
66 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

contributed articles

In 2 002, COVErITY commercialized3 a research static
bug-finding tool.6,9 Not surprisingly, as academics,
our view of commercial realities was not perfectly
accurate. However, the problems we encountered
were not the obvious ones. Discussions with tool
researchers and system builders suggest we were
not alone in our naïveté. Here, we document some
of the more important examples of what we learned
developing and commercializing an industrial-
strength bug-finding tool.

We built our tool to find generic errors (such as
memory corruption and data races) and system-
specific or interface-specific violations (such as
violations of function-ordering constraints). The tool,

Doi:10.1145/1646353.1646374

How Coverity built a bug-finding tool, and
a business, around the unlimited supply
of bugs in software systems.

BY AL BesseY, Ken BLocK, Ben cheLf, AnDY chou,
BRYAn fuLton, seth hALLem, chARLes henRi-GRos,
AsYA KAmsKY, scott mcPeAK, AnD DAWson enGLeR

A few Billion
Lines of
code Later
using static Analysis
to find Bugs in
the Real World

like all static bug finders, leveraged
the fact that programming rules often
map clearly to source code; thus static
inspection can find many of their vio-
lations. For example, to check the rule
“acquired locks must be released,” a
checker would look for relevant opera-
tions (such as lock() and unlock())
and inspect the code path after flagging
rule disobedience (such as lock() with
no unlock() and double locking).

For those who keep track of such
things, checkers in the research system
typically traverse program paths (flow-
sensitive) in a forward direction, going
across function calls (inter-procedural)
while keeping track of call-site-specific
information (context-sensitive) and
toward the end of the effort had some
of the support needed to detect when a
path was infeasible (path-sensitive).

A glance through the literature re-
veals many ways to go about static bug
finding.1,2,4,7,8,11 For us, the central re-
ligion was results: If it worked, it was
good, and if not, not. The ideal: check
millions of lines of code with little
manual setup and find the maximum
number of serious true errors with the
minimum number of false reports. As
much as possible, we avoided using an-
notations or specifications to reduce
manual labor.

Like the PREfix product,2 we were
also unsound. Our product did not veri-
fy the absence of errors but rather tried
to find as many of them as possible. Un-
soundness let us focus on handling the
easiest cases first, scaling up as it proved
useful. We could ignore code constructs
that led to high rates of false-error mes-
sages (false positives) or analysis com-
plexity, in the extreme skipping prob-
lematic code entirely (such as assembly
statements, functions, or even entire
files). Circa 2000, unsoundness was
controversial in the research communi-
ty, though it has since become almost a
de facto tool bias for commercial prod-
ucts and many research projects.

Initially, publishing was the main
force driving tool development. We
would generally devise a set of checkers
or analysis tricks, run them over a few

“c
o

D
E

P
r

o
F

i
L

E
S

”
b

y
 W

.
b

r
a

D
F

o
r

D
 P

a
L

E
y

,
h

t
t

P
:/

/D
i

D
i

.c
o

M

million lines of code (typically Linux),
count the bugs, and write everything
up. Like other early static-tool research-
ers, we benefited from what seems an
empirical law: Assuming you have a rea-
sonable tool, if you run it over a large,
previously unchecked system, you
will always find bugs. If you don’t, the
immediate knee-jerk reaction is that
something must be wrong. Misconfigu-
ration? Mistake with macros? Wrong
compilation target? If programmers
must obey a rule hundreds of times,
then without an automatic safety net
they cannot avoid mistakes. Thus, even
our initial effort with primitive analysis
found hundreds of errors.

This is the research context. We now
describe the commercial context. Our
rough view of the technical challenges of
commercialization was that given that
the tool would regularly handle “large
amounts” of “real” code, we needed
only a pretty box; the rest was a business
issue. This view was naïve. While we in-
clude many examples of unexpected ob-
stacles here, they devolve mainly from
consequences of two main dynamics:

First, in the research lab a few peo-
ple check a few code bases; in reality
many check many. The problems that
show up when thousands of program-
mers use a tool to check hundreds (or
even thousands) of code bases do not
show up when you and your co-authors
check only a few. The result of sum-
ming many independent random vari-
ables? A Gaussian distribution, most
of it not on the points you saw and
adapted to in the lab. Furthermore,
Gaussian distributions have tails. As
the number of samples grows, so, too,
does the absolute number of points
several standard deviations from the
mean. The unusual starts to occur with
increasing frequency.

W. Bradford Paley’s codeProfiles was
originally commissioned for the Whitney
museum of American Art’s “coDeDoc”
exhibition and later included in momA’s
“Design and the elastic mind” exhibition.
codeProfiles explores the space of code
itself; the program reads its source into
memory, traces three points as they once
moved through that space, then prints itself
on the page.

68 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

contributed articles

For code, these features include
problematic idioms, the types of false
positives encountered, the distance
of a dialect from a language standard,
and the way the build works. For de-
velopers, variations appear in raw abil-
ity, knowledge, the amount they care
about bugs, false positives, and the
types of both. A given company won’t

deviate in all these features but, given
the number of features to choose from,
often includes at least one weird odd-
ity. Weird is not good. Tools want ex-
pected. Expected you can tune a tool to
handle; surprise interacts badly with
tuning assumptions.

Second, in the lab the user’s values,
knowledge, and incentives are those

Such champions make sales as easily as
their antithesis blocks them. However,
since their main requirements tend to
be technical (the tool must work) the
reader likely sees how to make them
happy, so we rarely discuss them here.

Most of our lessons come from two
different styles of use: the initial trial of
the tool and how the company uses the

tool after buying it. The trial is a pre-sale
demonstration that attempts to show
that the tool works well on a potential
customer’s code. We generally ship a
salesperson and an engineer to the cus-
tomer’s site. The engineer configures
the tool and runs it over a given code
base and presents results soon after. Ini-
tially, the checking run would happen

of the tool builder, since the user and
the builder are the same person. De-
ployment leads to severe fission; us-
ers often have little understanding of
the tool and little interest in helping
develop it (for reasons ranging from
simple skepticism to perverse reward
incentives) and typically label any error
message they find confusing as false. A

tool that works well under these con-
straints looks very different from one
tool builders design for themselves.

However, for every user who lacks
the understanding or motivation one
might hope for, another is eager to un-
derstand how it all works (or perhaps al-
ready does), willing to help even beyond
what one might consider reasonable.

contributed articles

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 69

in the morning, and the results meeting
would follow in the afternoon; as code
size at trials grows it’s not uncommon
to split them across two (or more) days.

Sending people to a trial dramatical-
ly raises the incremental cost of each
sale. However, it gives the non-trivial
benefit of letting us educate customers
(so they do not label serious, true bugs

as false positives) and do real-time, ad
hoc workarounds of weird customer
system setups.

The trial structure is a harsh test for
any tool, and there is little time. The
checked system is large (millions of
lines of code, with 20–30MLOC a pos-
sibility). The code and its build system
are both difficult to understand. How-

sion to conditions likely to be true in a
larger setting.

Laws of Bug finding
The fundamental law of bug finding
is No Check = No Bug. If the tool can’t
check a system, file, code path, or given
property, then it won’t find bugs in it.
Assuming a reasonable tool, the first
order bound on bug counts is just how
much code can be shoved through the
tool. Ten times more code is 10 times
more bugs.

We imagined this law was as simple
a statement of fact as we needed. Un-
fortunately, two seemingly vacuous cor-
ollaries place harsh first-order bounds
on bug counts:

Law: You can’t check code you don’t
see. It seems too trite to note that check-
ing code requires first finding it... until
you try to do so consistently on many
large code bases. Probably the most re-
liable way to check a system is to grab its
code during the build process; the build
system knows exactly which files are in-
cluded in the system and how to com-
pile them. This seems like a simple task.
Unfortunately, it’s often difficult to un-
derstand what an ad hoc, homegrown
build system is doing well enough to ex-
tract this information, a difficulty com-
pounded by the near-universal absolute
edict: “No, you can’t touch that.” By de-
fault, companies refuse to let an exter-
nal force modify anything; you cannot
modify their compiler path, their bro-
ken makefiles (if they have any), or in any
way write or reconfigure anything other
than your own temporary files. Which is
fine, since if you need to modify it, you
most likely won’t understand it.

Further, for isolation, companies
often insist on setting up a test ma-
chine for you to use. As a result, not
infrequently the build you are given to
check does not work in the first place,
which you would get blamed for if you
had touched anything.

Our approach in the initial months
of commercialization in 2002 was a
low-tech, read-only replay of the build
commands: run make, record its out-
put in a file, and rewrite the invoca-
tions to their compiler (such as gcc)
to instead call our checking tool, then
rerun everything. Easy and simple.
This approach worked perfectly in the
lab and for a small number of our ear-
liest customers. We then had the fol-

ever, the tool must routinely go from
never seeing the system previously to
getting good bugs in a few hours. Since
we present results almost immediately
after the checking run, the bugs must
be good with few false positives; there
is no time to cherry pick them.

Furthermore, the error messages
must be clear enough that the sales en-
gineer (who didn’t build the checked
system or the tool) can diagnose and
explain them in real time in response
to “What about this one?” questions.

The most common usage model for
the product has companies run it as
part of their nightly build. Thus, most
require that checking runs complete in
12 hours, though those with larger code
bases (10+MLOC) grudgingly accept
24 hours. A tool that cannot analyze
at least 1,400 lines of code per minute
makes it difficult to meet these targets.
During a checking run, error messages
are put in a database for subsequent
triaging, where users label them as
true errors or false positives. We spend
significant effort designing the system
so these labels are automatically reap-
plied if the error message they refer to
comes up on subsequent runs, despite
code-dilating edits or analysis-chang-
ing bug-fixes to checkers.

As of this writing (December 2009),
approximately 700 customers have
licensed the Coverity Static Analysis
product, with somewhat more than a
billion lines of code among them. We
estimate that since its creation the tool
has analyzed several billion lines of
code, some more difficult than others.

Caveats. Drawing lessons from a sin-
gle data point has obvious problems.
Our product’s requirements roughly
form a “least common denominator”
set needed by any tool that uses non-
trivial analysis to check large amounts
of code across many organizations; the
tool must find and parse the code, and
users must be able to understand er-
ror messages. Further, there are many
ways to handle the problems we have
encountered, and our way may not be
the best one. We discuss our methods
more for specificity than as a claim of
solution.

Finally, while we have had success
as a static-tools company, these are
small steps. We are tiny compared to
mature technology companies. Here,
too, we have tried to limit our discus-“c

o
D

E
P

r
o

F
i

L
E

S
”

b
y

 W
.

b
r

a
D

F
o

r
D

 P
a

L
E

y

70 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

contributed articles

lowing conversation with a potential
customer:

“How do we run your tool?”
“Just type ‘make’ and we’ll rewrite

its output.”
“What’s ‘make’? We use ClearCase.”
“Uh, What’s ClearCase?”
This turned out to be a chasm we

couldn’t cross. (Strictly speaking, the
customer used ‘ClearMake,’ but the
superficial similarities in name are en-
tirely unhelpful at the technical level.)
We skipped that company and went
to a few others. They exposed other
problems with our method, which we
papered over with 90% hacks. None
seemed so troublesome as to force us
to rethink the approach—at least until
we got the following support call from
a large customer:

“Why is it when I run your tool, I
have to reinstall my Linux distribution
from CD?”

This was indeed a puzzling ques-
tion. Some poking around exposed the
following chain of events: the compa-
ny’s make used a novel format to print
out the absolute path of the directory
in which the compiler ran; our script
misparsed this path, producing the
empty string that we gave as the desti-
nation to the Unix “cd” (change direc-
tory) command, causing it to change
to the top level of the system; it ran
“rm -rf *” (recursive delete) during
compilation to clean up temporary
files; and the build process ran as root.
Summing these points produces the
removal of all files on the system.

The right approach, which we have
used for the past seven years, kicks off
the build process and intercepts every
system call it invokes. As a result, we can
see everything needed for checking, in-
cluding the exact executables invoked,
their command lines, the directory
they run in, and the version of the com-
piler (needed for compiler-bug work-
arounds). This control makes it easy to
grab and precisely check all source code,
to the extent of automatically changing
the language dialect on a per-file basis.

To invoke our tool users need only
call it with their build command as an
argument:

cov-build <build command>

We thought this approach was bullet-
proof. Unfortunately, as the astute read-

er has noted, it requires a command
prompt. Soon after implementing it we
went to a large company, so large it had
a hyperspecialized build engineer, who
engaged in the following dialogue:

“How do I run your tool?”
“Oh, it’s easy. Just type ‘cov-build’

before your build command.”
“Build command? I just push this

[GUI] button...”
Social vs. technical. The social restric-

tion that you cannot change anything,
no matter how broken it may be, forces
ugly workarounds. A representative ex-
ample is: Build interposition on Win-
dows requires running the compiler in
the debugger. Unfortunately, doing so
causes a very popular windows C++ com-
piler—Visual Studio C++ .NET 2003—to
prematurely exit with a bizarre error
message. After some high-stress fuss-
ing, it turns out that the compiler has a
use-after-free bug, hit when code used a
Microsoft-specific C language extension
(certain invocations of its #using direc-
tive). The compiler runs fine in normal
use; when it reads the freed memory,
the original contents are still there, so
everything works. However, when run
with the debugger, the compiler switch-
es to using a “debug malloc,” which on
each free call sets the freed memory
contents to a garbage value. The subse-
quent read returns this value, and the
compiler blows up with a fatal error.
The sufficiently perverse reader can no
doubt guess the “solution.”a

Law: You can’t check code you can’t
parse. Checking code deeply requires
understanding the code’s semantics.
The most basic requirement is that you
parse it. Parsing is considered a solved
problem. Unfortunately, this view is na-
ïve, rooted in the widely believed myth
that programming languages exist.

The C language does not exist; nei-
ther does Java, C++, and C#. While a
language may exist as an abstract idea,
and even have a pile of paper (a stan-
dard) purporting to define it, a stan-
dard is not a compiler. What language
do people write code in? The character
strings accepted by their compiler.
Further, they equate compilation with
certification. A file their compiler does

a Immediately after process startup our tool
writes 0 to the memory location of the “in de-
bugger” variable that the compiler checks to
decide whether to use the debug malloc.

A misunderstood
explanation
means the error is
ignored or, worse,
transmuted into
a false positive.

contributed articles

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 71

not reject has been certified as “C code”
no matter how blatantly illegal its con-
tents may be to a language scholar. Fed
this illegal not-C code, a tool’s C front-
end will reject it. This problem is the
tool’s problem.

Compounding it (and others) the
person responsible for running the
tool is often not the one punished if the
checked code breaks. (This person also
often doesn’t understand the checked
code or how the tool works.) In particu-
lar, since our tool often runs as part of
the nightly build, the build engineer
managing this process is often in charge
of ensuring the tool runs correctly.
Many build engineers have a single con-
crete metric of success: that all tools ter-
minate with successful exit codes. They
see Coverity’s tool as just another speed
bump in the list of things they must get
through. Guess how receptive they are
to fixing code the “official” compiler ac-
cepted but the tool rejected with a parse
error? This lack of interest generally ex-
tends to any aspect of the tool for which
they are responsible.

Many (all?) compilers diverge from
the standard. Compilers have bugs. Or
are very old. Written by people who mis-
understand the specification (not just
for C++). Or have numerous extensions.
The mere presence of these divergences
causes the code they allow to appear.
If a compiler accepts construct X, then
given enough programmers and code,
eventually X is typed, not rejected, then
encased in the code base, where the
static tool will, not helpfully, flag it as a
parse error.

The tool can’t simply ignore diver-
gent code, since significant markets
are awash in it. For example, one enor-
mous software company once viewed
conformance as a competitive disad-
vantage, since it would let others make
tools usable in lieu of its own. Embed-
ded software companies make great
tool customers, given the bug aversion
of their customers; users don’t like it if
their cars (or even their toasters) crash.
Unfortunately, the space constraints in
such systems and their tight coupling
to hardware have led to an astonishing
oeuvre of enthusiastically used com-
piler extensions.

Finally, in safety-critical software
systems, changing the compiler often
requires costly re-certification. Thus,
we routinely see the use of decades-

make two different things the same

typedef char int;

(“Useless type name in empty decla-
ration.”)

And one where readability trumps
the language spec

unsigned x = 0xdead _ beef;
(“Invalid suffix ‘_beef’ on integer

constant.”)
From the embedded space, creating

a label that takes no space
void x;

(“Storage size of ‘x’ is not known.”)
Another embedded example that

controls where the space comes from

unsigned x @ “text”;

(“Stray ‘@’ in program.”)
A more advanced case of a nonstan-

dard construct is

Int16 ErrSetJump(ErrJumpBuf buf)
 = { 0x4E40 + 15, 0xA085; }

It treats the hexadecimal values of
machine-code instructions as program
source.

The award for most widely used ex-
tension should, perhaps, go to Micro-
soft support for precompiled headers.
Among the most nettlesome troubles
is that the compiler skips all the text
before an inclusion of a precompiled
header. The implication of this behav-
ior is that the following code can be
compiled without complaint:

I can put whatever I want here.
It doesn’t have to compile.
If your compiler gives an error,
 it sucks.
#include <some-precompiled-
 header.h>

Microsoft’s on-the-fly header fabri-
cation makes things worse.

Assembly is the most consistently
troublesome construct. It’s already
non-portable, so compilers seem to
almost deliberately use weird syn-
tax, making it difficult to handle in a
general way. Unfortunately, if a pro-
grammer uses assembly it’s probably
to write a widely used function, and
if the programmer does it, the most
likely place to put it is in a widely used

old compilers. While the languages
these compilers accept have interest-
ing features, strong concordance with
a modern language standard is not one
of them. Age begets new problems.
Realistically, diagnosing a compiler’s
divergences requires having a copy of
the compiler. How do you purchase a
license for a compiler 20 versions old?
Or whose company has gone out of
business? Not through normal chan-
nels. We have literally resorted to buy-
ing copies off eBay.

This dynamic shows up in a softer
way with non-safety-critical systems; the
larger the code base, the more the sales
force is rewarded for a sale, skewing sales
toward such systems. Large code bases
take a while to build and often get tied to
the compiler used when they were born,
skewing the average age of the compilers
whose languages we must accept.

If divergence-induced parse errors are
isolated events scattered here and there,
then they don’t matter. An unsound tool
can skip them. Unfortunately, failure of-
ten isn’t modular. In a sad, too-common
story line, some crucial, purportedly “C”
header file contains a blatantly illegal
non-C construct. It gets included by all
files. The no-longer-potential customer
is treated to a constant stream of parse
errors as your compiler rips through the
customer’s source files, rejecting each
in turn. The customer’s derisive stance
is, “Deep source code analysis? Your
tool can’t even compile code. How can
it find bugs?” It may find this event so
amusing that it tells many friends.

Tiny set of bad snippets seen in header
files. One of the first examples we en-
countered of illegal-construct-in-key-
header file came up at a large network-
ing company

// “redefinition of parameter ’a’”
void foo(int a, int a);

The programmer names foo’s first
formal parameter a and, in a form of
lexical locality, the second as well.
Harmless. But any conformant com-
piler will reject this code. Our tool cer-
tainly did. This is not helpful; compil-
ing no files means finding no bugs, and
people don’t need your tool for that.
And, because its compiler accepted it,
the potential customer blamed us.

Here’s an opposite, less-harmless
case where the programmer is trying to

72 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

contributed articles

header file. Here are two ways (out
of many) to issue a mov instruction

// First way
foo() {
 _ _ asm mov eax, eab
 mov eax, eab;
}

// Second way
#pragma asm
_ _ asm [mov eax, eab mov
eax, eab]
#pragma end _ asm

The only thing shared in addition to
mov is the lack of common textual keys
that can be used to elide them.

We have thus far discussed only C, a
simple language; C++ compilers diverge
to an even worse degree, and we go to
great lengths to support them. On the
other hand, C# and Java have been eas-
ier, since we analyze the bytecode they
compile to rather than their source.

How to parse not-C with a C front-end.
OK, so programmers use extensions.
How difficult is it to solve this problem?
Coverity has a full-time team of some of
its sharpest engineers to firefight this ba-
nal, technically uninteresting problem
as their sole job. They’re never done.b

We first tried to make the problem
someone else’s problem by using the
Edison Design Group (EDG) C/C++
front-end to parse code.5 EDG has
worked on how to parse real C code
since 1989 and is the de facto indus-
try standard front-end. Anyone decid-
ing to not build a homegrown front-
end will almost certainly license from
EDG. All those who do build a home-
grown front-end will almost certainly
wish they did license EDG after a few
experiences with real code. EDG aims
not just for mere feature compatibility
but for version-specific bug compat-
ibility across a range of compilers. Its
front-end probably resides near the
limit of what a profitable company can
do in terms of front-end gyrations.

Unfortunately, the creativity of com-
piler writers means that despite two de-
cades of work EDG still regularly meets

b Anecdotally, the dynamic memory-checking
tool Purify10 had an analogous struggle at the
machine-code level, where Purify’s developers
expended significant resources reverse engi-
neering the various activation-record layouts
used by different compilers.

defeat when trying to parse real-world
large code bases.c Thus, our next step is
for each supported compiler, we write
a set of “transformers” that mangle
its personal language into something
closer to what EDG can parse. The
most common transformation simply
rips out the offending construct. As
one measure of how much C does not
exist, the table here counts the lines of
transformer code needed to make the
languages accepted by 18 widely used
compilers look vaguely like C. A line of
transformer code was almost always
written only when we were burned to a
degree that was difficult to work around.
Adding each new compiler to our list of
“supported” compilers almost always
requires writing some kind of trans-
former. Unfortunately, we sometimes
need a deeper view of semantics so are
forced to hack EDG directly. This meth-
od is a last resort. Still, at last count (as
of early 2009) there were more than
406(!) places in the front-end where we
had an #ifdef COVERITY to handle a
specific, unanticipated construct.

EDG is widely used as a compiler
front-end. One might think that for cus-
tomers using EDG-based compilers we
would be in great shape. Unfortunately,
this is not necessarily the case. Even ig-
noring the fact that compilers based on
EDG often modify EDG in idiosyncratic
ways, there is no single “EDG front-
end” but rather many versions and pos-
sible configurations that often accept a
slightly different language variant than
the (often newer) version we use. As a Si-
syphean twist, assume we cannot work
around and report an incompatibility. If
EDG then considers the problem impor-
tant enough to fix, it will roll it together
with other patches into a new version.

So, to get our own fix, we must up-

c Coverity won the dubious honor of being the
single largest source of EDG bug reports after
only three years of use.

grade the version we use, often caus-
ing divergence from other unupgraded
EDG compiler front-ends, and more is-
sues ensue.

Social versus technical. Can we get cus-
tomer source code? Almost always, no.
Despite nondisclosure agreements, even
for parse errors and preprocessed code,
though perhaps because we are viewed
as too small to sue to recoup damages.
As a result, our sales engineers must
type problems in reports from memory.
This works as well as you might expect.
It’s worse for performance problems,
which often show up only in large-code
settings. But one shouldn’t complain,
since classified systems make things
even worse. Can we send someone on-
site to look at the code? No. You listen to
recited syntax on the phone.

Bugs
Do bugs matter? Companies buy bug-
finding tools because they see bugs as
bad. However, not everyone agrees that
bugs matter. The following event has
occurred during numerous trials. The
tool finds a clear, ugly error (memory
corruption or use-after-free) in impor-
tant code, and the interaction with the
customer goes like thus:

“So?”
“Isn’t that bad? What happens if

you hit it?”
“Oh, it’ll crash. We’ll get a call.”

[Shrug.]
If developers don’t feel pain, they

often don’t care. Indifference can arise
from lack of accountability; if QA can-
not reproduce a bug, then there is no
blame. Other times, it’s just odd:

“Is this a bug?”
“I’m just the security guy.”
“That’s not a bug; it’s in third-party

code.”
“A leak? Don’t know. The author left

years ago...”
No, your tool is broken; that is not

a bug. Given enough code, any bug-

Lines of code per transformer for 18 common compilers we support.

160 QnX 280 hP-UX 285 picc.cpp

294 sun.java.cpp 384 st.cpp 334 cosmic.cpp

421 intel.cpp 457 sun.cpp 603 iccmsa.cpp

629 bcc.cpp 673 diab.cpp 756 xlc.cpp

912 ArM 914 GnU 1294 Microsoft

1425 keil.cpp 1848 cw.cpp 1665 Metrowerks

contributed articles

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 73

finding tool will uncover some weird
examples. Given enough coders,
you’ll see the same thing. The fol-
lowing utterances were culled from
trial meetings:

Upon seeing an error report saying
the following loop body was dead code
foo(i = 1; i < 0; i++)
 ... deadcode ...

“No, that’s a false positive; a loop ex-
ecutes at least once.”

For this memory corruption error
(32-bit machine)

int a[2], b;
memset(a, 0, 12);

“No, I meant to do that; they are next
to each other.”

For this use-after-free

free(foo);
foo->bar = ...;

“No, that’s OK; there is no malloc
call between the free and use.”

As a final example, a buffer overflow
checker flagged a bunch of errors of the
form

unsigned p[4];
...
p[4] = 1;

“No, ANSI lets you write 1 past the
end of the array.”

After heated argument, the program-
mer said, “We’ll have to agree to dis-
agree.” We could agree about the dis-
agreement, though we couldn’t quite
comprehend it. The (subtle?) interplay
between 0-based offsets and buffer siz-
es seems to come up every few months.

While programmers are not often
so egregiously mistaken, the general
trend holds; a not-understood bug
report is commonly labeled a false
positive, rather than spurring the pro-
grammer to delve deeper. The result?
We have completely abandoned some
analyses that might generate difficult-
to-understand reports.

How to handle cluelessness. You can-
not often argue with people who are
sufficiently confused about technical
matters; they think you are the one
who doesn’t get it. They also tend to get
emotional. Arguing reliably kills sales.
What to do? One trick is to try to orga-
nize a large meeting so their peers do

the work for you. The more people in
the room, the more likely there is some-
one very smart and respected and cares
(about bugs and about the given code),
can diagnose an error (to counter argu-
ments it’s a false positive), has been
burned by a similar error, loses his/her
bonus for errors, or is in another group
(another potential sale).

Further, a larger results meeting
increases the probability that anyone
laid off at a later date attended it and
saw how your tool worked. True story:
A networking company agreed to buy
the Coverity product, and one week
later laid off 110 people (not because of
us). Good or bad? For the fired people
it clearly wasn’t a happy day. However,
it had a surprising result for us at a
business level; when these people were
hired at other companies some sug-
gested bringing the tool in for a trial,
resulting in four sales.

What happens when you can’t fix
all the bugs? If you think bugs are bad
enough to buy a bug-finding tool, you
will fix them. Not quite. A rough heuris-
tic is that fewer than 1,000 bugs, then
fix them. More? The baseline is to re-
cord the current bugs, don’t fix them
but do fix any new bugs. Many compa-
nies have independently come up with
this practice, which is more rational
than it seems. Having a lot of bugs usu-
ally requires a lot of code. Much of it
won’t have changed in a long time. A
reasonable, conservative heuristic is
if you haven’t touched code in years,
don’t modify it (even for a bug fix) to
avoid causing any breakage.

A surprising consequence is it’s not
uncommon for tool improvement to be
viewed as “bad” or at least a problem.
Pretend you are a manager. For anything
bad you can measure, you want it to di-
minish over time. This means you are
improving something and get a bonus.

You may not understand techni-
cal issues that well, and your boss cer-
tainly doesn’t understand them. Thus,
you want a simple graph that looks like
Figure 1; no manager gets a bonus for
Figure 2. Representative story: At com-
pany X, version 2.4 of the tool found
approximately 2,400 errors, and over
time the company fixed about 1,200 of
them. Then it upgraded to version 3.6.
Suddenly there were 3,600 errors. The
manager was furious for two reasons:
One, we “undid” all the work his people

…it’s not
uncommon for
tool improvement
to be viewed
as “bad” or at
least a problem.

74 communicAtions of the Acm | FeBrUAry 2010 | vOl. 53 | nO. 2

contributed articles

had done, and two, how could we have
missed them the first time?

How do upgrades happen when
more bugs is no good? Companies in-
dependently settle on a small number
of upgrade models:

Never. Guarantees “improvement”;
Never before a release (where it would

be most crucial). Counterintuitively hap-
pens most often in companies that be-
lieve the tool helps with release quality
in that they use it to “gate” the release;

Never before a meeting. This is at least
socially rational;

Upgrade, then roll back. Seems to hap-
pen at least once at large companies;
and

Upgrade only checkers where they fix
most errors. Common checkers include
use-after-free, memory corruption,
(sometimes) locking, and (sometimes)
checkers that flag code contradictions.

Do missed errors matter? If people
don’t fix all the bugs, do missed errors
(false negatives) matter? Of course not;
they are invisible. Well, not always.
Common cases: Potential customers
intentionally introduced bugs into the
system, asking “Why didn’t you find it?”
Many check if you find important past

bugs. The easiest sale is to a group whose
code you are checking that was horribly
burned by a specific bug last week, and
you find it. If you don’t find it? No mat-
ter the hundreds of other bugs that may
be the next important bug.

Here is an open secret known to bug
finders: The set of bugs found by tool
A is rarely a superset of another tool B,
even if A is much better than B. Thus,
the discussion gets pushed from “A is
better than B” to “A finds some things,
B finds some things” and does not help
the case of A.

Adding bugs can be a problem; los-
ing already inspected bugs is always a
problem, even if you replace them with
many more new errors. While users
know in theory that the tool is “not a
verifier,” it’s very different when the tool
demonstrates this limitation, good and
hard, by losing a few hundred known er-
rors after an upgrade.

The easiest way to lose bugs is to add
just one to your tool. A bug that causes
false negatives is easy to miss. One such
bug in how our early research tool’s
internal representation handled array
references meant the analysis ignored
most array uses for more than nine
months. In our commercial product,
blatant situations like this are prevent-
ed through detailed unit testing, but un-
covering the effect of subtle bugs is still
difficult because customer source code
is complex and not available.

churn
Users really want the same result from
run to run. Even if they changed their
code base. Even if they upgraded the tool.
Their model of error messages? Compil-
er warnings. Classic determinism states:
the same input + same function = same

result. What users want: different input
(modified code base) + different func-
tion (tool version) = same result. As a
result, we find upgrades to be a constant
headache. Analysis changes can easily
cause the set of defects found to shift.
The new-speak term we use internally is
“churn.” A big change from academia is
that we spend considerable time and en-
ergy worrying about churn when modify-
ing checkers. We try to cap churn at less
than 5% per release. This goal means
large classes of analysis tricks are disal-
lowed since they cannot obviously guar-
antee minimal effect on the bugs found.
Randomization is verboten, a tragedy
given that it provides simple, elegant so-
lutions to many of the exponential prob-
lems we encounter. Timeouts are also
bad and sometimes used as a last resort
but never encouraged.

Myth: More analysis is always good.
While nondeterministic analysis might
cause problems, it seems that adding
more deterministic analysis is always
good. Bring on path sensitivity! Theorem
proving! SAT solvers! Unfortunately, no.

At the most basic level, errors found
with little analysis are often better than
errors found with deeper tricks. A good
error is probable, a true error, easy to di-
agnose; best is difficult to misdiagnose.
As the number of analysis steps increas-
es, so, too, does the chance of analysis
mistake, user confusion, or the per-
ceived improbability of event sequence.
No analysis equals no mistake.

Further, explaining errors is often
more difficult than finding them. A
misunderstood explanation means the
error is ignored or, worse, transmuted
into a false positive. The heuristic we
follow: Whenever a checker calls a com-
plicated analysis subroutine, we have to
explain what that routine did to the user,
and the user will then have to (correctly)
manually replicate that tricky thing in
his/her head.

Sophisticated analysis is not easy to
explain or redo manually. Compound-
ing the problem, users often lack a
strong grasp on how compilers work.
A representative user quote is “‘Static’
analysis’? What’s the performance over-
head?”

The end result? Since the analysis
that suppresses false positives is invis-
ible (it removes error messages rather
than generates them) its sophistication
has scaled far beyond what our research

figure 1. Bugs down over
time = manager bonus.

time

bad

time

bad

figure 2. no bonus.

contributed articles

FeBrUAry 2010 | vOl. 53 | nO. 2 | communicAtions of the Acm 75

system did. On the other hand, the
commercial Coverity product, despite
its improvements, lags behind the re-
search system in some ways because it
had to drop checkers or techniques that
demand too much sophistication on
the part of the user. As an example, for
many years we gave up on checkers that
flagged concurrency errors; while find-
ing such errors was not too difficult, ex-
plaining them to many users was. (The
PREfix system also avoided reporting
races for similar reasons though is now
supported by Coverity.)

No bug is too foolish to check for. Giv-
en enough code, developers will write
almost anything you can think of. Fur-
ther, completely foolish errors can be
some of the most serious; it’s difficult to
be extravagantly nonsensical in a harm-
less way. We’ve found many errors over
the years. One of the absolute best was
the following in the X Window System:

if(getuid() != 0 && geteuid == 0) {
 ErrorF(“only root”);
 exit(1);

}

It allowed any local user to get root
accessd and generated enormous press
coverage, including a mention on Fox
news (the Web site). The checker was
written by Scott McPeak as a quick hack
to get himself familiar with the system. It
made it into the product not because of
a perceived need but because there was
no reason not to put it in. Fortunately.

false Positives
False positives do matter. In our experi-
ence, more than 30% easily cause prob-
lems. People ignore the tool. True bugs
get lost in the false. A vicious cycle starts
where low trust causes complex bugs
to be labeled false positives, leading to
yet lower trust. We have seen this cycle
triggered even for true errors. If people
don’t understand an error, they label it
false. And done once, induction makes
the (n+1)th time easier. We initially
thought false positives could be elimi-
nated through technology. Because of
this dynamic we no longer think so.

We’ve spent considerable technical

d The tautological check geteuid == 0 was in-
tended to be geteuid() == 0. In its current
form, it compares the address of geteuid to 0; giv-
en that the function exists, its address is never 0.

perience covered here was the work of
many. We thank all who helped build the
tool and company to its current state,
especially the sales engineers, support
engineers, and services engineers who
took the product into complex environ-
ments and were often the first to bear
the brunt of problems. Without them
there would be no company to docu-
ment. We especially thank all the cus-
tomers who tolerated the tool during
its transition from research quality to
production quality and the numerous
champions whose insightful feedback
helped us focus on what mattered.

References
1. ball, t. and rajamani, S.k. automatically validating

temporal safety properties of interfaces. in
Proceedings of the Eighth international SPIN
Workshop on Model Checking of Software (toronto,
ontario, canada). M. Dwyer, Ed. Springer-Verlag, New
york, 2001, 103–122.

2. bush, W., Pincus, J., and Sielaff, D. a static analyzer
for finding dynamic programming errors. Software:
Practice and Experience 30, 7 (June 2000), 775–802.

3. coverity static analysis; http://www.coverity.com
4. Das, M., Lerner, S., and Seigle, M. ESP: Path-

sensitive program verification in polynomial
time. in Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation (berlin, germany, June 17–19). acM
Press, New york, 2002, 57–68.

5. Edison Design group. EDg c compiler front-end;
http://www.edg.com

6. Engler, D., chelf, b., chou, a., and hallem, S. checking
system rules using system-specific, programmer-
written compiler extensions. in Proceedings of the
Fourth Conference on Operating System Design &
Implementation (San Diego, oct. 22–25). USENiX
association, berkeley, ca, 2000, 1–1.

7. Flanagan, c., Leino, k.M., Lillibridge, M., Nelson, g.,
Saxe, J.b., and Stata, r. Extended static checking
for Java. in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (berlin, germany, June 17–19). acM
Press, New york, 2002, 234–245.

8. Foster, J.S., terauchi, t., and aiken, a. Flow-sensitive
type qualifiers. in Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design
and Implementation (berlin, germany, June 17–19).
acM Press, New york, 2002, 1–12.

9. hallem, S., chelf, b., Xie, y., and Engler, D. a system
and language for building system-specific, static
analyses. in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (berlin, germany, June 17–19). acM
Press, New york, 2002, 69–82.

10. hastings, r. and Joyce, b. Purify: Fast detection of memory
leaks and access errors. in Proceedings of the Winter
1992 USENIX Conference (berkeley, ca, Jan. 20–24).
USENiX association, berkeley, ca, 1992, 125–138.

11. Xie, y. and aiken, a. context- and path-sensitive
memory leak detection. in Proceedings of the 10th
European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(Lisbon, Portugal, Sept. 5–9). acM Press, New york,
2005, 115–125.

Al Bessey, Ken Block, Ben Chelf, Andy Chou,
Bryan Fulton, Seth hallem, Charles henri-Gros,
Asya Kamsky, and Scott McPeak are current or former
employees of coverity, inc., a software company based
in San Francisco, ca.; http://www.coverity.com

Dawson Engler (engler@stanford.edu) is an associate
professor in the Department of computer Science and
Electrical Engineering at Stanford University, Stanford, ca,
and technical advisor to coverity, inc., San Francisco, ca.

© 2010 acM 0001-0782/10/0200 $10.00

effort to achieve low false-positive rates
in our static analysis product. We aim
for below 20% for “stable” checkers.
When forced to choose between more
bugs or fewer false positives we typi-
cally choose the latter.

Talking about “false positive rate” is
simplistic since false positives are not
all equal. The initial reports matter in-
ordinately; if the first N reports are false
positives (N = 3?), people tend to utter
variants on “This tool sucks.” Further-
more, you never want an embarrass-
ing false positive. A stupid false posi-
tive implies the tool is stupid. (“It’s not
even smart enough to figure that out?”)
This technical mistake can cause so-
cial problems. An expensive tool needs
someone with power within a company
or organization to champion it. Such
people often have at least one enemy.
You don’t want to provide ammunition
that would embarrass the tool champi-
on internally; a false positive that fits in
a punchline is really bad.

conclusion
While we’ve focused on some of the
less-pleasant experiences in the com-
mercialization of bug-finding prod-
ucts, two positive experiences trump
them all. First, selling a static tool has
become dramatically easier in recent
years. There has been a seismic shift in
terms of the average programmer “get-
ting it.” When you say you have a static
bug-finding tool, the response is no lon-
ger “Huh?” or “Lint? Yuck.” This shift
seems due to static bug finders being in
wider use, giving rise to nice network-
ing effects. The person you talk to likely
knows someone using such a tool, has a
competitor that uses it, or has been in a
company that used it.

Moreover, while seemingly vacuous
tautologies have had a negative effect
on technical development, a nice bal-
ancing empirical tautology holds that
bug finding is worthwhile for anyone
with an effective tool. If you can find
code, and the checked system is big
enough, and you can compile (enough
of) it, then you will always find serious
errors. This appears to be a law. We en-
courage readers to exploit it.

Acknowledgments
We thank Paul Twohey, Cristian Cadar,
and especially Philip Guo for their help-
ful, last-minute proofreading. The ex-

