blocks. If any of the inputs
executes previously unseen basic blocks, we taint the input
and use DTA to infer its structural properties by monitoring
the data-flow features of the application.

Fitness calculation: In the EVALUATE step of Algo-
rithm 1, we calculate the fitness of each input as the weighted
sum of the frequencies of executed basic blocks. We distribute
the weights over the basic blocks using the weights list Lpp.
Basic blocks that belong to error-handling code get a negative
weight—for now we still assume that we can identify such
basic blocks. The intuition behind this fitness calculation is to
provide high scores to inputs that execute basic blocks with
higher weights and thereby prioritize the corresponding paths,
while also executing certain basic blocks with high frequencies
to catch large loops. For example, let us consider two paths
p1 and po, executed by two inputs ¢y and io respectively
such that py, = A - B - D - E —- H — J and
pp=A—B —- D — E — F — J. For simplicity, let
us assume the error-handling basic block J gets weight -1 and
the frequency of execution of each basic block is 1. Using the
weights from Figure 2, the weighted sums of the frequencies of
p1 and po are 7 (1+142+42+2-1) and 9 (1+1+2+2+4-1). Hence,
input i gets a higher fitness score and will participate more in
generating new inputs than ;. This step eventually generates
a sorted list Ly;; of inputs in decreasing order of their fitness
scores.

Genetic operators and new input generation: This is
the final and most important functionality in our fuzzing strat-
egy, encompassing the SELECT, RECOMBINE, and MUTATE
steps in Algorithm 1. Together, these substeps are responsible
for generating interesting inputs. In each iteration of the main
loop, we generate a new generation of inputs by combining



and mutating the inputs from SI, all tainted inputs, and the
top n% of Ly;;. We refer to this set as the ROOT set.

Specifically, we generate new inputs via crossover and
mutation. First, we randomly select two inputs (parents) from
ROOT and apply crossover to produce two new inputs (chil-
dren). With a fixed probability, these two inputs further un-
dergo mutation. Mutation uses several sub-operations, such as
deletion, replacement, and insertion of bytes at certain offsets
in the given input. The mutation operator makes use of the
data-flow features to generate new values. For example, when
inserting or replacing bytes, it uses characters from L;,,,, to
generate byte sequences of different lengths. Similarly, various
offsets from current inputs’ parents are selected for mutation.
Hence, if any magic bytes exist, they will be replaced at the
proper offsets in the resulting inputs.

This loop of input generation continues until we meet a
termination condition. Currently, we terminate when we find
a crash or when VUzzer reaches a pre-configured number of
generations.

For easier reference, Table I provides a list of symbols that
we use throughout the paper. In the next section, we elaborate

TABLE L GLOBAL SYMBOLS AND THEIR MEANING.
Symbol Description
DTA dynamic taint analysis
ST set of seed inputs (valid inputs).
LB list of basic block weights, obtained by static analysis of the applica-
tion binary.
Limm list of immediate values from c¢mp instructions, obtained by static

analysis of the application binary.
Ly Sorted lists (in decreasing order) of fitness scores of inputs, obtained
in the fitness calculation step.

Oother set of all tainted offsets, other than the ones which are placeholder for
magic bytes. This set is obtained by DTA.
Lica set of offsets that taint the index operand of lea instructions.

on the algorithms that we use to derive relevant information
about the input structure by using control-flow and data-flow
features.

IV. DESIGN AND IMPLEMENTATION

In this section, we detail the techniques to calculate several
primitives discussed in the previous section. The section also
presents implementation details of VUzzer.

A. Design Details

1) Dynamic Taint Analysis (DTA): DTA is the core of
VUzzer as it plays a major role in evolving new inputs. This
is also the technique that sets VUzzer apart from existing
fuzzers. DTA is used to monitor the flow of fainted input (e.g.,
network packets, files, etc.) within the application. DTA can
determine, during program execution, which memory locations
and registers are dependent on tainted input. Based on the
granularity, DTA can trace back the tainted values to individual
offsets in the input. VUzzer uses DTA to trace tainted input
offsets used at cmp and lea instructions. For every executed
cmp instruction cmp opl, op2 (opl and op2 can either
be register, memory, or immediate operands), DTA determines
if op1 and/or op2 are tainted by a set of offsets. Our DTA im-
plementation is able to track taint at the byte level. For a given
tainted operand op, DTA provides taint information for each
byte of op. Symbolically, if op is denoted as b3, bo, by, by, then

DTA provides taint information for each byte b; separately.
We denote the set of offsets that taint the j** byte of the i*"
operand of a given cmp instruction as 7. We also record the
values of these operands. Symbolically, we represent a tainted
cmp instruction as emp; = (of fset,value), where of fset
and wvalue are the sets of offsets from tainted input and the
set of values for the untainted operand of the cmp instruction.
For each lea instruction, DTA tracks only the index register.
L., contains all the offsets that taint such indexes.

2) Magic-byte Detection: Based on our understanding of
file formats that have magic bytes, we postulate that a magic
byte is a fixed sequence of bytes at a fixed offset in the input
string. We have verified this assumption on several file formats
that have magic bytes, for example, jpeg, gif, pdf, elf, and ppm.
As VUzzer assumes the availability of a few valid inputs for
a given application, we use the results of DTA on these inputs
at the beginning of fuzzing. As applications expect the input
to contain magic bytes, DTA’s results on cmp instructions will
contain the corresponding check for magic bytes.

For example, the code from Listing 3 expects a magic byte
OxFDEF in the beginning of the input file. Hence, DTA will
capture two cmp instructions—cmp reg, OxFD with reg
tainted by offset 0 and cmp reg, OxEF with reg tainted by
offset 1. If we have a set of valid inputs for this program, we
can observe these two cmp instructions in all the corresponding
executions. Conversely, if for a set of valid inputs we get
emp; = (0;,v;) in DTA’s results for all the inputs, v; is a
part of the magic byte at offset o;.

It should be noted that the algorithm we use to detect magic
bytes can incur false positives. This may happen if all the
initial valid inputs share identical values at the same offsets.
Nonetheless, this will still be useful for generating inputs that
go beyond the very initial check for magic bytes with a reduced
probability of exploring different paths. To avoid this situation,
we prefer to start with a diverse but valid set of inputs.

During magic-byte detection, for a given cmp; instruction,
if the corresponding value depends on multiple offsets per
byte, we do not consider such offsets to be magic-byte can-
didates. For example, for a given cmp instruction, if DTA
detects that |T?| > 1, we exclude such offsets (€ T¢ ) from
any further consideration for magic-byte placeholders. Such
a case indicates that the value of the corresponding operand
may be derived from tainted values at those offsets € Tj2
The dependence on multiple bytes breaks the assumption that
magic bytes are fixed (constant) sequences of bytes. We denote
the set of all such offsets as O,iper-

3) Basic Block Weight Calculation: From a coverage-
based fuzzing perspective, every feasible path is important to
traverse. A simple fuzzing strategy is to spend equal efforts
to generate inputs for all feasible paths. However, due to the
presence of control structures, the reachability of some paths
may not be the same as that of other paths. This situation
arises very frequently if we have nested control structures [41].
Therefore, any input that exercises such hard-to-reach code
should be rewarded more compared to other inputs.

We incorporate this reward by assigning higher weights to
basic blocks that are contained within nested control structures.
As enumerating all the paths at the interprocedural level has
trouble scaling, we constrain our analysis at the intraprocedural



level, i.e., we calculate weights for each basic block within the
containing function. Later, we gather and add the weights of
all the basic blocks in a path that is executed by a given input.
With this strategy, we simulate the score of an interprocedural
path by stitching several intraprocedural path scores together.

If we consider that the transition of an input at a particular
basic block to the next basic block is dependent on some
probability, we can derive a probabilistic model called Markov
process for the input behavior from the control-flow graph
(CFG). A Markov process is a stochastic process in which
the outcome of a given trial depends only on the current state
of the process [30]. We model the CFG of a function as a
Markov process with each basic block having a probability
based on its connections with other basic blocks.

For a given basic block, we assign equal probability to all
its outgoing edges. Hence, if out(b) denotes the set of all out-
going edges of basic block b, then Vep, € out(b), prob(eps) =
1/|out(b)|. The transition probability (likelihood) of a basic
block b is calculated as follows:

prob(b) = Z prob(c) * prob(eqp) (1)
cepred(b)

where pred(b) is the set of all the predecessors of b. We
employ a fixed-point iteration algorithm to compute the prob-
ability associated with each basic block in the CFG. The root
basic block of the CFG is initialized with a probability of 1.
Loops are handled by assigning a fixed probability of 1 to each
backedge, thereby neglecting the effect of the backedge itself
(i.e., we flatten the loop to speed up fixed point calculation).
From Equation 1, the weight of each basic block b is given
by:
1
= prob(b)

(@)

4) Error-Handling Code Detection: As noted earlier, dur-
ing fuzzing, the majority of mutated inputs will be executing
a path ending up in some error state. Deprioritizing such
execution paths is a key step towards increasing the chances of
creating interesting inputs faster. Our error-handling detection
heuristic relies on the availability of valid inputs, which is
a prerequisite of VUzzer. As our error-handling detection
depends on the dynamic behavior of the application, it detects
error-handling basic blocks in an incremental manner.

Initial analysis: For each valid input ¢ € ST, we collect
a set BB(4) of basic blocks that are executed by 4. Let Validgp
denote the union of all such sets of executed basic blocks
by all valid inputs. We then create a set of fotally random
inputs, denoted as T'R. For each input in this set, we collect
its execution trace in terms of basic blocks. A basic block from
such a set of executions is assumed to be a error-handling basic
block (i.e., belonging to error-handling code) if it is present
in each execution of inputs from T'R and it is not present in
Validpgp. The intuition is that since ST is a set of valid inputs,
no error-handling code will be triggered. Therefore, Validgp
will contain only basic blocks that correspond to valid paths.
And since T'R is a set of totally random inputs, they will be
very likely caught by error-handling code during the execution.

Ours is a very conservative error-handling basic block
detection strategy as we may miss few basic blocks if certain

inputs are caught by different error-handing code. Nonetheless,
note that we will never classify a basic block corresponding to
a valid path as an error-handling basic block. More formally,
let
Validpg = UiESIBB(Z'), then
EHB ={b:Vk € TR,b € BB(k)&b ¢ Validgp}

where FH B 1is a set of error-handling basic blocks.

Incremental analysis: We observe that since our error-
handling detection strategy is based on the dynamic behavior
of the application, not all error-handling code may be triggered
during the initial analysis. As inputs evolve, they explore
more paths and thus encounter new error-handling code. For
this reason, we initiate an incremental analysis during later
iterations of fuzzing. In our experimental setup, we observed
that, as we proceed with more iterations of fuzzing, the number
of new error-handling code instances decreases. This reflects
the intuition that software has a finite number of error-handling
code instances, which are reused in different parts of the
application. Therefore, we run our incremental analysis less
frequently as we execute more iterations.

The intuition behind our incremental analysis is the ob-
servation that as fuzzing proceeds, the majority of newly
generated inputs will end up triggering some error-handling
code. At a given iteration, let / be the set of inputs generated
in the iteration. Let the majority be quantified by n% of |I|.
Our (offline) experiments show that n = 90 is a reasonable
choice. Let BB(I) be the set of all the basic blocks executed
by inputs in I. We classify a basic block b from BB(I) as
an error-handling basic block if it is associated to at least n%
of the inputs from [ and it is not in the Validgp set. More
formally, let P(I) denote the power set of I. Then

EHB = {b:Vk € P(I), s.t. |k| > |I| *n/100,
be BB(k)&b ¢ ValidBB}

Weight calculation for error-handling basic blocks:
After detecting error-handling basic blocks (EHBs), we want
to deprioritize paths that contain such blocks. We achieve this
by penalizing the corresponding inputs so that such inputs
have less chances of participating in next generation. For
this purpose, each EHB is given a negative weight, which
impacts the fitness score of the corresponding inputs (see
Section IV-AS5). However, this strategy is alone insufficient
since, as EHBs are a small minority when compared to the
total number of basic blocks executed by an input, such a small
quantity will have negligible impact. We solve this problem
by defining an impact coefficient y (a tunable parameter) that
decides how many (non-error handling) basic blocks may be
nullified by a single error-handling basic block. Intuitively, this
parameter determines that, once an input enters error-handling
code, the contribution of any of the corresponding basic blocks
when calculating fitness scores must be reduced by a factor p.
For a given input 7, we use the following formula for weight

calculation purposes.
BB(%
w, = BBl Xk 3)
[EHB(7))|

where |BB(7)| is number of all the basic blocks executed by
input ¢, [EHB(:)| is the number of all the error-handling basic
blocks executed by ¢, and 0.1 < p < 1.0.



5) Fitness Calculation: Fitness calculation is one of the
most important components of evolutionary algorithms. This
is crucial to implement the feedback loop, which fuels the next
step of input generation. Once a new input is generated, the
chances of its participation in generating new inputs depend
on its fitness score.

VUzzer assess the fitness of an input in two ways. If the
execution of an input results in discovering a new non-EHB
basic block, the input qualifies for participation in the next
generation. This is similar to AFL (with the additional use
of the EHB set). However, this measure of fitness considers
all newly discovered paths equal, which is problematic, as
explained earlier. The importance (and thus the fitness) of
an input depends on the interestingness of the path that
it executes, which, in turn, depends on the weights of the
corresponding basic blocks. Therefore, we define fitness f;
of an input ¢ as a function that captures the effect of all the
corresponding basic block weights.

>~ log(Freq(b))Ws
bERR BBNum if /; > LMAX

log(1:) 4)
>~ log(Freq(b))W, otherwise.

bEBB(i)

fi=

where BB(7) is the set of basic blocks executed by input i,
Freq(b) is the execution frequency of basic block b when
executed by i, W, is the weight of basic block b (by using
Equation 2), [; is the length of input ¢, and LMAX is a pre-
configured limit on input length. LMAX is used to address the
phenomenon of input bloating. In the parlance of genetic al-
gorithms, both of the fitness criteria (i.e. ability to discovering
new basic block and a higher f;) correspond to the notion of
exploration and exploitation—discovering a new basic block
indicates a new direction (i.e., exploration) and a higher f;
indicates higher execution frequencies (among other factors)
of basic blocks (i.e., exploitation in the same direction).

6) Input Generation: VUzzer’s input generation consists
of two parts, crossover and mutation, which are not mutually
exclusive, that is, crossover is followed by mutation with a
fixed probability.

Crossover: Crossover is a simple operation wherein
two parent inputs are selected from the previous generation
and two new child inputs are generated. Figure 3 illustrates
the process of generating two child inputs from two parent
inputs.

| thisiis inputl | | this the other input2|
L]
HELEEEEEEE : >
|I am;the other input2| |I am is inputl |
Fig. 3. Crossover operation in VUzzer. In this single-point crossover, we
select the 5" offset as cut-point. For the first parent (this is inputl),

this strategy breaks it into two parts: i%:this and i%: is inputl. For
the second parent, we again get two parts: i%:I am and ig: the other
input2. Now, we form two children by using z% | zg and z% | 2% that is,
this the other input2 and I am is inputl.

Mutation: Mutation is a more complex operation,
which involves several suboperations to change a given par-
ent input into the corresponding child input. The process is
detailed in the following steps:

Step 1: Randomly select tainted offsets from the set O,¢per
and insert strings at those offsets. The strings are formed
by bytes obtained from the set L;,,y,.

Step 2: Randomly select offsets from the set L;., and mutate
such offsets in the string from Step 1 by replacing them
with interesting integer values, such as, 0, MAX_UINT,
negative numbers.

Step 3: For all the tainted cmp instructions for the parent
input, if the values of opl # op2, replace the value at
the tainted offset in the string from Step 2 with the value
of op2 or else with a fixed probability replace the tainted
byte by a random sequence of bytes.

Step 4: Place the magic bytes at the corresponding offsets as
determined by our magic-byte detector.

B. Implementation Details

The core functionality of VUzzer is implemented in Python
2.7. Some of the implemented analyses, for example incre-
mental analysis for error-handling basic block detection, are
memory intensive and therefore we also make use of efficient
data structures provided by more recent versions, such as
BitVector®. VUzzer internally consists of two main compo-
nents, comprising static and dynamic analyses, as further
detailed below.

Static analysis: VUzzer implements both of the static
analyses (constant string extraction and basic block weight
calculation) within IDA [27]. The analysis is written in Python
using IDAPython [18].

Dynamic analysis: VUzzer implements both dynamic
analyses (basic-block tracing and DTA) on the top of the Pin
dynamic analysis framework [31]. For basic block tracing,
we implemented a pintool to record each basic block, along
with its frequency, encountered during the execution. Our
pintool can selectively trace basic blocks executed by certain
libraries on-demand. Selective library monitoring allows us to
reduce the execution trace overhead and focus on the intended
application code.

Our DTA implementation is based on DataTracker, pro-
posed by Stamatogiannakis et.al [46], which in turn is based on
LibDFT [29]. As LibDFT can only handle 32-bit applications,
the current VUzzer prototype can only be used to fuzz 32-bit
applications (also used in our evaluation). Note that this is not a
fundamental limitation and we are, in fact, in the process of im-
plementing 64-bit support in VUzzer. Any updated version will
be made available at https://www.vusec.net/projects/fuzzing.

To make it suitable for our purposes, we also made several
changes to DataTracker:

e In DataTracker, taint tags associated with each
memory location are modeled as tuples: <ufd,
file_offeset>, i.e., unique file descriptor and the
offset of the file associated with that descriptor. Each
of these tuples is 64 bit long (32 bits for ufd and 32

3https://pypi.python.org/pypi/BitVector/3.4.4



bits for file_offset). Each memory location has a
set of these tuples associated with it to determine the
offsets and the files by which the memory location is
tainted. We changed this to a EWAHBoolArray type*
which is a compressed bitset data type. Since we only
need data-flow information from one (input) file, we
modified DataTracker to propagate taint only through
that file. Thus, in our modified version, the taint tags
associated with each memory location are modeled as
a EWAHBoolArray which only contains offsets. As a
result, our implementation is at least 2x faster and uses
several times less memory than DataTracker.

e We added instrumentation callbacks for the cmp family of
instructions like CMP, CMPSW, CMPSB, CMPSL and
the lea instruction to catch byte-level taint information
for the operands involved in the computations.

e We rewrote hooks for each implemented system call
and also added hooks for some extra system calls such
as pread64, dup2, dup3, mmap2, etc. To evaluate our
performance on the DARPA dataset [15], we also im-
plemented hooks for DECREE-based system calls, which
are different from normal Linux system calls.

Crash triage: Once fuzzing starts producing crashes,
it may continue to produce more crashes and there should be
some mechanism to differentiate crashes due to different bugs
(or the same bug but different instances). In order to determine
the uniqueness of a crash, VUzzer uses a variant of stack hash,
proposed by Molnar et.al. [37]. In our pintool, we implemented
a ring buffer that keeps track of the last 5 function calls and
the last 10 basic blocks executed before we get a crash. We
calculate the hash of this buffer and each time a new crash is
encountered, we compare the newly generated hash with the
older ones to determine if the reported crash is a new unique
one.

V. EVALUATION

In order to measure the effectiveness of our proposed
fuzzing technique, this section presents an evaluation of
VUzzer. To expose VUzzer to a variety of applications, we
chose to test VUzzer on three different datasets A. DARPA
CGC binaries [15], B. miscellaneous applications with binary
format as used in [43], and C. a set of buggy binaries recently
generated by LAVA [17].

We ran our experiments on an Ubuntu 14.04 LTS system
equipped with a 32-bit 2-core Intel CPU and 4 GB RAM.
For the DARPA CGC dataset, the (provided) environment
is a VM with a customized OS called DECREE. We want
to emphasize that our main evaluation goal is to show how
effective VUzzer is in identifying bugs (that may be buried
deep in the execution) with much fewer inputs than state-of-
the-art fuzzers such as AFL. Our current VUzzer prototype
is not as optimized for fast input execution as AFL and we
therefore seek no comparison in this direction.

A. DARPA CGC Dataset

As part of Cyber Grand Challenge, DARPA released a set
of binaries that run in a customized OS called DECREE. There

“https://github.com/lemire/EWAHBool Array

are 131 binaries in total, with various types of bugs injected
in them. However, we could not run VUzzer on all of them
for the following reasons:

e All of the binaries are interactive in nature by accepting
inputs from STDIN. Once started, many of them present
a menu to choose an action, including the option to quit.
Furthermore, in many cases, there are multiple menus (in
a different state of the program) with different options to
quit. As VUzzer requires a step to generate totally random
inputs (error-handling code detection, Section IV-A4),
executing such inputs puts the application in a loop,
looking for valid options, including the option to quit.
This causes the application to run forever. This is an
interfacing problem and not a fundamental limitation of
our fuzzing method.

e Some of these binaries are compiled with floating-point
instructions, which are not handled by LibDFT and thus
VUzzer cannot get correct data-flow information.

e As VUzzer is based on Pin [32], we followed the given
procedure to run pintools in DECREE®. However, we
could not run some of the binaries with Pin.

e Some of the binaries involve interaction with other bina-
ries, which is not handled by VUzzer.

After considering the obstacles mentioned above, we are left
with a total of 63 binaries. In order to make a comparison
with AFL, we also ran AFLPIN, a pintool-based AFL imple-
mentation®. AFLPIN has the same fuzzing engine as AFL, but
a different mechanism to get execution traces. Our choice to
use AFLPIN instead of AFL is to have an identical interfacing
mechanism with the SUT, that is, passing input to the pintool
via file descriptor 0 (STDIN).

VUzzer found crashes in 29 of the CGC binaries, whereas
AFLPIN found only 23 crashes. As each CGC is also accom-
panied with a patched version, we verified each bug found
by VUzzer by running the patched version of the binary to
observe no further crashes. The most important result was the
number of executed inputs per crash in both of these fuzzers.
We ran both fuzzers for a maximum of 6 hours. Figure 4
depicts the number of executions for the cases where both of
the fuzzers found crashes (13 in total), evidencing that VUzzer
can significantly prune the search space compared to AFL.

While fuzzing a specific binary NRFIN_00015, we ob-
served the importance of computing the fitness score f; in a
discrete manner. The vulnerability in this binary is a typical
case of buffer overflow in a 1oop. We observed that after
generation 18, there was no new BB discovered, but f;
kept increasing, indicating typical loop execution behavior. At
generation 63 (total executions 13K), we reach the boundary
of the buffer. AFLPIN could not detect this crash.

‘We note that our current results on this dataset are modest,
especially in the view of the results reported in Driller [47].
We further investigated the results and found some peculiarities
that may interfere with the performance of our current VUzzer
prototype on CGC.

Shttps://github.com/CyberGrandChallenge/cgc-release-
documentation/blob/master/walk-throughs/pin-for-decree.md
Shttps://github.com/mothran/afipin
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Fig. 4. Relative number of inputs executed for each of the CGC Binaries,

wherein both VUzzer and AFLPIN find crashes. The numbers above the bars
are the total number of inputs (in thousands) executed.

e In several binaries, a buggy state is reached only by per-
forming a very specific set of actions from a given menu.
For exmaple, in the CROMU_00001 application, one
has to perform: login A —-> send many msg to
user B -> login B -> check msg . Currently,
VUzzer does not have capabilities to repeat a sequence.

e The notion of valid input is blurry. Recall that we use a
whole session, provided in the form of XML files by every
CGC binary, as one input. Therefore, there is essentially
no notion of invalid inputs. Because of this, we cannot
exploit the full power of VUzzer.

e Related to the above point is the issue of interesting
offsets. As the CGC binaries are interactive, the input is
essentially a sequence to explore application state, which
may vary from one input to another. For example, one
of the binaries allows a user to load a file. The bug is
triggered while processing the file. The corresponding
file loading menu can appear anywhere in the input and
therefore the offsets in the file are relative to where it was
loaded in the input, making it difficult to automatically
reason over offsets.

In light of the aforementioned issues, we believe that VUzzer
is not suitable for interactive programs, mainly because ot its
poor interfacing mechanism with such programs.

B. LAVA Dataset

In a recent paper, Dolan-Gavitt et.al. developed a technique
to inject hard-to-reach faults and created buggy versions of
a few Linux utilities [17] for testing fuzzing- and symbolic
execution-based bug finding solutions. We used the LAVA-M
dataset [17] to evaluate VUzzer. This dataset consists of 4
Linux utilities—base64, who, uniqg, and md5sum—each
injected with multiple faults (in the same binary for each
utility). The LAVA paper reports results on the evaluation of
a coverage-based fuzzer (FUZZER), symbolic execution, and
a SAT-based approach (SES) on these buggy applications.
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To improve readability, we restate the results from the
original LAVA paper in Table II. The last column in Table II
shows the results produced by VUzzer. The numbers shown
are the total unique bugs identified by VUzzer. In the case
of md5sum, we could not run VUzzer as it crashed on the
first round of input generation without allowing the program
to parse more of any input. Each injected fault in the LAVA
binaries has an ID and the ID is printed on standard output
before each binary crashes due to that fault. This allowed us
to precisely identify the faults triggered by VUzzer. Table III
reports the IDs of the faults triggered by VUzzer for each
LAVA binary.

TABLE II. LAVA-M DATASET: PERFORMANCE OF VUZZER
COMPARED TO PRIOR APPROACHES.

Program Total bugs FUZZER SES VUzzer (unique bugs, to-

tal inputs)

uniqg 28 7 0 27 (27K)

base64 44 7 9 17 (14k)

mdSsum 57 2 0 1%

who 2136 0 18 50 (5.8K)

A few interesting points emerge from our LAVA dataset
results. Most of the LAVA injected faults are based on artifi-
cially injected path conditions, like 1ava to reach a particular
path and trigger the bug. This is very well captured by VUzzer,
thanks to its data-flow features. For example, during base64
fuzzing, we learned that the first four bytes should be either
‘val or lav' to follow a particular path. Similarly, we
discovered that the last few bytes should contain any of the fol-
lowing values to take different paths: 1as [, lat\x1b, Wsal,
etc. It should be noted that most of the path constraints
injected by LAVA are multibyte constraints. Such constraints
pose a serious problem for AFL to traverse deeper in the
execution (as also noted in [16]). Another interesting point
is the performance of VUzzer on who. The fuzzer used in the
LAVA paper failed to find even a single bug, whereas VUzzer
found several unique crashes.

TABLE III. FAULT IDS OF BUGS DETECTED BY VUZZER ON THE
LAVA-M DATASET.

Program Fault IDs

uniqg 468, 318, 293, 170, 130, 443, 171, 393, 169, 368, 112, 322,
166, 227, 371, 472, 321, 215, 222, 297, 372, 396, 446, 397,
471, 296, 447

base64 1, 843, 817, 386, 786, 805, 576, 276, 222, 806, 284, 841, 584,
235, 278, 583, 788

md5Ssum -

who 4159, 4343, 3800, 83, 1188, 60, 137, 138, 1960, 59, 1458, 1,
159, 5, 1803, 1314, 79, 475, 18, 4, 9, 1804, 1816, 10, 7, 3, 58,
985, 179, 14, 319, 2617, 81, 22, 2, 63, 4364, 8, 672, 341, 26,
255, 20, 75, 474, 6, 4358, 4362, 587, 89

Overall, on both artificial datasets, VUzzer reported en-
couraging results, although, as expected, it did struggle with
interactive programs in the DARPA CGC dataset. We now
move on to evaluate VUzzer on real-world programs that have
also been considered by other fuzzers.

C. Various Applications (VA) Dataset

We use a dataset of real-world programs (djpeg/eogq,
tcpdump, tcptrace, pdf2svg, mpg321, gif2png) to
evaluate the performance of VUzzer. Rebert er al. also eval-
uated these programs to report on several bugs [43] and
we therefore included these programs in our evaluation for



comparison purposes. For each of these programs, we use the
vanilla release in Ubuntu 14.04. We remark that by, evaluating
these utilities, we also targeted some well-known libraries,
such as libpcap, 1libjpeqg, libpoppler, and 1ibpng.
Each program is fuzzed for maximum 24 hours. In order
to highlight the performance of VUzzer, we also ran AFL
on these applications. Table IV shows the results of running
VUzzer and AFL on the VA dataset, with VUzzer significantly
outperforming AFL for both number of unique crashes found
and number of inputs required to trigger such crashes.

TABLE IV. VA DATASET: PERFORMANCE OF VUZZER VS. AFL.
Application - VUzzer - AFL
#Unique crashes #Inputs | #Unique crashes #Inputs
mpg321 337 23.6K 19 883K
gif2png+libpng 127 43.2K 7 1.84M
pdf2svg+libpoppler 13 5K 0 923K
tcpdump-+libpcap 3 77.8K 0 2.89M
teptrace+libpcap 403 30K 238 3.29M
djpeg-+libjpeg 17 90K 0 35.9M

Figure 5 details the distribution of crashes over a period
of 24 hours. The x-axis of each plot shows the cumulative
sum of crashes, sampled at each 2 hours. As shown in the
figure, for almost every application, VUzzer keeps finding
crashes during the later iterations of fuzzing, whereas AFL
quickly exhausts its efforts after a few initial iterations. This
is due to the fact that, at later stages, AFL is not able to find
new (deeper) paths, whereas VUzzer is able to learn branch
constraints as it explores new paths and thus it is able to find
crashes in later stages of fuzzing. Another interesting point to
note in Figure 5 is that, in comparison to AFL, VUzzer in
not only able to find crashes with much fewer inputs, but this
also happens in much less time (see the position of the vertical
line in Figure 5). We want to again remark that we have not
optimized VUzzer for fast input execution. We believe that
there exist several techniques to enhance the execution speed
of VUzzer, for example, using an AFL-like fork-server within
a single fuzzing iteration or distributing concurrent fuzzing
workers across multiple cores or machines.

D. Crash-Triage Analysis

Fuzzers tend to generate a large number of crashes. Fixing
every bug associated with a crash is a time-consuming but
lucrative process. The only information provided to a software
developer is the version number of the application and the
crash itself. Naturally, the bug patching efforts are invested in
the bugs that are more (security) critical.

!Exploitable [19], a tool proposed by CERT, is built on
top of GDB and uses heuristics to asses the exploitability of a
crash caused by a bug. The heuristics are based on the crash
location, the memory operation (read or write), and the signals
triggered by the application. While this analysis is not sound,
it is simple, fast, and provides hints on the severity of a crash.
We use the !Exploitable tool to rank the crashes found by
VUzzer on this dataset. Table V presents our results.

As shown in the table, most of the cases were marked
as Unknown due to the simplicity of the !Exploitable tool.
None of the cases were marked as Probably Exploitable.
Finally, every crash discovered by VUzzer in tcptrace

7No crash, but infinite loop resulting in an out-of-memory error.
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TABLE V. PERCENTAGES OF EXPLOITABLE BUGS DISCOVERED BY

VUZZER AS REPORTED BY !EXPLOITABLE TOOL.

Unknown Exploitable Probably Not Exploitable
gif2png 100.0 0.0 0.0
mpg321 100.0 0.0 0.0
pdf2svg 87.5 0.0 125
tcpdump 100.0 0.0 0.0
teptrace 0.0 100.0 0.0

seems to be Exploitable. We investigated one of the crashes in
tcptrace and there is a seemingly obvious way to exploit it:
the vulnerability is an out-of-bounds write to a heap buffer. The
bound and the data that are written are tainted (i.e., attacker-
controlled).

To further analyze the quality of the bugs discovered by
VUzzer, we measured the distance between the crash and the
library involved (if any). A bug located in a library will likely
be included in any application that uses that library, hence
these bugs are of high priority. We need to also keep in mind,
that these are unknown bugs and therefore many of them
could be zero-day. As we found a large number of unique
crashes, reporting the most important ones early is a priority
and therefore we rely on an automated analysis to approximate
the severity of a bug. In short, if a crash happens in a library,
then it is a serious bug to report. However, sometime a bug
manifests itself in the user application, but the real cause of the
bug lies in a library used by the application. We, therefore, also
measure the distance from the last library call, when a crash
in observed in the application code.

The distance between the crash and a library is measured by
two metrics. First we count the number of instructions executed
between the crash and the last library call. The intuition is that
the computation (and its side effects) which ultimately caused
the crash might originate in a library call. Second, we count the
number of stack frames between the crash and the last library
call. As an example, libraries using output function hooks that
reside in the main application (e.g. tcpdump, tcptrace,
mpg321) are covered by such heuristics. Table VI presents
the results of our analysis.

TABLE VI. DISTANCE BETWEEN CRASHES AND LIBRARY CALLS.
#Instructions #Stack frames

gif2png 20554.00 gif2png (0); libc (5)

mpg321 733.04 libid3tag (0); libmad (3.1); libc (3.9); mpg321
(5.5)

pdf2svg 626.11 libc (1); libpoppler (3); libpoppler-glib (8);
pdf2svg (9);

tcpdump 293.50 tecpdump (0); libpeap (5.7)

teptrace 1134.53 teptrace (0); libpeap (2); libe (7)

All crashes in mpg321 happened inside the (1ibid3tag)
library. The 1ibid3tag library is heavily patched (patch
level is 10) by the distro maintainers. This shows that this
library is known to contain many bugs. gif2png always
crashed inside the application. This is confirmed by both
metrics with high figures. pdf2svg crashed in 1ibpoppler
most of the time. The stack frame distance is 3 because the
signal gets routed from Linux’ vdso through the standard
library. tcpdump and tcptrace use the same (1ibpcap)
library but, since t cpdump displays the content of the network
flow, it has a higher distance from the library.

Based on the aforementioned analysis, we believe many
of the crashes reported by VUzzer uncover zero-day vulnera-
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Fig. 5.

Distribution of crashes over a time period of 24 hours. X-axis: cummulative sum of creahes. Y-axis: time (over 24 hours). Blue line: VUzzer. Red

dashed line: AFL. Vertical green line: Time taken by VUzzer to find the same number of crashes as those found by AFL during a complete run.

bilities and we are currently in the process of performing re-
sponsible disclosure to the open-source community. Table VII
provides information on some of the bugs that we have
analyzed and reported so far.

VI. RELATED WORK

In the previous sections, we have already highlighted some
of the major differences between VUzzer and state-of-the-
art fuzzers like AFL. In this section, we survey additional
recent research work in the area of fuzzing. This enables us
to highlight some of the features and differences with respect
to existing work.

A. Search-based Evolutionary Input Generation

The use of evolutionary algorithms for input generation
purposes is a well-explored research area in software engineer-
ing [7], [34]. There have been attempts to use evolutionary
algorithms for input generation to discover vulnerabilities
in applications [25], [42], [45]. The difference lies in the
fact that these approaches assume a-priori knowledge of the
application to focus on the paths leading to vulnerable parts of
the program. This property makes these approaches closer to
directed fuzzing and, therefore, our fuzzing strategy deviates
from them substantially. Unlike VUzzer, and similar to AFL,
the feedback loop used by these approaches does not attempt to
relate application behavior with the input structure to enhance
input generation.
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B. Whitebox Fuzzing Approaches

Whitebox fuzzing is one of the earliest attempts to enhance
the performance of traditional random fuzzing by considering
the properties of the application. There exist a number of
approaches to make fuzzing more efficient, for example, by ap-
plying symbolic execution and dynamic taint analysis to solve
branch constraints [20]-[24], [26]. Although VUzzer differs
from these approaches in a number of ways, the fundamental
difference remains the use of symbolic execution. Similar to
VUzzer, BuzzFuzz, proposed by Ganesh et.al. [20] makes use
of dynamic taint analysis, but for an entirely different purpose.
BuzzFuzz is a directed fuzzer and, therefore, it does not try to
learn constraints for every path. It instead uses taint analysis
to detect bytes that influence dangerous spots in the code, like
library call arguments, and mutate these bytes in the input to
trigger exceptional behavior. Most of these approaches also
require the availability of source code to perform analysis.

C. Blackbox/Graybox Fuzzing Approaches

In spite of being simple and fully application agnos-
tic, blackbox fuzzers, like, Peach [1], Sulley [39], and
Radamsa [40] have discovered bugs in real-world applications.
However, throughout the paper, we have already discussed the
limitations of such fuzzers.

Recently, symbolic and concolic execution-based fuzzing
approaches have dominated the area of “smart” fuzzing [12],
[38], [47], [S1]. Mayhem [12], a system from CMU to au-
tomatically find exploitable bugs in binary code, uses several



TABLE VIIL

ANALYSIS OF NEW BUGS FOUND BY VUZZER.

Program Bug Type Already fixed? Reported?
tcpdump Out-of-bounds Read Yes No
mpg321 Out-of-bounds Read No Yes [2]
mpg321 Double free No Yes [3]
pdf2svg Null pointer deref (write) Seems to be fixed in poppler 0.49 No
pdf2svg Abort Seems to be fixed in poppler 0.49 No
pdf2svg Assert fail (abort) Yes [4] No
tcptrace Out-of-bounds Read No Yes [5]
gif2png Out-of-bounds Read No Yes [6]

program analysis techniques, including symbolic and concolic
execution, to reason about application behavior for a given
input. This is similar in spirit to VUzzer. However, since
the goal of VUzzer differs from that of Mayhem, VUzzer
does not require heavyweight program analysis techniques and
instead infers important properties of the input just by applying
heuristics based on lightweight program analysis. Similarly,
Driller [47] uses hybrid concolic execution techniques [33]
to assist fuzzing by solving branch constraints for deeper
path explorations. In [28], Kargén et.al. propose a different
approach to generate fuzzed inputs. For a given application that
is being tested, their approach modifies another input producer
application by injecting faults that influence the output. Using
this strategy, the buggy program generates mutated inputs.
However, it is not clear if these mutated inputs indeed affect
the way application consumes these inputs. TaintScope [49]—a
checksum-aware fuzzer—uses taint analysis to infer checksum-
handling code, which further helps fuzzing bypass checksum
checks. VUzzer can also benefit from this (complementary)
technique while fuzzing. In a very recent work [8] (concurrent
to our work), the authors of AFLFAST proposed a markov-
model based technique to identify low-frequency paths to focus
fuzzing efforts in that direction. The heuristic, also used by
VUzzer partially, is to deprioritize paths that are executed by
maximum number of inputs. VUzzer’s error-handling basic-
block detection technique is similar to this, albeit much light-
weight. VUzzer applies other data- and control-flow features
to speed-up the input generation.

There have been several other techniques to enhance
fuzzing [11], [43], [51]. VUzzer can also benefit from these
approaches, in multiple ways. For example, Seed selection [43]
can help VUzzer start with a good set of seed inputs.

VII. CONCLUSIONS

This paper argues that the key strength of fuzzing is to
implement a lightweight, scalable bug finding technique and
applying heavyweight and non-scalable techniques, like sym-
bolic execution-based approaches, is not the definitive solution
to improve the performance of a coverage-based fuzzer. Af-
ter studying several existing general-purpose (black/graybox)
fuzzers, including the state-of-the-art AFL fuzzer, we note that
they tend to be application agnostic, which makes them less
effective in discovering deeply rooted bugs. The key limitation
of application-agnostic strategies is their inability to generate
interesting inputs faster. We address this problem by making
fuzzing an application-aware testing process.

We leverage control- and data-flow features of the ap-
plication to infer several interesting properties of the input.
Control-flow features allows us to prioritize and deprioritize
certain paths, thereby making input generation a controlled
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process. We achieve this by assigning weights to basic blocks
and implement a weight-aware fitness strategy for the input.
By using dynamic taint analysis, we also monitor several data-
flow features of the application, providing us with the ability
to infer structural properties of the input. For example, this
provides us with information on which offsets in the input
are used at several branch conditions, what values are used as
branch constraints, etc. We use these properties in our feedback
loop to generate new inputs.

We have implemented our fuzzing technique in an open-
source prototype, called VUzzer and evaluated it on several
applications. We also compared its performance with that of
AFL, showing that, in almost every test case, VUzzer was
able to find bugs within an order of magnitude fewer inputs
compared to AFL. This concretely demonstrates that inferring
input properties by analyzing application behavior is a viable
and scalable strategy to improve fuzzing performance as well
as a promising direction for future research in the area.
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