
IronFleet: Proving Practical Distributed Systems Correct
Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,

Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill
Microsoft Research

Abstract
Distributed systems are notorious for harboring subtle bugs.
Verification can, in principle, eliminate these bugs a priori,
but verification has historically been difficult to apply at full-
program scale, much less distributed-system scale.

We describe a methodology for building practical and
provably correct distributed systems based on a unique blend
of TLA-style state-machine refinement and Hoare-logic ver-
ification. We demonstrate the methodology on a complex
implementation of a Paxos-based replicated state machine
library and a lease-based sharded key-value store. We prove
that each obeys a concise safety specification, as well as de-
sirable liveness requirements. Each implementation achieves
performance competitive with a reference system. With our
methodology and lessons learned, we aim to raise the stan-
dard for distributed systems from “tested” to “correct.”

1. Introduction
Distributed systems are notoriously hard to get right. Protocol
designers struggle to reason about concurrent execution on
multiple machines, which leads to subtle errors. Engineers
implementing such protocols face the same subtleties and,
worse, must improvise to fill in gaps between abstract proto-
col descriptions and practical constraints, e.g., that real logs
cannot grow without bound. Thorough testing is considered
best practice, but its efficacy is limited by distributed systems’
combinatorially large state spaces.

In theory, formal verification can categorically eliminate
errors from distributed systems. However, due to the com-
plexity of these systems, previous work has primarily fo-
cused on formally specifying [4, 13, 27, 41, 48, 64], verify-
ing [3, 52, 53, 59, 61], or at least bug-checking [20, 31, 69]
distributed protocols, often in a simplified form, without
extending such formal reasoning to the implementations.
In principle, one can use model checking to reason about
the correctness of both protocols [42, 59] and implemen-
tations [46, 47, 69]. In practice, however, model checking
is incomplete—the accuracy of the results depends on the
accuracy of the model—and does not scale [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815428

This paper presents IronFleet, the first methodology for
automated machine-checked verification of the safety and
liveness of non-trivial distributed system implementations.
The IronFleet methodology is practical: it supports complex,
feature-rich implementations with reasonable performance
and a tolerable proof burden.

Ultimately, IronFleet guarantees that the implementation
of a distributed system meets a high-level, centralized spec-
ification. For example, a sharded key-value store acts like
a key-value store, and a replicated state machine acts like
a state machine. This guarantee categorically rules out race
conditions, violations of global invariants, integer overflow,
disagreements between packet encoding and decoding, and
bugs in rarely exercised code paths such as failure recov-
ery [70]. Moreover, it not only rules out bad behavior, it tells
us exactly how the distributed system will behave at all times.

The IronFleet methodology supports proving both safety
and liveness properties of distributed system implementa-
tions. A safety property says that the system cannot perform
incorrect actions; e.g., replicated-state-machine linearizabil-
ity says that clients never see inconsistent results. A liveness
property says that the system eventually performs a useful
action, e.g., that it eventually responds to each client request.
In large-scale deployments, ensuring liveness is critical, since
a liveness bug may render the entire system unavailable.

IronFleet takes the verification of safety properties further
than prior work (§9), mechanically verifying two full-featured
systems. The verification applies not just to their protocols
but to actual imperative implementations that achieve good
performance. Our proofs reason all the way down to the
bytes of the UDP packets sent on the network, guaranteeing
correctness despite packet drops, reorderings, or duplications.

Regarding liveness, IronFleet breaks new ground: to our
knowledge, IronFleet is the first system to mechanically
verify liveness properties of a practical protocol, let alone an
implementation.

IronFleet achieves comprehensive verification of complex
distributed systems via a methodology for structuring and
writing proofs about them, as well as a collection of generic
verified libraries useful for implementing such systems. Struc-
turally, IronFleet’s methodology uses a concurrency contain-
ment strategy (§3) that blends two distinct verification styles
within the same automated theorem-proving framework, pre-
venting any semantic gaps between them. We use TLA-style
state-machine refinement [36] to reason about protocol-level
concurrency, ignoring implementation complexities, then use
Floyd-Hoare-style imperative verification [17, 22] to reason

about those complexities while ignoring concurrency. To
simplify reasoning about concurrency, we impose a machine-
checked reduction-enabling obligation on the implementa-
tion (§3.6). Finally, we structure our protocols using always-
enabled actions (§4.2) to greatly simplify liveness proofs.

To facilitate writing proofs about distributed systems, we
have developed techniques for writing automation-friendly in-
variant proofs (§3.3), as well as disciplines and tool improve-
ments for coping with prover limitations (§6). For liveness
proofs, we have constructed an embedding of TLA (§4.1) in
our automated verification framework that includes heuristics
for reliably unleashing the power of automated proving.

To help developers, we have built general-purpose verified
libraries for common tasks, such as packet parsing and
marshalling, relating concrete data structures to their abstract
counterparts, and reasoning about collections. We have also
written a verified library of 40 fundamental TLA rules useful
for writing liveness proofs.

To illustrate IronFleet’s applicability, we have built and
proven correct two rather different distributed systems:
IronRSL, a Paxos-based [35] replicated-state-machine li-
brary, and IronKV, a sharded key-value store. All IronFleet
code is publicly available [25].

IronRSL’s implementation is complex, including many de-
tails often omitted by prior work; e.g., it supports state trans-
fer, log truncation, dynamic view-change timeouts, batching,
and a reply cache. We prove complete functional correctness
and its key liveness property: if the network is eventually
synchronous for a live quorum of replicas, then a client re-
peatedly submitting a request eventually receives a reply.

Unlike IronRSL, which uses distribution for reliability,
IronKV uses it for improved throughput by moving “hot”
keys to dedicated machines. For IronKV, we prove complete
functional correctness and an important liveness property: if
the network is fair then the reliable-transmission component
eventually delivers each message.

While verification rules out a host of problems, it is not
a panacea (§8). IronFleet’s correctness is not absolute; it
relies on several assumptions (§2.5). Additionally, verification
requires more up-front development effort: the automated
tools we use fill in many low-level proof steps automatically
(§6.3.1), but still require considerable assistance from the
developer (§6.3.2). Finally, we focus on verifying newly
written code in a verification-friendly language (§2.2), rather
than verifying existing code.

In summary, this paper makes the following contributions:
• We demonstrate the feasibility of mechanically verify-

ing that practical distributed implementations, i.e., func-
tionally complete systems with reasonable performance,
match simple, logically centralized specifications.

• We describe IronFleet’s novel methodology for uniting
TLA-style refinement with Floyd-Hoare logic within a
single automated verification framework.

• We provide the first machine-verified liveness proofs of
non-trivial distributed systems.

L0 L1 L2 L3 L4

H0 H1 H2 H3 H4 H5 H6 H7

Figure 1. State Machine Refinement. The low-level state ma-
chine behavior L0. . .L4 refines the high-level one H0. . .H7 because
each low-level state corresponds to a high-level state. For each cor-
respondence, shown as a dashed line, the two states must satisfy the
spec’s refinement conditions. Low-level step L0→L1, as is typical,
maps to one high-level step H0→H1. However, low-level steps can
map to zero (L2→L3) or several (L3→L4) high-level steps.

method halve(x:int) returns (y:int)
requires x > 0;
ensures y < x;

{ y := x / 2; }

Figure 2. Simple Floyd-Hoare verification example.

• We describe engineering disciplines and lessons for veri-
fying distributed systems.

2. Background and Assumptions
We briefly describe the existing verification techniques that
IronFleet draws upon, as well as our assumptions.

2.1 State Machine Refinement

State machine refinement [1, 18, 34] is often used to rea-
son about distributed systems [4, 27, 41, 48, 52, 64]. The
developer describes the desired system as a simple abstract
state machine with potentially infinitely many states and non-
deterministic transition predicates. She then creates a series
of increasingly complex (but still declarative) state machines,
and proves that each one refines the one “above” it (Figure 1).
State machine L refines H if each of L’s possible behaviors,
i.e., each (potentially infinite) sequence of states the machine
may visit, corresponds to an equivalent behavior of H. To
gain the benefits of abstraction this approach provides, the
developer must choose the layer abstractions intelligently, a
subtle choice needed for each new context.

State machine refinement in a distributed-system context
(e.g., TLA-style refinement) typically considers declarative
specifications, not imperative code. PlusCal [37] attempts to
bridge this gap, but has only been used for tiny programs.

2.2 Floyd-Hoare Verification

Many program verification tools support Floyd-Hoare style [17,
22] first-order predicate logic reasoning about imperative pro-
grams. In other words, they allow the programmer to annotate
a program with assertions about the program’s state, and the
verifier checks that the assertions hold true for all possible
program inputs. For example, the code in Figure 2 asserts
a condition about its input via a precondition and asserts a
condition about its output via a postcondition.

As in our previous work [21], we use Dafny [39], a high-
level language that automates verification via the Z3 [11]
SMT solver. This enables it to fill in many low-level proofs

automatically; for example, it easily verifies the program in
Figure 2 for all possible inputs x without any assistance.

However, many proposition classes are not decidable in
general, so Z3 uses heuristics. For example, propositions
involving universal quantifiers (∀) and existential quantifiers
(∃) are undecidable. Thus, it is possible to write correct
code in Dafny that the solver nevertheless cannot prove
automatically. Instead, the developer may insert annotations
to guide the verifier’s heuristics to a proof. For instance, the
developer can write a trigger to cue the verifier as to which
values to instantiate a quantified variable with [12].

Once a program verifies, Dafny compiles it to C# and has
the .NET compiler produce an executable. Other languages
(e.g., C++) are currently unsupported, but it would likely be
possible to compile Dafny to them. Our previous work [21]
shows how to compile Dafny to verifiable assembly to avoid
depending on the Dafny compiler, .NET, and Windows.

Like most verification tools, Dafny only considers one
single-threaded program, not a collection of concurrently
executing hosts. Indeed, some verification experts estimate
that the state-of-the-art in concurrent program verification
lags that of sequential verification by a decade [51].

2.3 Reduction

Given a fine-grained behavior from a real concurrent system,
we can use reduction [40] to convert it to an equivalent
behavior of coarse-grained steps, simplifying verification.
Crucially, two steps can swap places in the behavior if
swapping them has no effect on the execution’s outcome.

Reduction is typically used in the context of shared-
memory concurrent programs [9, 14, 33] and synchronization
primitives [65]. Applying reduction requires identifying all of
the steps in the system, proving commutativity relationships
among them, and applying these relationships to create an
equivalent behavior with a more useful form. We tackle these
challenges in the context of distributed systems in §3.6.

2.4 Temporal Logic of Actions (TLA)

Temporal logic [54] and its extension TLA [34] are standard
tools for reasoning about safety and liveness. Temporal logic
formulas are predicates about the system’s current and future
states. The simplest type of formula ignores the future; e.g.,
in a lock system, a formula P could be “host h holds the lock
now.” Other formulas involve the future; e.g., ♦P means P
eventually holds, and �P means P holds now and forever.
For example, the property ∀h ∈ Hosts : �♦P means that for
any host, it is always true that h will eventually hold the lock.

TLA typically considers abstract specifications, not im-
perative code. Furthermore, a naı̈ve embedding of TLA can
often pose problems for automated verification. After all,
each � involves a universal quantifier and each ♦ involves
an existential quantifier. Since Z3 needs heuristics to decide
propositions with quantifiers (§2.2), it can fail due to inade-
quate developer annotations. We address this in §4.1.

I0 I1 I2 I3

H0 H1 H2 H3 H4

P0 P1 P2 P3

High-level spec (§3.1)

Distributed protocol (§3.2)

Implementation (§3.4)

refinement (§3.3)

refinement (§3.5)

Figure 3. Verification Overview. IronFleet divides a distributed
system into carefully chosen layers. We use TLA style verification to
prove that any behavior of the protocol layer (e.g., P0. . .P3) refines
some behavior of the high-level spec (e.g., H0. . .H4). We then use
Floyd-Hoare style to prove that any behavior of the implementation
(e.g., I0. . .I3) refines a behavior of the protocol layer.

2.5 Assumptions

Our guarantees rely on the following assumptions.
A small amount of our code is assumed, rather than proven,

correct. Thus, to trust the system, a user must read this code.
Specifically, the spec for each system is trusted, as is the brief
main-event loop described in §3.7.

We do not assume reliable delivery of packets, so the
network may arbitrarily delay, drop, or duplicate packets. We
do assume the network does not tamper with packets, and
that the addresses in packet headers are trustworthy. These
assumptions about message integrity are easy to enforce
within, say, a datacenter or VPN, and could be relaxed by
modeling the necessary cryptographic primitives to talk about
keys instead of addresses [21].

We assume the correctness of Dafny, the .NET compiler
and runtime, and the underlying Windows OS. Previous
work [21] shows how to compile Dafny code into verifiable
assembly code to avoid these dependencies. We also rely on
the correctness of the underlying hardware.

Our liveness properties depend on further assumptions. For
IronRSL, we assume a quorum of replicas run their respective
main loops with a minimum frequency, never running out
of memory, and the network eventually delivers messages
synchronously among them; more details are in §5.1.4. For
IronKV, we assume that each host’s main loop executes
infinitely often and that the network is fair, i.e., a message
sent infinitely often is eventually delivered.

3. The IronFleet Verification Methodology
IronFleet organizes a distributed system’s implementation
and proof into layers (Figure 3) to avoid the intermingling of
subtle distributed protocols with implementation complexity.
At the top (§3.1), we write a simple spec for the system’s
behavior. We then write an abstract distributed protocol layer
(§3.2) and use TLA-style techniques to prove that it refines
the spec layer (§3.3). Then we write an imperative implemen-
tation layer to run on each host (§3.4) and prove that, despite
the complexities introduced when writing real systems code,
the implementation correctly refines the protocol layer (§3.5).

To avoid complex reasoning about interleaved execution of
low-level operations at multiple hosts, we use a concurrency

datatype SpecState = SpecState(history:seq<HostId>)
predicate SpecInit(ss:SpecState)
{ |ss.history|==1 && ss.history[0] in AllHostIds() }
predicate SpecNext(ss_old:SpecState,ss_new:SpecState)
{ exists new_holder :: new_holder in AllHostIds() &&
ss_new.history == ss_old.history + [new_holder] }

predicate SpecRelation(is:ImplState,ss:SpecState)
{ forall p :: p in is.sentPackets && p.msg.lock? ==>

p.src == ss.history[p.msg.epoch] }

Figure 4. A toy lock specification.

containment strategy: the proofs above assume that every
implementation step performs an atomic protocol step. Since
the real implementation’s execution is not atomic, we use
a reduction argument (§3.6) to show that a proof assuming
atomicity is equally valid as a proof for the real system. This
argument requires a mechanically verified property of the
implementation, as well as a small paper-only proof about
the implications of the property.
§4 extends this methodology to prove liveness properties.

3.1 The High-Level Spec Layer

What does it mean for a system to be correct? One can
informally enumerate a set of properties and hope they are
sufficient to provide correctness. A more rigorous way is
to define a spec, a succinct description of every allowable
behavior of the system, and prove that an implementation
always generates outputs consistent with the spec.

With IronFleet, the developer writes the system’s spec
as a state machine: starting with some initial state, the spec
succinctly describes how that state can be transformed. The
spec defines the state machine via three predicates, i.e., func-
tions that return true or false. SpecInit describes accept-
able starting states, SpecNext describes acceptable ways
to move from an old to a new state, and SpecRelation
describes the required conditions on the relation between an
implementation state and its corresponding abstract state. For
instance, in Figure 3, SpecInit constrains what H0 can be,
SpecNext constrains steps like H0→H1 and H1→H2, and
SpecRelation constrains corresponding state pairs like
(I1, H1) and (I2, H4). To avoid unnecessary constraints on im-
plementations of the spec, SpecRelation should only talk
about the externally visible behavior of the implementation,
e.g., the set of messages it has sent so far.

As a toy example, the spec in Figure 4 describes a simple
distributed lock service with a single lock that passes amongst
the hosts. It defines the system’s state as a history: a sequence
of host IDs such that the nth host in the sequence held the
lock in epoch n. Initially, this history contains one valid host.
The system can step from an old to a new state by appending
a valid host to the history. An implementation is consistent
with the spec if all lock messages for epoch n come from the
nth host in the history.

By keeping the spec simple, a skeptic can study the spec
to understand the system’s properties. In our example, she
can easily conclude that the lock is never held by more

datatype Host = Host(held:bool,epoch:int)
predicate HostInit(s:Host,id:HostId,held:bool)
{ s.held==held && s.epoch==0 }
predicate HostGrant(s_old:Host,s_new:Host,

spkt:Packet) {
{ s_old.held && !s_new.held && spkt.msg.transfer?
&& spkt.msg.epoch == s_old.epoch+1 }

predicate HostAccept(s_old:Host,s_new:Host,
rpkt:Packet,spkt:Packet)

{ !s_old.held && s_new.held && rpkt.msg.transfer?
&& s_new.epoch == rpkt.msg.epoch == spkt.msg.epoch
&& spkt.msg.lock? }

predicate HostNext(s_old:Host,s_new:Host,
rpkt:Packet,spkt:Packet)

{ HostGrant(s_old,s_new,spkt) ||
HostAccept(s_old,s_new,rpkt,spkt) }

Figure 5. Simplified host state machine for a lock service.

than one host. Since the spec captures all permitted system
behaviors, she can later verify additional properties of the
implementation just by verifying they are implied by the spec.

3.2 The Distributed-Protocol Layer

At the untrusted distributed-protocol layer, the IronFleet
methodology introduces the concept of independent hosts
that communicate only via network messages. To manage
this new complexity, we keep this layer simple and abstract.

In more detail, we formally specify, in Dafny (§2.2), a dis-
tributed system state machine. This state machine consists of
N host state machines and a collection of network packets. In
each step of the distributed system state machine, one host’s
state machine takes a step, allowing it to atomically read mes-
sages from the network, update its state, and send messages
to the network; §3.6 relaxes this atomicity assumption.

The developer must specify each host’s state machine: the
structure of the host’s local state, how that state is initialized
(HostInit), and how it is updated (HostNext). IronFleet
reduces the developer’s effort in the following three ways.

First, we use a simple, abstract style for the host state and
network interface; e.g., the state uses unbounded mathemati-
cal integers (ignoring overflow issues), unbounded sequences
of values (e.g., tracking all messages ever sent or received),
and immutable types (ignoring memory management and
heap aliasing). The network allows hosts to send and receive
high-level, structured packets, hence excluding the challenges
of marshalling and parsing from this layer.

Second, we use a declarative predicate style. In other
words, HostNext merely describes how host state can
change during each step; it gives no details about how to effect
those changes, let alone how to do so with good performance.

Third, from the protocol’s perspective, each of the steps
defined above takes place atomically, greatly simplifying the
proof that the protocol refines the spec layer (§3.3). In §3.6,
we connect this proof assuming atomicity to a real execution.

Continuing our lock example, the protocol layer might
define a host state machine as in Figure 5. During the dis-
tributed system’s initialization of each host via HostInit,
exactly one host is given the lock via the held parameter.

The HostNext predicate then says that a host may step
from an old to a new state if the new state is the result of
one of two actions, each represented by its own predicate.
The two actions are giving away the lock (HostGrant) and
receiving the lock from another host (HostAccept). A host
may grant the lock if in the old state it holds the lock, and
if in the new state it no longer holds it, and if the outbound
packet (spkt) represents a transfer message to another host.
Accepting a lock is analogous.

3.3 Connecting the Protocol Layer to the Spec Layer

The first major theorem we prove about each system is that
the distributed protocol layer refines the high-level spec layer.
In other words, given a behavior of IronFleet’s distributed
system in which N hosts take atomic protocol steps defined
by the HostNext predicate, we provide a corresponding
behavior of the high-level state machine spec.

We use the standard approach to proving refinement, as
illustrated in Figure 3. First, we define a refinement function
PRef that takes a state of the distributed protocol state
machine and returns the corresponding state of the centralized
spec. We could use a relation instead of a function, but the
proof is easier with a function [1]. Second, we prove that
PRef of the initial state of the distributed protocol satisfies
SpecInit. Third, we prove that if a step of the protocol
takes the state from ps_old to ps_new, then there exists
a legal sequence of high-level spec steps that goes from
PRef(ps_old) to PRef(ps_new).

Unlike previous refinement-based work (§2.1), we use a
language, Dafny [39], designed for automated theorem prov-
ing. This reduces but does not eliminate the human proof
effort required (§6.3). Since we also verify our implementa-
tion in Dafny (§3.5), we avoid any semantic gaps between
the implementation’s view of the protocol and the protocol
we actually prove correct.

The challenge of proving the protocol-to-spec theorem
comes from reasoning about global properties of the dis-
tributed system. One key tool is to establish invariants: pred-
icates that should hold throughout the execution of the dis-
tributed protocol. In the lock example, we might use the
invariant that the lock is either held by exactly one host or
granted by one in-flight lock-transfer message. We can prove
this invariant inductively by showing that every protocol step
preserves it. Showing refinement of the spec is then simple.

Identifying the right invariants for a given protocol re-
quires a deep understanding of the protocol, but it is a skill
one develops with experience (§6).
Invariant quantifier hiding. Many useful invariants, like
“For every reply message sent, there exists a corresponding
request message sent,” involve quantifiers. Unfortunately,
such quantifiers pose problems for verifiers (§2.2). We have
thus adopted a style we call invariant quantifier hiding: we
prove some invariants involving quantifiers without explicitly
exposing those quantifiers to the verifier. The key is to
establish the invariant with a proof that explicitly instantiates

lemma ReplyToReq(reply:MessageReply,
behavior:map<int,HostState>, step:nat)

returns (req:MessageRequest)
requires IsValidBehaviorUpTo(behavior, step);
requires reply in behavior[step].network;
ensures req in behavior[step].network;
ensures Matches(req, reply);

{
assert step > 0; // because a packet was sent
if !(reply in behavior[step-1].network) {
req := OnlyExecReplies(behavior, step-1);

} else { // apply induction
req := ReplyToReq(behavior, step-1, reply);

}
}

Figure 6. Establishing an invariant with implicit quantifiers.

all bound variables. For each universal quantifier in the
invariant that does not succeed an existential quantifier, the
quantified variable is an input parameter of the proof. For each
existential quantifier in the invariant, the quantified variable
is an output parameter. For instance, the invariant from the
beginning of this paragraph could be proved with Figure 6.

It is easy to write this proof because we must prove it only
for a specific reply message, not all of them. As illustrated
above, there are only two cases to consider: (1) the reply
message was just generated, in which case we only have to
consider the last action taken, or (2) the reply message was
already present in the previous step, in which case we can
complete the proof by induction on step.

It is also easy to use this proof because instead of stating
a fact about the existence of a request message, it explicitly
provides a witness to that existence. Typically, a developer
only needs to prove the invariant for a specific reply message;
this form lets her establish precisely that fact. If the developer
needs the universally-quantified version, she can establish it
by invoking the invariant’s proof in a loop.

3.4 The Implementation Layer

Unlike in the declarative protocol layer, in the implementation
layer the developer writes single-threaded, imperative code
to run on each host. This code must cope with all of the
ugly practicalities we abstracted away in the protocol layer.
For instance, it must handle real-world constraints on how
hosts interact: since network packets must be bounded-sized
byte arrays, we need to prove the correctness of our routines
for marshalling high-level data structures into bytes and for
parsing those bytes. We also write the implementation with
performance in mind, e.g., using mutable arrays instead of
immutable sequences and using uint64s instead of infinite-
precision integers. The latter requires us to prove the system
correct despite the potential for integer overflow.

Dafny does not natively support networking, so we extend
the language with a trusted UDP specification that exposes
Init, Send, and Receive methods. For example, Send
expects an IP address and port for the destination and an
array of bytes for the message body. When compiled, calls to

these Dafny methods invoke the .NET UDP network stack.
Send also automatically inserts the host’s correct IP address,
satisfying our assumption about packet headers in §2.5.

The network interface maintains a ghost variable (i.e., a
variable used only for verification, not execution) that records
a “journal” of every Send and Receive that takes place,
including all of the arguments and return values. We use this
journal when proving properties of the implementation (§3.5).

3.5 Connecting the Implementation to the Protocol

The second major theorem we prove about each IronFleet
system is that the implementation layer correctly refines the
protocol. To do this, we prove that even though the imple-
mentation operates on concrete local state, which uses heap-
dependent, bounded representations, it is still a refinement
of the protocol layer, which operates on abstract types and
unbounded representations.

First, we prove that the host implementation refines the
host state machine described in the protocol layer. This refine-
ment proof is analogous to the one in §3.3, though simplified
by the fact that each step in the implementation corresponds to
exactly one step of the host state machine. We define a refine-
ment function HRef that maps a host’s implementation state
to a host protocol state. We prove that the code ImplInit
to initialize the host’s state ensures HostInit(HRef(hs)),
and that the code ImplNext to execute one host step ensures
HostNext(HRef(hs_old),HRef(hs_new)).

Then, we use this to prove that a distributed system
comprising N host implementations, i.e., what we actually
intend to run, refines the distributed protocol of N hosts.
We use a refinement function IRef that maps states of
the distributed implementation to states of the distributed
protocol. The refinement proof is largely straightforward
because each step of the distributed implementation in which
a host executes ImplNext corresponds to one step of the
distributed protocol where a host takes a HostNext step.
The difficult part is proving that the network state in the
distributed system implementation refines the network state
in the protocol layer. Specifically, we must prove that every
send or receive of a UDP packet corresponds to a send or
receive of an abstract packet. This involves proving that when
host A marshals a data structure into an array of bytes and
sends it to host B, B parses out the identical data structure.

The last major theorem we prove is that the distributed
implementation refines the abstract centralized spec. For this,
we use the refinement functions from our two major refine-
ment theorems, composing them to form our final refinement
function PRef(IRef(·)). The key part of this proof is
establishing that the specified relation conditions hold, i.e.,
that for all implementation states is, SpecRelation(is,
IRef(PRef(is))) holds.

3.6 Abstracting Non-Atomicity via Reduction

Sections 3.1–3.5 describe a mechanically verified proof struc-
ture that assumes that every implementation step performs an

AR AP BR AS BP AS AR BP AP BS AS
actual
execution

AR AP AS BR AS BP BP AR BS AP AS

AR AP AS AS BR BP BP BS AR AP AS
equivalent
execution

HostNextA HostNextAHostNextB

Figure 7. Reduction. In the real execution behavior, the send
(S), receive (R), and local processing (P) steps at hosts A and B
are fully interleaved. However, certain steps commute to yield an
equivalent behavior. Since we impose constraints on the structure
of the implementation’s event handlers (Figure 8), we can commute
steps until all of the implementation-level steps in a given host’s
event handler (circled) are contiguous. This reduced behavior then
admits a direct refinement to the distributed protocol layer.

atomic protocol step. However, the implementation’s event
handler is not atomic: while one host receives packets, com-
putes locally, and sends packets, other hosts do the same con-
currently, leading to arbitrary interleavings of these low-level
operations. To bridge this gap, we use a “reduction” argument
(§2.3). Reduction is typically used to reason about threads
and processes sharing a single machine, but we apply it to rea-
soning about distributed systems. Although Dafny does not
provide a general mechanism for reasoning about reduction,
we are still able to use Dafny to enforce an obligation on the
implementation that enables reduction. A machine-checked
proof that this obligation enables reduction is future work;
instead, we sketch an informal argument here.

Hosts are unable to see others’ state except indirectly by
observing the packets they send. Thus, it is possible to take a
behavior of the system, representing the order in which events
really occurred, and posit an alternate order in which (1) each
host receives the same packets in the same order, (2) packet
send ordering is preserved, (3) packets are never received
before they are sent, and (4) the ordering of operations on
any individual host is preserved. Any proof of correctness
assuming such an ordering implies a proof for the original
behavior, since only the externalized behavior of the system,
the content and ordering messages sent, matters.

Figure 7 shows an example of such reordering. We start
with the real behavior at the bottom and reorder until we reach
the behavior at the top. For instance, we can reorder A’s first
send before B’s first receive because we know its contents
cannot have depended on B’s receive. The top behavior has no
interleavings between different hosts’ HostNext steps, and
thus is a legal behavior in which we have proved correctness.
Thus, the correctness proof also applies to the real behavior.

As a result, we can always reduce a real execution behavior
to a sequence of atomic steps via such reorderings if we
constrain the implementation to, in any given step, perform
all of its receives before all its sends. We call this a reduction-
enabling obligation, which we use Dafny to enforce (§3.7).
With this obligation, we ensure that our proof of correctness

method Main() {
var s := ImplInit();
while (true)

invariant ImplInvariant(s);
{

ghost var journal_old := get_event_journal();
ghost var ios_performed:seq<IoEvent>;
s, ios_performed := ImplNext(s);
assert get_event_journal() ==

journal_old + ios_performed;
assert ReductionObligation(ios_performed);

}
}

Figure 8. Mandatory host event-handler loop.

assuming atomicity is equally valid as a proof of correctness
for the real system.

One complication is that when a host performs a time-
dependent operation like reading its clock, it creates a causal
constraint even without communication with other hosts.
This is because the clock represents an imperfect sample
from a globally shared reality. Thus, the reduction-enabling
obligation is extended as follows: A step may perform at
most one time-dependent operation, i.e., at most one clock
read, blocking receive, or non-blocking receive that returns
no packets. The step must perform all receives before this
time-dependent operation, and all sends after it.

3.7 Trusted Code

Nearly all IronFleet code is verified using the above methodol-
ogy, so there are only a few lines of code and proof assertions
that a user must read to gain confidence in the system. First,
she must read the high-level centralized spec to understand
what is being guaranteed. Second, she must read the asser-
tion, but not the proof of the assertion, that if each host in
a distributed system runs ImplInit followed by a loop of
ImplNext, then there exists a corresponding abstract behav-
ior of the centralized spec. Third, she must read the top-level
main host routine (Figure 8) to convince herself that each
host runs ImplInit and ImplNext. This code also ensures
that each host step meets its reduction-enabling constraint by
using the journal of externally visible events from §3.4.

4. Verifying Liveness
§3 describes the high-level spec as a state machine. Such a
spec says what the implementation must not do: it must never
deviate from the state machine’s behavior. However, it is also
useful to specify what the implementation must do; properties
of this form are called liveness properties. For example, we
might specify that the lock implementation eventually grants
the lock to each host (Figure 9). Thus, a spec will typically
include not just a state machine but also liveness properties.

Some researchers have proposed heuristics for detecting
and quashing likely sources of liveness violations [31, 66],
but it is better to definitively prove their absence. With such
a proof, we do not have to reason about, e.g., deadlock or

predicate LockBehaviorFair(b:map<int,SpecState>)
{ forall h:Host, i:int :: h in AllHostIds() && i >= 0
==> exists j :: j >= i && h == last(b[j].history) }

Figure 9. Desired liveness property for the lock service.

livelock; such conditions and any others that can prevent the
system from making progress are provably ruled out.

Liveness properties are much harder to verify than safety
properties. Safety proofs need only reason about two system
states at a time: if each step between two states preserves the
system’s safety invariants, then we can inductively conclude
that all behaviors are safe. Liveness, in contrast, requires
reasoning about infinite series of system states. Such reason-
ing creates challenges for automated theorem provers (§2.4),
often causing the prover to time out rather than return a suc-
cessful verification or a useful error message.

With IronFleet, we address these challenges via a custom
TLA embedding in Dafny that focuses the prover’s efforts
in fruitful directions. We then use our TLA embedding to
build a library of fundamental TLA proof rules verified from
first principles. This library is a useful artifact for proving
liveness properties of arbitrary distributed systems: its rules
allow both the human developer and Dafny to operate at a
high level by taking large proof steps with a single call to a
lemma from the library. Finally, by structuring our protocols
with always-enabled actions, we significantly simplify the
task of proving liveness properties.

4.1 TLA Embedding and Library

As discussed in §2.4, TLA [34] is a standard tool for rea-
soning about liveness. IronFleet embeds TLA in Dafny by
modeling a TLA behavior, an infinite sequence of system
states, as a mapping B from integers to states, where B[0] is
the initial state and B[i] is the ith subsequent state. A liveness
property is a constraint on the behavior of the state machine.
For example, Figure 9 says that for every host h, there is
always a later time when h will hold the lock.

Our embedding hides key definitions from the prover
except where truly needed, and instead provides verified
lemmas that relate them to one another. For example, we
represent temporal logic formulas as opaque objects (i.e.,
objects Dafny knows nothing about) of type temporal,
and TLA transformations like � as functions that convert
temporal objects to temporal objects.

Of course, in some contexts we actually do need to reason
about the internal meaning of � and ♦. State-of-the-art SMT
solvers like Z3 do not yet provide decision procedures for
temporal operators like � and ♦ directly. However, we can
encode these operators using explicit quantification over
steps (� universally quantifies over all future steps, while
♦ existentially quantifies over some future step). We can
then provide the SMT solver with heuristics to control these
quantifiers using the solver’s support for triggers [12], as
discussed in §2.2. One simple heuristic proved effective in
many situations: when the solver is considering a future

step j for one formula, such as ♦Q, the heuristic requests
that the solver also consider j as a candidate step for other
formulas starting with � or ♦, such as �P and ♦(P∧Q).
This allows the solver to automatically prove formulas like
(♦Q)∧ (�P) =⇒ ♦(P∧Q).

This heuristic is effective enough to automatically prove
40 fundamental TLA proof rules, i.e., rules for deriving one
formula from other formulas [34]. The heuristic allows us
to prove complicated rules efficiently; e.g., we stated and
proved Lamport’s INV1 rule about invariants in only 27 lines
of Dafny, and his WF1 rule about fairness in only 16 lines.

Our liveness proofs use these fundamental proof-rule
lemmas to justify temporal formula transformations. For
instance, as we discuss in §4.4, a liveness proof can usually
prove most of its steps by repeatedly invoking the WF1 rule.

4.2 Always-Enabled Actions

To achieve liveness, our protocol must satisfy fairness
properties. That is, it must ensure that each action, e.g.,
HostGrant or HostAccept, occurs in a timely fashion.

Lamport [36] suggests that such properties take the form
“if action A becomes always enabled, i.e., always possible
to do, the implementation must eventually do it.” However,
having terms of this form in verified code is problematic. If
the fairness property is a complex formula, it can be difficult
to characterize the set of states from which the action is
possible. This difficulty complicates both proving that the
fairness property is sufficient to ensure liveness properties,
and proving that the protocol has the fairness property.

Thus, we instead adopt always-enabled actions; i.e., we
only use actions that are always possible to do. For instance,
we would not use HostGrant from Figure 5 since it is
impossible to perform if you do not hold the lock. Instead,
we might use “if you hold the lock, grant it to the next host;
otherwise, do nothing”, which can always be done.

Our approach deviates from Lamport’s standard fairness
formulas, which means it can admit specifications that are not
machine closed [36]. Machine closure ensures that liveness
conditions do not combine with safety conditions to create
an unimplementable spec, such as that the implementation
must both grant a lock (to be fair) and not grant a lock
(to be safe, because it does not hold the lock). Fortunately,
machine closure is no concern in IronFleet: the existence
of an implementation that meets a fairness property is itself
proof that the property does not prevent implementation!

4.3 Proving Fairness Properties

Following IronFleet’s general philosophy of having the imple-
mentation layer deal only with implementation complexities,
we put the burden of satisfying fairness properties on the
protocol layer. The implementation satisfies the properties
automatically since its main method implements HostNext.

The mandatory structure from Figure 8 ensures that
HostNext runs infinitely often. So, all we must prove
is that if HostNext runs infinitely often, then each action

occurs infinitely often. We do this by having HostNext be
a scheduler that guarantees each action occurs regularly.

One way to do this is to use a simple round-robin scheduler.
We currently have proofs in our library that if HostNext is
a round-robin scheduler that runs infinitely often, then each
action runs infinitely often. Furthermore, if the main host
method runs with frequency F (expressed, e.g., in times per
second), then each of its n actions occurs with frequency F/n.

4.4 Liveness Proof Strategies

Most of a liveness proof involves demonstrating that if some
condition Ci holds then eventually another condition Ci+1
holds. By chaining such proofs together, we can prove that
if some assumed initial condition C0 holds then eventually
some useful condition Cn holds. For instance, in IronRSL,
we prove that if a replica receives a client’s request, it
eventually suspects its current view; if it suspects its current
view, it eventually sends a message to the potential leader
of a succeeding view; and, if the potential leader receives a
quorum of suspicions, it eventually starts the next view.

Most steps in this chain require an application of a variant
of Lamport’s WF1 rule [34]. This variant involves a start-
ing condition Ci, an ending condition Ci+1, and an always-
enabled action predicate Action. It states that Ci leads to Ci+1
if the following three requirements are met:
1. If Ci holds, it continues to hold as long as Ci+1 does not.
2. If a transition satisfying Action occurs when Ci holds, it

causes Ci+1 to hold.
3. Transitions satisfying Action occur infinitely often.

We use this in Dafny as follows. Suppose we need a lemma
that shows Ci leads to Ci+1. We first find the action transition
Action intended to cause this. We then establish each of
requirements 1 and 2 with an invariant proof that considers
only pairs of adjacent steps. We then invoke the proof from
§4.3 that each of the action transitions occurs infinitely often
to establish requirement 3. Finally, having established the
three preconditions for the WF1 lemma from our verified
library, we call that lemma.

In some cases, we need lemmas from our library that prove
other variants of the WF1 proof rule sound. For instance,
often we must prove that Ci leads to Ci+1 not just eventually
but within a bounded time. For this, we have a variant of
WF1 that proves Ci+1 holds within the inverse of Action’s
frequency. It uses a modified requirement 3: that Action
occurs with a minimum frequency.

Another useful variant of WF1 is delayed, bounded-time
WF1. It applies when Action only induces Ci+1 after a certain
time t; this is common in systems that rate-limit certain
actions for performance reasons. For instance, to amortize
the cost of agreement, the IronRSL action for proposing
a batch of requests has a timer preventing it from sending
an incomplete batch too soon after the last batch. Delayed,
bounded-time WF1 uses a modified requirement 2: “If Action
occurs when Ci holds and the time is ≥ t, it causes Ci+1 to

hold.” This variant proves that Ci+1 eventually holds after t
plus the inverse of the action’s frequency.

Sometimes, a liveness proof needs more than a chain of
conditions: it must prove that multiple conditions eventually
hold simultaneously. For instance, in IronRSL we must prove
that a potential leader eventually knows suspicions from every
replica in the quorum at once. For this, we use our temporal
heuristics to prove sound the proof rule: “If every condition
in a set of conditions eventually holds forever, then eventually
all the conditions in the set hold simultaneously forever.” We
also have and use a bounded-time variant of this rule.

5. System Implementation
We use the IronFleet methodology to implement two practical
distributed systems and prove them correct: a Paxos-based
replicated state machine library and a lease-based sharded
key-value store. All IronFleet code is publicly available [25].

5.1 IronRSL: A Replicated State Machine Library

IronRSL replicates a deterministic application on multiple
machines to make that application fault-tolerant. Such repli-
cation is commonly used for services, like Chubby and
Zookeeper [5, 24], on which many other services depend.
Due to these dependencies, correctness bugs in replication
can lead to cascading problems, and liveness bugs can lead
to widespread outages of all dependent services.

IronRSL guarantees safety and liveness without sacrific-
ing complex implementation features necessary to run real
workloads. For instance, it uses batching to amortize the cost
of consensus across multiple requests, log truncation to con-
strain memory usage, responsive view-change timeouts to
avoid hard-coded assumptions about timing, state transfer to
let nodes recover from extended network disconnection, and
a reply cache to avoid unnecessary work.

5.1.1 The High-Level Specification

The spec for IronRSL is simply linearizability: it must gen-
erate the same outputs as a system that runs the application
sequentially on a single node. Our implementation achieves
this in the same way typical replicated state machine libraries
do: it runs the application on multiple nodes, and uses the
MultiPaxos [35] consensus protocol to feed the same requests
in the same order to each replica.

5.1.2 The Distributed-Protocol Layer

Protocol. In the protocol layer, each host’s state consists
of four components, based on Lamport’s description of
Paxos [35]: a proposer, an acceptor, a learner, and an executor.
The host’s action predicates include, for instance, proposing a
batch of requests (Figure 10) or sending the local application
state to a host that has fallen behind.
Protocol invariants. The protocol’s key invariant, known as
agreement, is that two learners never decide on different re-
quest batches for the same slot. Establishing this invariant
requires establishing several more invariants about earlier pro-

predicate ExistsProposal(m_set:set<Msg1b>, op:Op)
{ exists p :: p in m_set && op in p.msg.votes }
predicate ProposeBatch(s:Proposer,s’:Proposer)
{ if |s.1bMsgs| < quorumSize then no_op()
else if ExistsProposal(s.1bMsgs,s.nextOp) then
var new_batches := s.proposedBatches[s.nextOp :=

BatchFromHighestBallot(s.1bMsgs, s.nextOp)];
s’ == s[nextOp := s.nextOp + 1]

[proposedBatches := new_batches]
else ... }

Figure 10. A step predicate example from IronRSL (simplified).

tocol actions. For instance, we prove that ProposeValue
(Figure 10) cannot propose a batch if a different one may
have already been learned. The action’s predicate states that
batches can only be proposed when the host has received
a 1b message from at least f + 1 acceptors. We use this to
prove that this quorum of acceptors intersects with any other
quorum that might have accepted a batch in a previous ballot.
Protocol refinement. After establishing the agreement in-
variant, we prove that executing the sequence of decided
request batches is equivalent to taking steps in the high-level
state machine. One challenge is that multiple replicas execute
the same request batches, but the corresponding high-level
steps must be taken only once. We address this by refining
the distributed system to an abstract state machine that ad-
vances not when a replica executes a request batch but when
a quorum of replicas has voted for the next request batch.

5.1.3 The Implementation Layer

Often, the most difficult part of writing a method to imple-
ment a protocol action is proving that the method has the
appropriate effect on the refined state. For this, IronRSL re-
lies on our generic refinement library (§5.3), which lightens
the programmer’s burden by proving useful properties about
the refinement of common data structures.

Another difficulty is that the protocol sometimes describes
the relationship between the host’s pre-action and post-action
state in a non-constructive way. For instance, it says that the
log truncation point should be set to the nth highest number
in a certain set. It describes how to test whether a number
is the nth highest number in a set, but not how to actually
compute such a quantity. Thus, the implementer must write a
method to do this and prove it correct.

Writing and maintaining invariants is also useful in the im-
plementation. Most IronRSL methods need some constraints
on the concrete state they start with. For instance, without
some constraint on the size of the log, we cannot prove that
the method that serializes it can fit the result into a UDP
packet. We incorporate this constraint (and many others) into
an invariant over the concrete state. Each method learns these
properties on entry and must prove them before returning.

Invariants are also a crucial part of performance optimiza-
tion. Consider, for example, the ExistsProposalmethod
in ProposeBatch. A naı̈ve implementation would always
iterate through all votes in all 1b messages, a costly process.

Instead, we augment the host state with an additional variable,
maxOpn, and prove an invariant that no 1b message exceeds
it. Thus, in the common case that s.nextOp ≥ maxOpn,
the implementation need not scan any 1b messages.

5.1.4 IronRSL Liveness

We also prove our implementation is live: if a client repeat-
edly sends a request to all replicas, it eventually receives
a reply. No consensus protocol can be live under arbitrary
conditions [16], so this property must be qualified by as-
sumptions. We assume there exists a quorum of replicas Q, a
minimum scheduler frequency F , a maximum network delay
∆, a maximum burst size B, and a maximum clock error E, all
possibly unknown to the implementation, such that (1) even-
tually, the scheduler on each replica in Q runs with frequency
at least F , never exhausting memory; (2) eventually, any mes-
sage sent between replicas in Q and/or the client arrive within
∆; (3) eventually, no replica in Q receives packets at an over-
whelming rate, i.e., each receives no more than B packets
per 10B

F +1 time units; (4) whenever a replica in Q reads its
clock, the reading differs from true global time by at most
E; and (5) no replica in Q ever stops making progress due to
reaching an overflow-prevention limit.

Our proof strategy is as follows. First, we use our library’s
round-robin scheduler proofs to prove that our protocol fairly
schedules each action (§4.3). Next, we prove that eventually
no replica in Q has a backlog of packets in its queue, so
thereafter sending a message among replicas in Q leads to
the receiver acting on that message within a certain bound.
Next, using WF1 (§4.4), we prove that if the client’s request
is never executed, then for any time period T , eventually a
replica in Q becomes the undisputed leader for that period.
Finally, using bounded-time WF1 variants (§4.4), we prove
there exists a T such that an undisputed leader can ensure the
request gets executed and responded to within T .

5.2 IronKV: A Sharded Key-Value Store

We also apply the IronFleet methodology to build IronKV,
a system that uses distribution for a completely different
purpose: to scale its throughput by dynamically sharding a
key-value store across a set of nodes.

The high-level spec of IronKV’s state machine is concise:
it is simply a hash table, as shown in Figure 11.

5.2.1 The Distributed-Protocol Layer

Each host’s state consists of a hash table storing a subset
of the key space and a “delegation map” mapping each key
to the host responsible for it. On protocol initialization, one
designated host is responsible for the entire key space; thus,
each host’s delegation map maps every key to that host.

To gain throughput and to relieve hot spots, IronKV allows
an administrator to delegate sequential key ranges (shards) to
other hosts. When a host receives such an order, it sends the
corresponding key-value pairs to the intended recipient and
updates its delegation map to reflect the new owner.

type Hashtable = map<Key,Value>
type OptValue = ValuePresent(v:Value) | ValueAbsent
predicate SpecInit(h:Hashtable) { h == map [] }
predicate Set(h:Hashtable,h’:Hashtable,

k:Key, ov:OptValue)
{ h’ == if ov.ValuePresent? then h[k := ov.v]

else map ki | ki in h && ki!=k :: h[ki] }
predicate Get(h:Hashtable,h’:Hashtable,

k:Key, ov:OptValue)
{ h’ == h && ov == if k in h then ValuePresent(h[k])

else ValueAbsent() }
predicate SpecNext(h:Hashtable,h’:Hashtable)
{ exists k, ov :: Set(h,h’,k,ov) || Get(h,h’,k,ov) }

Figure 11. Complete high-level spec for IronKV state machine

If such a message is lost, the protocol layer cannot be
shown to refine the high-level specification, since the corre-
sponding key-value pairs vanish. To avoid this, we design
a sequence-number-based reliable-transmission component
that requires each host to acknowledge messages it receives,
track its own set of unacknowledged messages, and period-
ically resend them. The liveness property we prove is that
if the network is fair (i.e., any packet sent infinitely often
is eventually delivered), then any packet submitted to the
reliable-transmission component is eventually received.

The most important invariant for IronKV’s proof is that
every key is claimed either by exactly one host or in-flight
packet. Using this invariant and the exactly-once delivery se-
mantics we prove about our reliable-transmission component,
we show that the protocol layer refines the high-level spec.

5.2.2 The Implementation Layer

As in IronRSL, we prove that modifications to a host’s
concrete state refine changes to the protocol-layer state. The
delegation map, however, poses a challenge unique to IronKV.
The protocol layer uses an infinite map with an entry for
every possible key. However, the implementation layer must
use concrete data types with bounded size and reasonable
performance. Thus, we implement and prove correct an
efficient data structure in which each host keeps only a
compact list of key ranges, along with the identity of the host
responsible for each range. This complexity we introduce
for the sake of performance creates opportunities for bugs.
However, by establishing invariants about the data structure
(e.g., the ranges are kept in sorted order), we prove that it
refines the abstract infinite map used by the protocol layer.
This lets us introduce this complex data structure without risk
of data loss or any other error.

5.3 Common Libraries

In developing IronRSL and IronKV, we have written and ver-
ified several generic libraries useful for distributed systems.
Generic refinement. A common task is proving that an op-
eration on concrete implementation-layer objects refines the
corresponding operation on protocol-layer objects. For exam-
ple, IronRSL’s implementation uses a map from uint64s
to IP addresses where the protocol uses a map from mathe-

matical integers to abstract node identifiers. In the proof, we
must show that removing an element from the concrete map
has the same effect on the abstract version.

To simplify such tasks, we have built a generic library for
reasoning about refinement between common data structures,
such as sequences and maps. Given basic properties about
the relationship between the concrete types and the abstract
types, e.g., that the function mapping concrete map keys to
abstract maps keys is injective, the library shows that various
concrete map operations, such as element lookup, addition,
and removal, refine the corresponding abstract operations.
Marshalling and parsing. All distributed systems need to
marshal and parse network packets, a tedious task prone to
bugs. Both tasks necessarily involve significant interaction
with the heap, since packets are ultimately represented as ar-
rays of bytes. Unfortunately, even state-of-the-art verification
tools struggle to verify heap operations (§6.2). Hence, we
have written and verified a generic grammar-based parser and
marshaller to hide this pain from developers. For each dis-
tributed system, the developer specifies a high-level grammar
for her messages. To marshal or unmarshal, the developer
simply maps between her high-level structure and a generic
data structure that matches her grammar. The library handles
the conversion to and from a byte array.

As evidence for the library’s utility, we initially wrote
an IronRSL-specific library. This took a person-month, and
relatively little of this code would have been useful in other
contexts. Dissatisfied, we built the generic library. This
required several more weeks, but given the generic library,
adding the IronRSL-specific portions only required two hours;
the IronKV-specific portions required even less.
Collection Properties. Another common task for distributed
systems is reasoning about properties of sequences, sets,
maps, etc. For instance, many IronRSL operations require
reasoning about whether a set of nodes form a quorum.
Thus, we have developed a library proving many useful
relationships about such collections. For example, one lemma
proves that if two sets are related by an injective function,
then their sizes are the same.

6. Lessons Learned
We summarize additional lessons we learned, beyond us-
ing invariant quantifier hiding (§3.3) and always-enabled ac-
tions (§4.2), useful for future developers of verified systems.

6.1 Use the Set of Sent Messages in Invariants

The IronFleet network model is monotonic: once a message
is sent, it is kept in a ghost state variable forever. This is
necessary to prove that the system behaves correctly even
if the network delivers messages arbitrarily late. Since the
set of messages can only grow, it is often easy to prove
invariants about it. In contrast, an invariant that reasons over
mutable host state is harder to prove. Thus, where possible,
it is useful to have invariants be properties only of the set of
messages sent so far, as is often done in proofs of security for

cryptographic protocols [8]. Essentially, the system’s network
model provides this set as a free “history variable” [1].

6.2 Model Imperative Code Functionally

Verifying imperative code is challenging compared with
verifying purely functional code, even when using a state-
of-the-art tool like Dafny that is designed for imperative
programs (§2.2). Thus, we found it profitable to implement
the system in two stages. First, we develop an implementation
using immutable value (functional) types and show that it
refines the protocol layer. Avoiding heap reasoning simplifies
the refinement proof, but, it produces a slow implementation,
since it cannot exploit the performance of heap references.
In the second stage, we replace the value types with mutable
heap types, improving performance while solving only a
narrow verification problem.

We apply this pattern in building IronRSL and IronKV;
e.g., the functional implementation manipulates IP addresses
as value types and the performant one uses references to OS
handles. This strategy takes advantage of Dafny’s support for
mixing functional programming and imperative programming
styles: we can first run the functional code and measure its
performance, then optimize the performance-critical sections
into imperative heap-based code as needed. Using a language
without good functional programming support (such as C)
would have made it harder to pursue this strategy.

6.3 Use Automation Judiciously

Automated verification tools reduce the human effort needed
to complete a proof, but they often require additional guid-
ance from the developer in order to find a proof, or, equally
importantly, to find a proof in a reasonable amount of time.

6.3.1 Automation Successes

In many cases, Dafny’s automated reasoning allows the
developer to write little or no proof annotation. For instance,
Dafny excels at automatically proving statements about linear
arithmetic. Also, its heuristics for dealing with quantifiers,
while imperfect, often produce proofs automatically.

Dafny can also prove more complex statements auto-
matically. For instance, the lemma proving that IronRSL’s
ImplNext always meets the reduction-enabling obligation
consists of only two lines: one for the precondition and one
for the postcondition. Dafny automatically enumerates all ten
possible actions and all of their subcases, and observes that
all of them produce I/O sequences satisfying the property.

Similarly, automated reasoning allows many invariant
proofs to be quite brief, by reasoning as follows: If the invari-
ant about a host’s state holds in step i but not i+1, the host
must have taken some action. However, none of the actions
can cause the invariant to stop holding. Typically, this last
part requires no proof annotation as the verifier can internally
enumerate all cases, even for IronRSL with its many compli-
cated actions. Sometimes the verifier cannot handle a tricky
case automatically, in which case the developer must insert

proof annotations. However, even then, the developer need
not mention, let alone enumerate, the other cases.

6.3.2 Automation Challenges

Even the fastest automated verification tools can take a long
time to explore a huge search space. By default, Dafny reveals
all predicate definitions to its SMT solver Z3, potentially
giving Z3 a large search space. For example, each distributed
protocol’s HostNext transitively includes almost every
other definition in the protocol. Similarly, message-parsing
code refers to a large tree of possible message types. Having
such big trees in scope exposes the SMT solver to a bounded
but still large search space, e.g., any mention of a state invokes
every predicate about states.

To keep verification time manageable and avoid verifier
timeouts, we use Dafny’s opaque attribute and reveal
directive to selectively hide irrelevant definitions from the
SMT solver, and reveal them only when needed to complete a
proof [21]. This leads to a more modular style of verification.
In addition to hiding large definitions, we also use opaque
to hide logic features that are hard to automate. For example,
we mark recursive predicate definitions opaque to prevent the
solver from blindly unrolling the definitions too many times.

To provide greater flexibility, we modify Dafny to also
support a fuel attribute for functions. Fuel controls how
many times the SMT solver may expand a function’s defini-
tion. Giving a function zero fuel is equivalent to marking the
function opaque, while giving a fuel of five allows the solver
to unroll a recursive function up to five times. By allowing
the programmer to specify a function’s fuel at the scope of
a statement, method, class, module, or program, we allow
different portions of the code to be more or less aggressive
about revealing function definitions.

Formulas that make heavy use of quantifiers (forall and
exists) may also lead to timeouts because the SMT solver can
instantiate the quantifiers more than it needs to, depending
on which triggers the solver chooses to control instantiation.
In many places, we adopt coding styles that avoid quantifiers
(§3.3). In other places, when we find the default triggers in
Dafny overly liberal, leading to too many instantiations, we
modify Dafny to use more cautious triggers. In some cases,
we also annotate our Dafny code with manual triggers to
reduce instantiations. In particularly problematic formulas,
such as chains of alternating quantifiers (e.g., for all X there
exists a Y such that for all Z...) and set comprehensions,
we mark the containing predicate opaque. Temporal logic
formulas can easily lead to alternating quantifiers, so we
define � and ♦ to be opaque by default.

7. Evaluation
IronFleet’s premise is that automated verification is a viable
engineering approach, ready for developing real distributed
systems. We evaluate that hypothesis by answering the follow-
ing questions: (1) How does verification affect the develop-

Spec Impl Proof Time to Verify
(source lines of code) (minutes)

High-Level Spec:
IronRSL 85 – – –
IronKV 34 – – –
Temporal Logic 208 – – –

Distributed Protocol:
IronRSL Protocol – – 1202 4

Refinement 35 – 3379 26
Liveness 167 – 7869 115

IronKV Protocol – – 726 2
Refinement 36 – 3998 12
Liveness 98 – 2093 23

TLA Library – – 1824 2

Implementation:
IO/Native Interface 591 – – –
Common Libraries 134 833 7690 13
IronRSL 6 2941 7535 152
IronKV 6 1340 2937 42

Total 1400 5114 39253 395

Figure 12. Code sizes and verification times.

ment of distributed systems? (2) How does the performance
of a verified system compare with an unverified one?

7.1 Developer Experience

To assess practicality, we evaluate the developer experience
as well as the effort required to produce verified systems.

The experience of producing verified software shares
some similarities with that of unverified software. Dafny
provides near-real-time IDE-integrated feedback. Hence, as
the developer writes a given method or proof, she typically
sees feedback in 1–10 seconds indicating whether the verifier
is satisfied. To ensure the entire system verifies, our build
system tracks dependencies across files and outsources, in
parallel, each file’s verification to a cloud virtual machine.
Thus, while a full integration build done serially requires
approximately six hours, in practice, the developer rarely
waits more than 6–8 minutes, which is comparable to any
other large system integration build.

An IronFleet developer must write a formal trusted spec,
a distributed protocol layer, and proof annotations to help the
verifier see the refinements between them. Figure 12 quanti-
fies this effort by reporting the amount of proof annotation
required for each layer of the system. We count all non-spec,
non-executable code as proof annotation; this includes, for
example, requires and ensures clauses, loop invariants, and
all lemmas and invocations thereof. Note that the high-level
trusted specification for IronRSL is only 85 SLOC, and for
IronKV it is only 34, making them easy to inspect for correct-
ness. At the implementation layer, our ratio of proof annota-
tion to executable code is 3.6 to 1. We attribute this relatively
low ratio to our proof-writing techniques (§3.3, §4.1, §6) and
our automated tools (§6.3.1).

In total, developing the IronFleet methodology and apply-
ing it to build and verify two real systems required approxi-
mately 3.7 person-years.

 1

 10

 100

 1000

10 20 30 40 50

Latency
(ms)

Throughput (kilo reqs/s)

IronRSL
Baseline

IronRSL (Batch)
Baseline (Batch)

Figure 13. IronRSL’s performance is competitive with an unveri-
fied baseline. Results averaged over 3 trials.

In exchange for this effort, IronFleet produces a provably
correct implementation with desirable liveness properties. In-
deed, except for unverified components like our C# client,
both IronRSL (including replication, view changes, log trun-
cation, batching, etc.) as well as IronKV (including delegation
and reliable delivery) worked the first time we ran them.

7.2 Performance of Verified Distributed Systems

A reasonable criticism of any new toolchain focused on veri-
fication is that its structure might impair runtime efficiency.
While we focus most of our energy on overcoming verifica-
tion burdens, we also try to produce viable implementations.

Our IronRSL experiments run three replicas on three
separate machines, each equipped with an Intel Xeon L5630
2.13 GHz processor and 12 GB RAM, connected over a
1 Gbps network. Our IronKV experiments use two such
machines connected over a 10 Gbps network.
IronRSL. Workload is offered by 1–256 parallel client
threads, each making a serial request stream and measur-
ing latency. As an unverified baseline, we use the MultiPaxos
Go-based implementation from the EPaxos codebase [15, 45]
For both systems, we use the same application state machine:
it maintains a counter and it increments the counter for every
client request. Figure 13 summarizes our results. We find that
IronRSL’s peak throughput is within 2.4× of the baseline.
IronKV. To measure the throughput and latency of IronKV,
we preload the server with 1000 keys, then run a client with
1–256 parallel threads; each thread generates a stream of Get
(or Set) requests in a closed loop. As an unverified baseline,
we use Redis [57], a popular key/value store written in C
and C++, with the client-side write buffer disabled. For both
systems, we use 64-bit unsigned integers as keys and byte
arrays of varying sizes as values. Figure 14 summarizes our
results. We find that IronKV’s performance is competitive
with that of Redis.

As a final note, in all our experiments the bottleneck was
the CPU (not the memory, disk, or network).

8. Discussion and Future Work
§7.1 shows that in exchange for strong guarantees (which
depend on several assumptions, per §2.5), IronFleet requires
considerably more developer effort. Furthermore, in our
experience, there is a distinct learning curve when bringing

10
20
30
40
50

128B 1KB
Get

8KB 128B 1KB
Set

8KB

P
ea

k
 t

h
ro

u
g

h
p

u
t

(k
il

o
 r

eq
s/

se
c)

 IronKV
Redis

Figure 14. IronKV’s performance is competitive with Redis, an
unverified key-value store. Results averaged over 3 trials.

aboard developers unfamiliar with writing verified code. Most
developers would prefer to use a language like C++, so
enabling that is an important topic of future work.
§7.2 shows that while our systems achieve respectable

performance, they do not yet match that of the unverified
baselines. Some of that gap stems directly from our use of
verification. Verifying mutable data structures is challenging
(§6.2), and our measurements indicate that this is a significant
bottleneck for our code. The baselines we compare against
have been highly optimized; we have also optimized our
code, but each optimization must be proven correct. Hence,
given a fixed time budget, IronFleet will likely produce fewer
optimizations. IronFleet also pays a penalty for compiling to
C#, which imposes run-time overhead to enforce type safety
on code that provably does not need it.

More fundamentally, aiming for full verification makes
it challenging to reuse existing libraries, e.g., for optimized
packet serialization. Before our previous [21] and current
work (§5.3), Dafny had no standard libraries, necessitating
significant work to build them; more such work lies ahead.

While our systems are more full-featured than previous
work (§9), they still lack many standard features offered by
the unverified baselines. Some features, such as reconfigu-
ration in IronRSL, only require additional developer time.
Other features require additional verification techniques; e.g.,
post-crash recovery requires reasoning about the effects of
machine crashes that wipe memory but not disk.

In future work, we aim to mechanically verify our reduc-
tion argument and prove that our implementation run its main
loop in bounded time [2], never exhausts memory, and never
reaches its overflow-prevention limit under reasonable condi-
tions, e.g., if it never performs more than 264 operations.

9. Related Work
9.1 Protocol Verification

Distributed system protocols are known to be difficult to
design correctly. Thus, a systems design is often accompanied
by a formal English proof of correctness, typically relegated
to a technical report or thesis. Examples include Paxos [55],
the BFT protocol for Byzantine fault tolerance [6, 7], the
reconfiguration algorithm in SMART [23, 41], Raft [49, 50],
Zookeeper’s consistent broadcast protocol Zab [28, 29],
Egalitarian Paxos [44, 45], and the Chord DHT [62, 63].

However, paper proofs, no matter how formal, can con-
tain errors. Zane showed that the “provably correct” Chord
protocol, when subjected to Alloy abstract model checking,
maintains none of its published invariants [71]. Thus, some re-
searchers have gone further and generated machine-checkable
proofs. Kellomäki created a proof of the Paxos consensus pro-
tocol checked in PVS [30]. Lamport’s TLAPS proof system
has been used to prove safety, but not liveness, properties of
the BFT protocol [38]. In all such cases, the protocols proven
correct have been much smaller and simpler than ours. For
instance, Kellomäki’s and Lamport’s proofs concerned single-
instance Paxos and BFT, which make only one decision total.

9.2 Model Checking

Model checking exhaustively explores a system’s state space,
testing whether a safety property holds in every reachable
state. This combinatorial exploration requires that the system
be instantiated with finite, typically tiny, parameters. As
a result, a positive result provides only confidence, not
proof of safety; furthermore, that confidence depends on the
modeler’s wisdom in parameter selection. Model checking
has been applied to myriad systems including a Python
implementation of Paxos [26]; Mace implementations of a
variety of distributed systems [31]; and, via MODIST [69],
unmodified binaries of Berkeley DB, MPS Paxos, and the
PacificA primary-backup replication system.

Model checking scales poorly to complex distributed
specs [4]. Abstract interpretation can help with such scal-
ing but does not fundamentally eliminate model checking’s
limitations. For instance, Zave’s correction to Chord uses the
Alloy model checker but only to partially automate the proof
of a single necessary invariant [72].

9.3 System Verification

The recent increase in the power of software verification has
emboldened several research groups to use it to prove the
correctness of entire systems implementations. seL4 is a mi-
crokernel written in C [32], with full functional correctness
proven using the Isabelle/HOL theorem prover. mCertiKOS-
hyp [19] is a small verified hypervisor, whose verification in
the Coq interactive proof assistant places a strong emphasis
on modularity and abstraction. ExpressOS [43] uses Dafny
to sanity-check a policy manager for a microkernel. Our Iron-
clad project [21] shows how to completely verify the security
of sensitive services all the way down to the assembly. Iron-
Fleet differs by verifying a distributed implementation rather
than code running on a single machine, and by verifying
liveness, as well as safety, properties.

Researchers have also begun to apply software verification
to distributed systems. Ridge [58] proves the correctness of
a persistent message queue written in OCaml; however, his
system is substantially smaller in scale than ours and has no
proven liveness properties.

Schiper et al. [60] verify the correctness of a Paxos
implementation by building it in EventML [56] and proving

correctness, but not liveness, with the NuPRL prover [10].
However, they do not verify the state machine replication
layer of this Paxos implementation, only the consensus
algorithm, ignoring complexities such as state transfer. They
also make unclear assumptions about network behavior. In
contrast to our methodology, which exploits multiple levels
of abstraction and refinement, the EventML approach posits
a language below which all code generation is automatic, and
above which a human can produce a one-to-one refinement.
It is unclear if this approach will scale up to more complex
and diverse distributed systems.

In concurrent work, Wilcox et al. [67, 68] propose Verdi,
a compiler-inspired approach to building verified distributed
system implementations. With Verdi, the developer writes
and proves her system correct in Coq using a simplified
environment (e.g., a single-machine system with a perfectly
reliable network). Verdi’s verified system transformers then
convert the developer’s implementation into an equivalent
implementation that is robust in a more hostile environment;
their largest system transformer is an implementation of Raft
that adds fault tolerance. Compared with IronFleet, Verdi
offers a cleaner approach to composition. Unlike IronRSL,
at present Verdi’s Raft implementation does not support
verified marshalling and parsing, state transfer, log truncation,
dynamic view-change timeouts, a reply cache, or batching.
Also, Verdi does not prove any liveness properties.

10. Conclusion
The IronFleet methodology slices a system into specific lay-
ers to make verification of practical distributed system im-
plementations feasible. The high-level spec gives the sim-
plest description of the system’s behavior. The protocol
layer deals solely with distributed protocol design; we con-
nect it to the spec using TLA+ [36] style verification. At
the implementation layer, the programmer reasons about a
single-host program without worrying about concurrency.
Reduction and refinement tie these individually-feasible
components into a methodology that scales to practically-
sized concrete implementations. This methodology admits
conventionally-structured implementations capable of pro-
cessing up to 18,200 requests/second (IronRSL) and 28,800
requests/second (IronKV), performance competitive with un-
verified reference implementations.

Acknowledgments
We thank Rustan Leino for not just building Dafny but also
cheerfully providing ongoing guidance and support in improv-
ing it. We thank Leslie Lamport for useful discussions about
refinement and formal proofs, particularly proofs of liveness.
We thank Shaz Qadeer for introducing us to the power of
reduction. We thank Andrew Baumann, Ernie Cohen, Galen
Hunt, Lidong Zhou, and the anonymous reviewers for useful
feedback. Finally, we thank our shepherd Jim Larus for his
interactive feedback that significantly improved the paper.

References
[1] ABADI, M., AND LAMPORT, L. The existence of refinement

mappings. Theoretical Computer Science 82, 2 (May 1991).

[2] BLACKHAM, B., SHI, Y., CHATTOPADHYAY, S., ROYCHOUD-
HURY, A., AND HEISER, G. Timing analysis of a protected
operating system kernel. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS) (2011).

[3] BOKOR, P., KINDER, J., SERAFINI, M., AND SURI, N.
Efficient model checking of fault-tolerant distributed protocols.
In Proceedings of the Conference on Dependable Systems and
Networks (DSN) (2011).

[4] BOLOSKY, W. J., DOUCEUR, J. R., AND HOWELL, J. The
Farsite project: a retrospective. ACM SIGOPS Operating
Systems Review 41 (2) (April 2007).

[5] BURROWS, M. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the Symposium on
Operating Systems Design and Implementation (OSDI) (2006).

[6] CASTRO, M., AND LISKOV, B. A correctness proof for a prac-
tical Byzantine-fault-tolerant replication algorithm. Tech. Rep.
MIT/LCS/TM-590, MIT Laboratory for Computer Science,
June 1999.

[7] CASTRO, M., AND LISKOV, B. Practical Byzantine fault
tolerance and proactive recovery. ACM Transactions on
Computer Systems (TOCS) 20, 4 (Nov. 2002).

[8] COHEN, E. First-order verification of cryptographic protocols.
Journal of Computer Security 11, 2 (2003).

[9] COHEN, E., AND LAMPORT, L. Reduction in TLA. In
Concurrency Theory (CONCUR) (1998).

[10] CONSTABLE, R. L., ALLEN, S. F., BROMLEY, H. M.,
CLEAVELAND, W. R., CREMER, J. F., HARPER, R. W.,
HOWE, D. J., KNOBLOCK, T. B., MENDLER, N. P., PANAN-
GADEN, P., SASAKI, J. T., AND SMITH, S. F. Implement-
ing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, Inc., 1986.

[11] DE MOURA, L. M., AND BJØRNER, N. Z3: An efficient
SMT solver. In Proceedings of the Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(2008).

[12] DETLEFS, D., NELSON, G., AND SAXE, J. B. Simplify: A
theorem prover for program checking. In J. ACM (2003).

[13] DOUCEUR, J. R., AND HOWELL, J. Distributed directory
service in the Farsite file system. In Proceedings of the
Symposium on Operating Systems Design and Implementation
(OSDI) (November 2006).

[14] ELMAS, T., QADEER, S., AND TASIRAN, S. A calculus of
atomic actions. In Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL) (Jan. 2009).

[15] EPaxos code. https://github.com/efficient/
epaxos/, 2013.

[16] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S.
Impossibility of distributed consensus with one faulty process.
Journal of the ACM (JACM) 32, 2 (April 1985).

[17] FLOYD, R. Assigning meanings to programs. In Proceedings
of Symposia in Applied Mathematics (1967).

[18] GARLAND, S. J., AND LYNCH, N. A. Using I/O automata for
developing distributed systems. Foundations of Component-
Based Systems 13 (2000).

[19] GU, R., KOENIG, J., RAMANANANDRO, T., SHAO, Z., WU,
X. N., WENG, S.-C., ZHANG, H., AND GUO, Y. Deep speci-
fications and certified abstraction layers. In Proceedings of the
ACM Symposium on Principles of Programming Languages
(POPL) (2015).

[20] GUO, H., WU, M., ZHOU, L., HU, G., YANG, J., AND

ZHANG, L. Practical software model checking via dynamic
interface reduction. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP) (2011), ACM.

[21] HAWBLITZEL, C., HOWELL, J., LORCH, J. R., NARAYAN,
A., PARNO, B., ZHANG, D., AND ZILL, B. Ironclad apps:
End-to-end security via automated full-system verification. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (October 2014).

[22] HOARE, T. An axiomatic basis for computer programming.
Communications of the ACM 12 (1969).

[23] HOWELL, J., LORCH, J. R., AND DOUCEUR, J. R. Cor-
rectness of Paxos with replica-set-specific views. Tech. Rep.
MSR-TR-2004-45, Microsoft Research, 2004.

[24] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
ZooKeeper: Wait-free coordination for Internet-scale systems.
In Proceedings of the USENIX Annual Technical Conference
(ATC) (2010).

[25] IronFleet code. https://research.microsoft.com/
projects/ironclad/, 2015.

[26] JONES, E. Model checking a Paxos implementation. http:
//www.evanjones.ca/model-checking-paxos.
html, 2009.

[27] JOSHI, R., LAMPORT, L., MATTHEWS, J., TASIRAN, S., TUT-
TLE, M., AND YU, Y. Checking cache coherence protocols
with TLA+. Journal of Formal Methods in System Design 22,
2 (March 2003).

[28] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M. Dissect-
ing Zab. Tech. Rep. YL-2010-007, Yahoo! Research, Decem-
ber 2010.

[29] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M. Zab:
High-performance broadcast for primary-backup systems. In
Proceedings of the IEEE/IFIP Conference on Dependable
Systems & Networks (DSN) (2011).

[30] KELLOMÄKI, P. An annotated specification of the consensus
protocol of Paxos using superposition in PVS. Tech. Rep. 36,
Tampere University of Technology, 2004.

[31] KILLIAN, C. E., ANDERSON, J. W., BRAUD, R., JHALA, R.,
AND VAHDAT, A. M. Mace: Language support for building
distributed systems. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI)
(2007).

[32] KLEIN, G., ANDRONICK, J., ELPHINSTONE, K., MURRAY,
T., SEWELL, T., KOLANSKI, R., AND HEISER, G. Com-
prehensive formal verification of an OS microkernel. ACM
Transactions on Computer Systems 32, 1 (2014).

https://github.com/efficient/epaxos/
https://github.com/efficient/epaxos/
https://research.microsoft.com/projects/ironclad/
https://research.microsoft.com/projects/ironclad/
http://www.evanjones.ca/model-checking-paxos.html
http://www.evanjones.ca/model-checking-paxos.html
http://www.evanjones.ca/model-checking-paxos.html

[33] LAMPORT, L. A theorem on atomicity in distributed algo-
rithms. Tech. Rep. SRC-28, DEC Systems Research Center,
May 1988.

[34] LAMPORT, L. The temporal logic of actions. ACM Trans-
actions on Programming Languages and Systems 16, 3 (May
1994).

[35] LAMPORT, L. The part-time parliament. ACM Transactions
on Computer Systems (TOCS) 16, 2 (May 1998).

[36] LAMPORT, L. Specifying Systems: The TLA+ Languange and
Tools for Hardware and Software Engineers. Addison-Wesley,
2002.

[37] LAMPORT, L. The PlusCal algorithm language. In Proceedings
of the International Colloquium on Theoretical Aspects of
Computing (ICTAC) (Aug. 2009).

[38] LAMPORT, L. Byzantizing Paxos by refinement. In Proceed-
ings of the International Conference on Distributed Computing
(DISC) (2011).

[39] LEINO, K. R. M. Dafny: An automatic program verifier for
functional correctness. In Proceedings of the Conference on
Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR) (2010).

[40] LIPTON, R. J. Reduction: A method of proving properties of
parallel programs. Communications of the ACM, 18, 12 (1975).

[41] LORCH, J. R., ADYA, A., BOLOSKY, W. J., CHAIKEN, R.,
DOUCEUR, J. R., AND HOWELL, J. The SMART way to
migrate replicated stateful services. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys)
(2006).

[42] LU, T., MERZ, S., WEIDENBACH, C., BENDISPOSTO, J.,
LEUSCHEL, M., ROGGENBACH, M., MARGARIA, T., PAD-
BERG, J., TAENTZER, G., LU, T., MERZ, S., AND WEI-
DENBACH, C. Model checking the Pastry routing protocol.
In Workshop on Automated Verification of Critical Systems
(2010).

[43] MAI, H., PEK, E., XUE, H., KING, S. T., AND MADHUSU-
DAN, P. Verifying security invariants in ExpressOS. In Pro-
ceedings of the ACM Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS)
(March 2013).

[44] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. A
proof of correctness of Egalitarian Paxos. Tech. Rep. CMU-
PDL-13-111, Carnegie Mellon University Parallel Data Labo-
ratory, August 2013.

[45] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. There
is more consensus in egalitarian parliaments. In Proceedings of
the ACM Symposium on Operating System Principles (SOSP)
(2013).

[46] MUSUVATHI, M., PARK, D., CHOU, A., ENGLER, D., AND

DILL, D. L. CMC: A pragmatic approach to model checking
real code. In Proceedings of the USENIX Symposium Operating
Systems Design and Implementation (OSDI) (2002).

[47] MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G.,
NAINAR, P. A., AND NEAMTIU, I. Finding and reproduc-
ing heisenbugs in concurrent programs. In Proceedings of
the USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (2008).

[48] NEWCOMBE, C., RATH, T., ZHANG, F., MUNTEANU, B.,
BROOKER, M., AND DEARDEUFF, M. How Amazon Web
Services uses formal methods. Communications of the ACM
58, 4 (Apr. 2015).

[49] ONGARO, D. Consensus: Bridging theory and practice. Tech.
Rep. Ph.D. thesis, Stanford University, August 2014.

[50] ONGARO, D., AND OUSTERHOUR, J. In search of an under-
standable consensus algorithm. In Proceedings of the USENIX
Annual Technical Conference (ATC) (June 2014).

[51] PARKINSON, M. The next 700 separation logics. In Proceed-
ings of the IFIP Conference on Verified Software: Theories,
Tools, Experiments (VSTTE) (Aug. 2010).

[52] PARNO, B., LORCH, J. R., DOUCEUR, J. R., MICKENS, J.,
AND MCCUNE, J. M. Memoir: Practical state continuity for
protected modules. In Proceedings of the IEEE Symposium on
Security and Privacy (May 2011).

[53] PEK, E., AND BOGUNOVIC, N. Formal verification of com-
munication protocols in distributed systems. In Proceedings of
the Joint Conferences on Computers in Technical Systems and
Intelligent Systems (2003).

[54] PRIOR, A. N. Papers on Time and Tense. Oxford University
Press, 1968.

[55] PRISCO, R. D., AND LAMPSON, B. Revisiting the Paxos
algorithm. In Proceedings of the International Workshop on
Distributed Algorithms (WDAG) (1997).

[56] RAHLI, V. Interfacing with proof assistants for domain
specific programming using EventML. In Proceedings of
the International Workshop on User Interfaces for Theorem
Provers (UITP) (July 2012).

[57] Redis. http://redis.io/. Implementation used: ver-
sion 2.8.2101 of the MSOpenTech distribution https://
github.com/MSOpenTech/redis, 2015.

[58] RIDGE, T. Verifying distributed systems: The operational
approach. In Proceedings of the ACM Symposium on Principles
of Programming Languages (POPL) (January 2009).

[59] SAISSI, H., BOKOR, P., MUFTUOGLU, C., SURI, N., AND

SERAFINI, M. Efficient verification of distributed protocols us-
ing stateful model checking. In Proceedings of the Symposium
on Reliable Distributed Systems SRDS (Sept 2013).

[60] SCHIPER, N., RAHLI, V., VAN RENESSE, R., BICKFORD,
M., AND CONSTABLE, R. Developing correctly replicated
databases using formal tools. In Proceedings of the IEEE/IFIP
Conference on Dependable Systems and Networks (DSN) (June
2014).

[61] SCIASCIO, E., DONINI, F., MONGIELLO, M., AND

PISCITELLI, G. Automatic support for verification of secure
transactions in distributed environment using symbolic model
checking. In Conference on Information Technology Interfaces
(June 2001), vol. 1.

[62] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F.,
AND BALAKRISHNAN, H. Chord: A scalable peer-to-peer
lookup service for Internet applications. In Proceedings of the
ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(August 2001).

http://redis.io/
https://github.com/MSOpenTech/redis
https://github.com/MSOpenTech/redis

[63] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F.,
AND BALAKRISHNAN, H. Chord: A scalable peer-to-
peer lookup service for Internet applications. Tech. Rep.
MIT/LCS/TR-819, MIT Laboratory for Computer Science,
March 2001.

[64] TASIRAN, S., YU, Y., BATSON, B., AND KREIDER, S. Using
formal specifications to monitor and guide simulation: Verify-
ing the cache coherence engine of the Alpha 21364 micropro-
cessor. In International Workshop on Microprocessor Test and
Verification (June 2002), IEEE.

[65] WANG, L., AND STOLLER, S. D. Runtime analysis of
atomicity for multithreaded programs. IEEE Transactions
on Software Engineering 32 (Feb. 2006).

[66] WANG, Y., KELLY, T., KUDLUR, M., LAFORTUNE, S., AND

MAHLKE, S. A. Gadara: Dynamic deadlock avoidance for
multithreaded programs. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI) (December 2008).

[67] WILCOX, J., WOOS, D., PANCHEKHA, P., TATLOCK, Z.,
WANG, X., ERNST, M., AND ANDERSON, T. UW CSE
News: UW CSE’s Verdi team completes first full formal
verification of Raft consensus protocol. https://news.
cs.washington.edu/2015/08/07/, August 2015.

[68] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TATLOCK,
Z., WANG, X., ERNST, M. D., AND ANDERSON, T. Verdi:
A framework for implementing and formally verifying dis-
tributed systems. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI)
(June 2015).

[69] YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN, H.,
YANG, M., LONG, F., ZHANG, L., AND ZHOU, L. MODIST:
Transparent model checking of unmodified distributed systems.
In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (April 2009).

[70] YUAN, D., LUO, Y., ZHUANG, X., RODRIGUES, G. R.,
ZHAO, X., ZHANG, Y., JAIN, P. U., AND STUMM, M. Sim-
ple testing can prevent most critical failures: An analysis of
production failures in distributed data-intensive systems. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (October 2014).

[71] ZAVE, P. Using lightweight modeling to understand Chord.
ACM SIGCOMM Computer Communication Review 42, 2
(April 2012).

[72] ZAVE, P. How to make Chord correct (using a stable base).
Tech. Rep. 1502.06461 [cs.DC], arXiv, February 2015.

https://news.cs.washington.edu/2015/08/07/
https://news.cs.washington.edu/2015/08/07/

	1 Introduction
	2 Background and Assumptions
	2.1 State Machine Refinement
	2.2 Floyd-Hoare Verification
	2.3 Reduction
	2.4 Temporal Logic of Actions (TLA)
	2.5 Assumptions

	3 The IronFleet Verification Methodology
	3.1 The High-Level Spec Layer
	3.2 The Distributed-Protocol Layer
	3.3 Connecting the Protocol Layer to the Spec Layer
	3.4 The Implementation Layer
	3.5 Connecting the Implementation to the Protocol
	3.6 Abstracting Non-Atomicity via Reduction
	3.7 Trusted Code

	4 Verifying Liveness
	4.1 TLA Embedding and Library
	4.2 Always-Enabled Actions
	4.3 Proving Fairness Properties
	4.4 Liveness Proof Strategies

	5 System Implementation
	5.1 IronRSL: A Replicated State Machine Library
	5.1.1 The High-Level Specification
	5.1.2 The Distributed-Protocol Layer
	5.1.3 The Implementation Layer
	5.1.4 IronRSL Liveness

	5.2 IronKV: A Sharded Key-Value Store
	5.2.1 The Distributed-Protocol Layer
	5.2.2 The Implementation Layer

	5.3 Common Libraries

	6 Lessons Learned
	6.1 Use the Set of Sent Messages in Invariants
	6.2 Model Imperative Code Functionally
	6.3 Use Automation Judiciously
	6.3.1 Automation Successes
	6.3.2 Automation Challenges

	7 Evaluation
	7.1 Developer Experience
	7.2 Performance of Verified Distributed Systems

	8 Discussion and Future Work
	9 Related Work
	9.1 Protocol Verification
	9.2 Model Checking
	9.3 System Verification

	10 Conclusion

