
Rx: Treating Bugs As Allergies— A Safe Method to Survive
Software Failures

Feng Qin, Joseph Tucek, Jagadeesan Sundaresan and Yuanyuan Zhou
Department of Computer Science

University of Illinois at Urbana Champaign

{fengqin, tucek, sundaresan, yyzhou}@cs.uiuc.edu

ABSTRACT
Many applications demand availability. Unfortunately, software
failures greatly reduce system availability. Prior work on surviving
software failures suffers from one or more of the following limita-
tions: Required application restructuring, inability to address deter-
ministic software bugs, unsafe speculation on program execution,
and long recovery time.

This paper proposes an innovative safe technique, called Rx,
which can quickly recover programs from many types of software
bugs, both deterministic and non-deterministic. Our idea, inspired
from allergy treatment in real life, is to rollback the program to a
recent checkpoint upon a software failure, and then to re-execute
the program in a modified environment. We base this idea on the
observation that many bugs are correlated with the execution envi-
ronment, and therefore can be avoided by removing the “allergen”
from the environment. Rx requires few to no modifications to ap-
plications and provides programmers with additional feedback for
bug diagnosis.

We have implemented Rx on Linux. Our experiments with four
server applications that contain six bugs of various types show that
Rx can survive all the six software failures and provide transparent
fast recovery within 0.017-0.16 seconds, 21-53 times faster than
the whole program restart approach for all but one case (CVS).
In contrast, the two tested alternatives, a whole program restart ap-
proach and a simple rollback and re-execution without environmen-
tal changes, cannot successfully recover the three servers (Squid,
Apache, and CVS) that contain deterministic bugs, and have only
a 40% recovery rate for the server (MySQL) that contains a non-
deterministic concurrency bug. Additionally, Rx’s checkpointing
system is lightweight , imposing small time and space overheads.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability

General Terms
Design, Experimentation, Reliability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05, October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

Keywords
Availability, Bug, Reliability, Software Failure

1. INTRODUCTION

1.1 Motivation
Many applications, especially critical ones such as process con-

trol or on-line transaction monitoring, require high availability [27].
For server applications, downtime leads to lost productivity and lost
business. According to a report by Gartner Group [48] the average
cost of an hour of downtime for a financial company exceeds six
million US dollars. With the tremendous growth of e-commerce,
almost every kind of organization is becoming dependent upon
highly available systems.

Unfortunately, software failures severely reduce system avail-
ability. A recent study showed that software defects account for up
to 40% of system failures [37]. Memory-related bugs and concur-
rency bugs are common software defects, causing more than 60%
of system vulnerabilities [17]. For this reason, software compa-
nies invest enormous effort and resources on software testing prior
to releasing software. However, software failures still occur dur-
ing production runs since some bugs inevitably slip through even
the strictest testing. Therefore, to achieve higher system availabil-
ity, mechanisms must be devised to allow systems to survive the
effects of uneliminated software bugs to the largest extent possible.

Previous work on surviving software failures can be classified
into four categories. The first category encompasses various fla-
vors of rebooting (restarting) techniques, including whole program
restart [27, 54], micro-rebooting of partial system components
[13, 14], and software rejuvenation [30, 26, 8]. Since many of these
techniques were originally designed to handle hardware failures,
most of them are ill-suited for surviving software failures. For ex-
ample, they cannot deal with deterministic software bugs, a major
cause of software failures [18], because these bugs will still occur
even after rebooting. Another important limitation of these meth-
ods is service unavailability while restarting, which can take up
to several seconds [57]. For servers that buffer significant amount
of state in main memory (e.g. data buffer caches), it requires a
long period to warm up to full service capacity [11, 58]. Micro-
rebooting [14] addresses this problem to some extent by only re-
booting the failed components. However, it requires legacy soft-
ware to be reconstructed in a loosely-coupled fashion.

The second category includes general checkpointing and recov-
ery. The most straightforward method in this category is to check-
point, rollback upon failures, and then re-execute either on the
same machine [24, 43] or on a different machine designated as the
“backup server” [27, 6, 11, 12, 58, 3, 61]. Similar to the whole

c©ACM, 2005. This is a minor revision of the work published in SOSP 2005, http://doi.acm.org/10.1145/1095809.1095833

program restart approach, these techniques were also proposed to
deal with hardware failures, and thereby suffer from the same limi-
tations in addressing software failures. Progressive retry [59] is an
interesting improvement over these approaches. It reorders mes-
sages to increase the degree of non-determinism. While this work
proposes a promising direction, it limits the technique to message
reordering. As a result, it cannot handle bugs unrelated to mes-
sage order. For example, if a server receives a malicious request
that exploits a buffer overflow bug, simply reordering messages
will not solve the problem. The most aggressive approaches in the
checkpointing/recovery category include recovery blocks [42] and
n-version programming [5, 4, 45], both of which rely on different
implementation versions upon failures. These approaches may be
able to survive deterministic bugs under the assumption that dif-
ferent versions fail independently. But they are rarely adopted by
software companies due to prohibitive costs. An alternative to N-
version programming is data diversity that tries to execute multiple
copies of the same program, each with a different form of the in-
put [2]. While proposing an inspiring idea, this work focuses on the
theoretical framework instead of the practical aspects. In particu-
lar, it does not answer how to apply the idea transparently without
modifying the application and without causing major performance
degradation during normal execution.

The third category comprises application-specific recovery mech-
anisms, such as the multi-process model, exception handling, etc.
Some multi-processed applications, such as the old version of the
Apache HTTP Server and the CVS server, spawn a new process
for each client connection and therefore can simply kill a failed
process and start a new one to handle a failed request. While capa-
ble of surviving certain software failures, this technique has several
limitations. First, the new process will most likely fail again for
deterministic bugs at the same place given the same request (e.g. a
malicious request). Second, if a shared data structure is corrupted,
simply killing the failed process and restarting a new one will not
restore the shared data to a consistent state, therefore potentially
causing subsequent process failures. Other application-specific re-
covery mechanisms require software to be failure-aware, which ad-
versely affects programming difficulty and code readability.

The fourth category includes several recent non-conventional pro-
posals such as failure-oblivious computing [44] and the reactive im-
mune system [49]. Failure-oblivious computing deals with buffer
overflows by providing artificial values for out-of-bound reads, while
the reactive immune system returns a speculative error code for
functions that suffer software failures (e.g. crashes). While these
approaches are fascinating and may work for certain types of appli-
cations or certain types of bugs, they are unsafe to use for correctness-
critical applications (e.g. on-line banking systems) because they
“speculate” on programmers’ intentions, which can lead to program
misbehavior. The problem becomes even more severe and harder
to detect if the speculative “fix” introduces a silent error that does
not manifest itself immediately. In addition, such problems, if they
occur, are very hard to diagnose since the application’s execution
has been forcefully perturbed by those speculative “fixes”.

Besides the above individual limitations, existing work provides
insufficient feedback to developers for debugging. For example, the
information provided to developers may include only a core dump,
several recent checkpoints, and an event log for deterministic re-
play of a few seconds of recent execution. To save programmers’
debugging effort, it is desirable if the run-time system can provide
information regarding the bug type, under what conditions the bug
is triggered, and how it can be avoided. Such diagnostic informa-
tion can guide programmers during their debugging process and
thereby enhance their efficiency.

1.2 Our Contributions
In this paper, we propose a safe (not speculatively “fixing” the

bug) technique, called Rx, to quickly recover from many types of
software failures caused by common software defects, both deter-
ministic and non-deterministic. It requires few to no changes to
applications’ source code, and provides diagnostic information for
postmortem bug analysis. Our idea is to rollback the program to
a recent checkpoint when a bug is detected, dynamically change
the execution environment based on the failure symptoms, and then
re-execute the buggy code region in the new environment. If the
re-execution successfully pass through the problematic period, the
new environmental changes are disabled to avoid imposing time
and space overheads.

Our idea is inspired from real life. When a person suffers from
an allergy, the most common treatment is to remove the allergens
from their living environment. For example, if patients are allergic
to milk, they should remove diary products from the diet. If pa-
tients are allergic to pollen, they may install air filters to remove
pollen from the air. Additionally, when removing a candidate al-
lergen from the environment successfully treats the symptoms, it
allows diagnosis of the cause of the symptoms. Obviously, such
treatment cannot and also should not start before patients shows
allergic symptoms since changing living environment requires spe-
cial effort and may also be unhealthy.

In software, many bugs resemble allergies. That is, their man-
ifestation can be avoided by changing the execution environment.
According to a previous study by Chandra and Chen [18], around
56% of faults in Apache depend on execution environment 1. There-
fore, by removing the “allergen” from the execution environment, it
is possible to avoid such bugs. For example, a memory corruption
bug may disappear if the memory allocator delays the recycling
of recently freed buffers or allocates buffers non-consecutively in
isolated locations. A buffer overrun may not manifest itself if the
memory allocator pads the ends of every buffer with extra space.
Uninitialized reads may be avoided if every newly allocated buffer
is all filled with zeros. Data races can be avoided by changing tim-
ing related events such as thread-scheduling, asynchronous events,
etc. Bugs that are exploited by malicious users can be avoided by
dropping such requests during program re-execution. Even though
dropping requests may make a few users (hopefully the malicious
ones) unhappy, they do not introduce incorrect behavior to pro-
gram execution as the failure-oblivious approaches do. Further-
more, given a spectrum of possible environmental changes, the
least intrusive changes can be tried first, reserving the more extreme
one as a last resort for when all other changes have failed. Finally,
the specific environmental change which cures the problem gives
diagnostic information as to what the bug is.

Similar to an allergy, it is difficult and expensive to apply these
execution environmental changes from the very beginning of the
program execution because we do not know what bugs might occur
later. For example, zero-filling newly allocated buffers imposes
time overhead. Therefore, we should lazily apply environmental
changes only when needed.

We have implemented Rx with Linux and evaluated it with four
server applications that contain four real bugs (bugs introduced by
the original programmers) and two injected bugs (bugs injected by
us) of various types including buffer overflow, double free, stack
overflow, data race, uninitialized read and dangling pointer bugs.
Compared with previous solutions, Rx has the following unique
advantages:
1Note that our definition of execution environment is different from
theirs. In our work, the standard library calls, such as malloc, and
system calls are also part of execution environment.

AppAppApp App

checkpoint

App

Software
Failure

Rollback Change
Environment

EnvEnvEnv

App

Env

Reexecute

Env’ Env’

Succeed

Fail

Time Out Other Approaches
(e.g. whole program restart)

Figure 1: Rx: The main idea

• Comprehensive: Rx can survive many common software de-
fects. Besides non-deterministic bugs, Rx can also survive
deterministic bugs. Our experiments show that Rx can suc-
cessfully survive the six bugs listed above. In contrast, the
two tested alternatives, a whole program restart approach
and a simple rollback and re-execution without environmen-
tal changes, cannot recover the three servers (Squid, Apache,
and CVS) that contain deterministic bugs, and have only a
40% recovery rate for the server (MySQL) that contains a
non-deterministic concurrency bug. Such results indicate that
applying environmental changes during re-execution is the
key reason for Rx’s successful recovery of all tested cases.

• Safe: Rx does not speculatively “fix” bugs at run time. In-
stead, it prevents bugs from manifesting themselves by chang-
ing only the program’s execution environment. Therefore,
it does not introduce uncertainty or misbehavior into a pro-
gram’s execution, which is usually very difficult for program-
mers to diagnose.

• Noninvasive: Rx requires few to no modifications to appli-
cations’ source code. Therefore, it can be easily applied to
legacy software. In our experiments, Rx successfully avoids
software defects in the four tested server applications without
modifying any of them.

• Efficient: Because Rx requires no rebooting or warm-up, it
significantly reduces system down time and provides reason-
ably good performance during recovery. In our experiments,
Rx recovers from software failure within 0.017-0.16 seconds,
21-53 times faster than the whole program restart approach
for all but one case (CVS). Such efficiency enables servers to
provide non-stop services despite software failures caused by
common software defects. Additionally, Rx is quite efficient.
The technology imposes little overhead on server throughput
and average response time and also has small space overhead.

• Informative: Rx does not hide software bugs. Instead, bugs
are still exposed. Furthermore, besides the usual bug report
package (including core dumps, checkpoints and event logs),
Rx provides programmers with additional diagnostic infor-
mation for postmortem analysis, including what conditions
triggered the bug and which environmental changes can or
cannot avoid the bug. Based on such information, program-
mers can more efficiently find the root cause of the bug. For
example, if Rx successfully avoids a bug by padding newly
allocated buffers, the bug is likely to be a buffer overflow.
Similarly, if Rx avoids a bug by delaying the recycling of
freed buffers, the bug is likely to be caused by double free or
dangling pointers.

2. MAIN IDEA OF Rx
The main idea of Rx is to, upon a software failure, rollback the

program to a recent checkpoint and re-execute it in a new envi-
ronment that has been modified based on the failure symptoms.
If the bug’s “allergen” is removed from the new environment, the
bug will not occur during re-execution, and thus the program will
survive this software failure. After the re-execution safely passes
through the problematic code region, the environmental changes
are disabled to reduce time and space overhead imposed by the en-
vironmental changes.

Figure 1 shows the process by which Rx survives software fail-
ures. Rx periodically takes light-weight checkpoints that are spe-
cially designed to survive software failures instead of hardware fail-
ures or OS crashes (See Section 3.2). When a bug is detected, either
by an exception or by integrated dynamic software bug detection
tools called as the Rx sensors, the program is rolled back to a re-
cent checkpoint. Rx then analyzes the occurring failure based on
the failure symptoms and “experiences” accumulated from previ-
ous failures, and determines how to apply environmental changes
to avoid this failure. Finally, the program re-executes from the
checkpoint in the modified environment. This process will repeat
by re-executing from different checkpoints and applying different
environmental changes until either the failure does not recur or Rx
times out, resorting to alternate solutions, such as whole-program
rebooting [27, 54]. If the failure does not occur during re-execution,
the environmental changes are disabled to avoid the overhead asso-
ciated with these changes.

In our idea, the execution environment can include almost ev-
erything that is external to the target application but can affect the
execution of the target application. At the lowest level, it includes
the hardware such as processor architectures, devices, etc. At the
middle level, it includes the OS kernel such as scheduling, virtual
memory management, device drivers, file systems, network proto-
cols, etc. At the highest level, it includes standard libraries, third-
party libraries, etc. Such definition of the execution environment is
much broader than the one used in previous work [18].

Obviously, the execution environment cannot be arbitrarily mod-
ified for re-execution. A useful re-execution environmental change
should satisfy two properties. First, it should be correctness-preser-
ving, i.e., every step (e.g., instruction, library call and system call)
of the program is executed according to the APIs. For example, in
the malloc() library call, we have the flexibility to decide where
buffers should be allocated, but we cannot allocate a smaller buffer
than requested. Second, a useful environmental change should be
able to potentially avoid some software bugs. For example, padding
every allocated buffer can prevent some buffer overflow bugs from
manifesting during re-execution.

Category Environmental Changes Potentially-Avoided Bugs Deterministic?
delayed recycling of freed buffer double free, dangling pointer YES

Memory padding allocated memory blocks dynamic buffer overflow YES
Management allocating memory in an alternate location memory corruption YES

zero-filling newly allocated memory buffers uninitialized read YES
scheduling data race NO

Asynchronous signal delivery data race NO
message reordering data race NO

User-Related dropping user requests bugs related to the dropped request Depends

Table 1: Possible environmental changes and their potentially-avoided bugs

Examples of useful execution environmental changes include,
but are not limited to, the following categories:
(1)Memory management based: Many software bugs are mem-
ory related, such as buffer overflows, dangling pointers, etc. These
bugs may not manifest themselves if memory management is per-
formed slightly differently. For example, each buffer allocated dur-
ing re-execution can have padding added to both ends to prevent
some buffer overflows. Delaying the recycling of freed buffers can
reduce the probability for a dangling pointer to cause memory cor-
ruption. In addition, buffers allocated during re-execution can be
placed in isolated locations far away from existing memory buffers
to avoid some memory corruption. Furthermore, zero-filling new
buffers can avoid some uninitialized read bugs. Since none of the
above changes violate memory allocation or deallocation interface
specifications, they are safe to apply. Also note that these environ-
mental changes affect only those memory allocations/deallocations
made during re-execution.
(2)Timing based: Most non-deterministic software bugs, such as
data races, are related to the timing of asynchronous events. These
bugs will likely disappear under different timing conditions. There-
fore, Rx can forcefully change the timing of these events to avoid
these bugs during re-execution. For example, increasing the length
of a scheduling time slot can avoid context switches during buggy
critical sections. This is very useful for those concurrency bugs
that have high probability of occurrences. For example, the data
race bug in our tested MySQL server has a 40% occurrence rate on
a uniprocessor machine.
(3)User request based: Since it is infeasible to test every possi-
ble user request before releasing software, many bugs occur due
to unexpected user requests. For example, malicious users issue
malformed requests to exploit buffer overflow bugs during stack
smashing attacks [22]. These bugs can be avoided by dropping
some users’ requests during re-execution. Of course, since the user
may not be malicious, this method should be used as a last resort
after all other environmental changes fail.

Table 1 lists some environmental changes and the types of bugs
that can be potentially avoided by them. Although there are many
such changes, due to space limitations, we only list a few examples
for demonstration.

If the failure disappears during a re-execution attempt, the failure
symptoms and the effects of the environmental changes applied are
recorded. This speeds up the process of dealing with future failures
that have similar symptoms and code locations. Additionally, Rx
provides all such diagnostic information to programmers together
with core dumps and other basic postmortem bug analysis informa-
tion. For example, if Rx reports that buffer padding does not avoid
the occurring bug but zero-filling newly allocated buffers does, the
programmer knows that the software failure is more likely to be
caused by an uninitialized read instead of a buffer overflow.

After a re-execution attempt successfully passes the problematic

program region for a threshold amount of time, all environmental
changes applied during the successful re-execution are disabled to
reduce space and time overheads. These changes are no longer nec-
essary since the program has safely passed the “allergic seasons”.

If the failure still occurs during a re-execution attempt, Rx will
rollback and re-execute the program again, either with a different
environmental change or from an older checkpoint. For example, if
one change (e.g. padding buffers) cannot avoid the bug during the
re-execution, Rx will rollback the program again and try another
change (e.g. zero-filling new buffers) during the next re-execution.
If none of the environmental changes work, Rx will rollback fur-
ther and repeat the same process. If the failure still remains after
a threshold number of iterations of rollback/re-execute, Rx will re-
sort to previous solutions, such as whole program restart [27, 54],
or micro-rebooting [13, 14] if supported by the application.

Upon a failure, Rx follows several rules to determine the order in
which environmental changes should be applied during the recov-
ery process. First, if a similar failure has been successfully avoided
by Rx before, the environmental change that worked previously
will be tried first. If this does not work, or if no information from
previous failures exists, environmental changes with small over-
heads (e.g. padding buffers) are tried before those with large over-
heads (e.g. zero-filling new buffers). Changes with negative side
effects (e.g. dropping requests) are tried last. Changes that do not
conflict, such as padding buffers and changing event timing, can be
applied simultaneously.

Although the situation never arose during our experiments, there
is still the rare possibility that a bug still occurs during re-execution
but is not detected in time by Rx’s sensors. In this case, Rx will
claim a recovery success while it is not. Addressing this problem
requires using more rigorous on-the-fly software defect checkers
as sensors. This is currently a hot research area that has attracted
much attention. In addition, it is also important to note that, unlike
in failure oblivious computing, this problem is caused by the appli-
cation’s bug instead of Rx’s environmental changes. The environ-
mental changes just make the bug manifest itself in a different way.
Furthermore, since Rx logs its every action including what environ-
mental changes are applied and what the results are, programmers
can use this information (i.e. some environmental changes make
the software crash much later) to analyze the occurring bug.

3. Rx DESIGN
Rx is composed of a set of user-level and kernel-level compo-

nents that monitor and control the execution environment. The five
primary components are seen in Figure 2: (1) sensors for detecting
and identifying software failures or software defects at run time,
(2) a Checkpoint-and-Rollback (CR) component for taking check-
points of the target server application and rolling back the applica-
tion to a previous checkpoint upon failure, (3) environment wrap-
pers for changing execution environments during re-execution, (4)
a proxy for making server recovery process transparent to clients,

Wrapper
Environment

Control Unit

Sensors

Server Application Clients

Rx System

report errors programmers

Proxy

& Rollback
Checkpoint

Figure 2: Rx architecture

and (5) a control unit for maintaining checkpoints during normal
execution, and devising a recovery strategy once software failures
are reported by sensors.

3.1 Sensors
Sensors detect software failures by dynamically monitoring ap-

plications’ execution. There are two types of sensors. The first type
detects software errors such as assertion failures, access violations,
divide-by-zero exceptions, etc. This type of sensor can be imple-
mented by taking over OS-raised exceptions. The second type of
sensor detects software bugs such as buffer overflows, accesses to
freed memory etc., before they cause the program to crash. This
type of sensors leverage existing low-overhead dynamic bug detec-
tion tools, such as CCured [21], StackGuard [22], and our previous
work SafeMem [41], just to name a few. In our Rx prototype, we
have only implemented the first type of sensors. However, we plan
to integrate second type of sensors into Rx.

Sensors notify the control unit upon software failures with in-
formation to help identify the occurring bug for recovery and also
for postmortem bug diagnosis. Such information includes the type
of exception (Segmentation fault, Floating Point Exception, Bus
Error, Abort, etc.), the address of the offending instruction, stack
signature, etc.

3.2 Checkpoint and Rollback

3.2.1 Mechanism
The CR (Checkpoint-and-Rollback) component takes checkpoints

of the target server application, and automatically and transparently
rolls back the application to a previous checkpoint upon a software
failure. At a checkpoint, CR stores a snapshot of the application
into main memory. Similar to the fork operation, CR copies appli-
cation memory in a copy-on-write fashion to minimize overhead.
By preserving checkpoint states in memory, the overhead associ-
ated with slow disk accesses in most previous checkpointing solu-
tions is avoided. This method is also used in previous work [20, 31,
33, 60, 36, 40, 50]. Performing a rollback operation is straightfor-
ward: simply reinstate the program from the snapshot associated
with the specified checkpoint.

Besides memory states, the CR also needs to take care of other
system states such as file states during checkpointing and rollback
to ensure correct re-execution. To handle file states, CR applies
ideas similar to previous work [36, 50] by keeping a copy of each
accessed files and file pointers in the beginning of a checkpoint in-
terval and reinstate it for rollback. To simplify implementation, we
can leverage a versioning file system which automatically takes a
file version upon modifications. Similarly, copy-on-write is used to
reduce space and time overheads. For some logs file that users may
want the old content not to be overwritten during re-execution, Rx

can easily provide a special interface that allows applications to in-
dicate what files should not be rolled back. Other system states such
as messages and signals will be described in the next subsection be-
cause they may need to be changed to avoid a software bug recur-
ring during re-execution. More details about our lightweight check-
pointing method can be found in our previous work [50], which
uses checkpointing and logging to support deterministic replay for
interactive debugging.

In contrast to previous work on rollback and replay, Rx does not
require deterministic replay. On the contrary, Rx purposely intro-
duces nondeterminism into server’s re-execution to avoid the bug
that occurred during the first execution. Therefore, the underlying
implementation of Rx can be simplified because it does not need
to remember when an asynchronous event is delivered to the ap-
plication in the first execution, how shared memory accesses from
multiple threads are interleaved in a multi-processor machine, etc.,
as we have done in our previous work [50].

The CR also supports multiple checkpoints and rollback to any
of these checkpoints in case Rx needs to roll back further than the
most recent checkpoint in order to avoid the occurring software
bug. After rolling back to a checkpoint CPi, all checkpoints which
were taken after CPi are deleted. This ensures that we do not roll-
back to a checkpoint which has been rendered obsolete by the roll-
back process. During a re-execution attempt, new checkpoints may
be taken for future recovery needs in case this re-execution attempt
successfully avoids the occurring software bug.

3.2.2 Checkpoint Maintenance
A possible concern is that maintaining multiple checkpoints could

impose a significant space overhead. To address this problem, Rx
can write old checkpoints to disks on the background when disks
are idle. But rolling back to a checkpoint, which is already stored
in disks, is expensive due to slow disk accesses.

Fortunately, we do not need to keep too many checkpoints be-
cause Rx strives to bound its recovery time to be 2-competitive as
the baseline solution: whole program restarting. In other words,
in the worse case, Rx may take twice as much time as the whole
program restarting solution (In reality, in most cases as shown in
Section 6, Rx recovers much faster than the whole program restart).
Therefore, if a whole program restart would take T seconds (This
number can be measured by restarting immediately at the first soft-
ware failure and then be used later), Rx can only repeat rollback/re-
execute process for at most T seconds. As a result, Rx cannot roll-
back to a checkpoint which is too far back in the past, which implies
that Rx does not need to keep such checkpoints any more.

More formally, suppose Rx takes checkpoints periodically, let
τ1,τ2,· · · ,τn be the timestamps of the last n checkpoints that have
been kept in the reverse chronological order. We can use two schemes
to keep those checkpoints: one is to keep only recent checkpoints,
and the other is to keep exponential landmark checkpoints (with β

as the exponential factor) as in the Elephant file system [47]. In
other words, the two schemes satisfy the following equations, re-
spectively.

τi − τi+1 = τi−1 − τi (2 ≤ i ≤ n − 1)

τi − τi+1 = β ∗ (τi−1 − τi) (2 ≤ i ≤ n − 1)

Note that time here refers to application execution time as op-
posed to elapse time. The latter can be significantly higher, espe-
cially when there are many idle periods.

After each checkpoint, Rx estimates whether it is still useful to
keep the oldest checkpoint. If not, the oldest checkpoint taken at
time τn is deleted from the system to save space. The estimation

is done by calculating the worst-case recovery time that requires
rolling back to this oldest checkpoint. Suppose after rolling back
to a checkpoint, every ith re-execution (1 ≤ i ≤ m) with different
environmental changes incurs the overhead pi. Obviously, some
environmental changes such as buffer padding impose little time
overhead, whereas other changes such as zero-filling buffers incur
large overhead. pis can be measured at run time. Therefore the
worst-case recovery time, RTime, that requires to roll back to the
oldest checkpoint would be (let τ be the current timestamp):

RTime =

n
X

i=1

m
X

j=1

(τ − τi)(1 + pj) =

n
X

i=1

(τ − τi)
˙m

X

j=1

(1 + pj)

If RTime is greater than T , the oldest checkpoint taken at time
τn is deleted.

3.3 Environment Wrappers
The environment wrappers perform environmental changes dur-

ing re-execution for averting failures. Some of the wrappers, such
as the memory wrappers, are implemented at user level by inter-
cepting library calls. Others, such as the message wrappers, are
implemented in the proxy. Finally, still others, such as the schedul-
ing wrappers, are implemented in the kernel.
Memory Wrapper The memory wrapper is implemented by in-
tercepting memory-related library calls such as malloc(), realloc(),
calloc(), free(), etc to provide environmental changes. During the
normal execution, the memory wrapper simply invokes the corre-
sponding standard memory management library calls, which incurs
little overhead. During re-execution, the memory wrapper activates
the memory-related environmental changes instructed by the con-
trol unit. Note that the environmental changes only affect the mem-
ory allocation/deallocation made during re-execution.

Specifically, the memory wrapper supports four environmental
changes:
(1) Delaying free, which delays recycling of any buffers freed dur-
ing a re-execution attempt to avoid software bugs such as double
free bugs and dangling pointer bugs. A freed buffer is reallocated
only when there is no other free memory available or it has been de-
layed for a threshold of time (process execution time, not elapsed
time). Freed buffers are recycled in the order of the time when they
are freed. This memory allocation policy is not used in the normal
mode because it can increase paging activities.
(2) Padding buffers, which adds two fixed-size paddings to both
ends of any memory buffers allocated during re-execution to avoid
buffer overflow bugs corrupting useful data. This memory allo-
cation policy is only used in the recovery mode because it wastes
memory space.
(3) Allocation isolation, which places all memory buffers allocated
during re-execution in an isolated location to avoid corruption use-
ful data due to severe buffer overflow or other general memory cor-
ruption bugs. Similar to padding, it is disabled in the normal mode
because it has space overhead.
(4) Zero-filling, which zero-fills any buffers allocated during re-
execution to reduce the probability of failures caused by uninitial-
ized reads. Obviously, this environmental change needs to be dis-
abled in the normal mode since it imposes time overhead.

Since none of the above changes violate memory allocation or
deallocation interface specifications, they are safe to apply. At
each memory allocation or free, the memory wrapper returns ex-
actly what the application may expect. For example, when an ap-
plication asks for a memory buffer of size N , the memory wrapper
returns a buffer with at least size N , even though this buffer may

have been padded at its both ends, allocated from an isolated loca-
tion, or zero-filled.
Message Wrapper Many concurrency bugs are related to mes-
sage delivery such as the message order across different connec-
tions, the size and number of network packets which comprise a
message, etc. Therefore, changing these execution environments
during re-execution may be able to avoid an occurring concurrency
software bug. This is feasible because servers typically should not
have any expectation regarding the order of messages from differ-
ent connections (users), the size and the number of network packets
that forms a message, especially the latter two which depend on the
TCP/IP settings of both sides.

The message wrapper, which is implemented in the proxy (de-
scribed in the next subsection), changes the message delivery en-
vironment in two ways: (1) It can randomly shuffle the order of
the requests among different connections, but keep the order of the
requests within each connection in order to maintain any possible
dependency among them. (2) It can deliver messages in random-
sized packets. Such environmental changes do not impose over-
head. Therefore, this message delivery policy can be used in the
normal mode, but it does not decrease the probability of the occur-
rence of a concurrency bug because there is no way to predict in
what way a concurrency bug does not occur.
Process Scheduling Similarly, concurrency bugs are also related
to process scheduling and are therefore prone to disappear if a dif-
ferent process scheduling is used during re-execution. Rx does this
by changing the process’ priority, and thus increasing the schedul-
ing time quantum so a process is less likely to switched off in the
middle of some unprotected critical region.
Signal Delivery Similar to process scheduling, the time when a
signal is delivered may also affect the probability of a concurrency
bug’s occurrence rate. Therefore, Rx can record all signals in a
kernel-level table before delivering them. For hardware interrupts,
Rx delivers them at randomly selected times, but preserving their
order to maintain any possible ordering semantics. For software
timer signals, Rx ignores them because during rollback, the related
software timer will also be restored. For software exception related
signals such as segmentation faults, Rx’s sensors receive them as
indications of software failures.
Dropping User Requests Dropping user requests is a last envi-
ronmental change before switching to the whole program restart so-
lution. As described earlier, the rational for doing this is that some
software failures are triggered by some malformed requests, either
unintentionally or intentionally by malicious users. If Rx drops
that request, the server will not experience failure. In this case, the
server only denies those dropped requests, but does not affect other
requests. The effectiveness of this environmental change is based
on our assumption that the client and server use a request/response
model, which is generally the case for large varieties of servers in-
cluding Web Servers, DNS Servers, database servers, etc.

Rx does not need to look for the exact culprit user request. As
long as the dropped requests include this request, the server can
avoid the software bug and continue providing services. Of course,
the percentage of dropped requests should be small (e.g. 10%) to
avoid malicious users exploiting it to launch denial of service at-
tacks. Rx can achieve this by performing a binary search on all
recently received requests. First, it can drop half of them to see
whether the bug still occurs during re-execution. If not, the prob-
lem request set becomes one half smaller. If the bug still occurs, it
rolls back to drop the other half. If it still does not work, Rx resorts
to the whole program restart solution. Otherwise, the binary search
continues until the percentage of dropped requests becomes smaller

req1
req2

req5
req4
req3forward forward

messages messages

ck1

ck2

ck3

response

Proxy

Server Client

buffer

req2

req7
req6

req5

req3

new requests

replay
Server

req1ck1

ck2

rollback
point

buffer
response

req4

Proxy

Client

(a) Proxy behavior in normal mode (b) Proxy behavior in recovery mode
Figure 3: (a) In normal mode, the proxy forward request/response messages between the server and the client, buffers requests,
and marks the waiting-for-sending request for each checkpoint (e.g., req3 is marked by checkpoint 2). (b) After the server is rolled
back from the rollback-point, as shown in the dashed line to checkpoint 2, the proxy discards the mark of checkpoint 3, replays
the necessary requests (req3, req4 and req5) to the server and buffers the incoming requests (req6 and req7). The “unanswered”
responses are buffered in the response buffer.

than the specified number. If the percentage upper bound is set to
be 10%, it only takes 5 iterations of rollback and re-execution.

After Rx finds the small set of requests (less than the specified
upper bound) that, once dropped, enable the server to survive the
bug, Rx can remember each request’s signatures such as the IP ad-
dress, message size, message MD5 hash value, etc. In subsequent
times when a similar bug recurs in the normal mode, Rx can record
the signatures again. After several rounds, Rx accumulates enough
sets of signatures so that it can use statistical methods to identify
the characteristics of those bug-exposing requests. Afterward, if
the same bug recurs, Rx can drop only those requests that match
these characteristics to speed up the recovery process.

3.4 Proxy
The proxy helps a failed server re-execute and makes server-side

failure and recovery oblivious to its clients. When a server fails and
rolls back to a previous checkpoint, the proxy replays all the mes-
sages received from this checkpoint, along with the message-based
environmental changes described in the Section 3.3. The proxy
runs as a stand-alone process in order to avoid being corrupted by
the target server’s software defects.

As Figure 3 shows, the Rx proxy can be in one of the two modes:
normal mode for the server’s normal execution and recovery mode
during the server’s re-execution. For simplicity, the proxy forwards
and replays client messages in the granularity of user requests.
Therefore, the proxy needs to separate different requests within
a stream of network messages. The proxy does this by plugging
in some simple information about the application’s communication
protocol (e.g. HTTP) so it can parse the header to separate one re-
quest from another. In addition, the proxy also uses the protocol
information to match a response to the corresponding request to
avoid delivering a response to the user twice during re-execution.
In our experiments, we have evaluated four server applications, and
the proxy uses only 509 lines of code to handle 3 different proto-
cols: HTTP, MySQL message protocol and CVS message protocol.

As shown on Figure 3(a), in the normal mode, the proxy sim-
ply bridges between the server and its clients. It keeps track of
network connections and buffers the request messages between the
server and its clients in order to replay them during the server’s
re-execution. It forwards client messages at request granularity.
In other words, the proxy does not forward a partial request to
the server. At a checkpoint, the proxy marks the next wait-for-

forwarding request in its request buffer. When the server needs
to roll back to this checkpoint, the mark indicates the place from
which the proxy should replay the requests to the server.

The proxy does not buffer any response in the normal mode ex-
cept for those partially received responses. This is because after a
full response is received, the proxy sends it out to the corresponding
client and mark the corresponding request as “answered”. Keeping
these committed responses is useless because during re-execution
the proxy cannot send out another response for the same request.
Similarly, the proxy also strives to forward messages to clients at
response granularity to reduce the possibility of sending a self-
conflicting response during re-execution, which may occur when
the first part of the response is generated by the server’s normal
execution and the second part of the response is generated by re-
execution that may take a different execution path.

However, if the response is too large to be buffered, a partial re-
sponse is sent first to the corresponding client but the MD5 hash for
this partial response is calculated and stored with the request. If a
software failure is encountered before the proxy receives the entire
response from the server, the proxy needs to check the MD5 hash of
the same partial response generated during re-execution. If it does
not match with the stored value, the proxy will drop the connection
to the corresponding client to avoid sending a self-conflicting re-
sponse. To handle the case where a checkpoint is taken in the mid-
dle of receiving a response from the server, the proxy also marks
the exact position of the partially-received response.

As shown on Figure 3(b), in the recovery mode, the proxy per-
forms three functions to help server recovery. First, it replays to
the server those requests received since the checkpoint where the
server is rolled back. Second, the proxy introduces message-related
environmental changes as described in Section 3.3 to avoid some
concurrency bugs. Third, the proxy buffers any incoming requests
from clients without forwarding them to the server until the server
successfully survives the software failure. Doing such makes the
server’s failure and recovery transparent to clients, especially since
Rx has very fast recovery time as shown in Section 6. The proxy
stays in the recovery mode until the server survives the software
failure after one or multiple iterations of rollback and re-execution.

To deal with the output commit problem [53] (clients should per-
ceive a consistent behavior of the server despite server failures),
Rx first ensures that any previous responses sent to the client are
not resent during re-execution. This is achieved by recording for

each request whether it has been responded by the server or not. If
so, a response made during re-execution is dropped silently. Oth-
erwise, the response generated during re-execution will be tem-
porally buffered until any of the three conditions is met: (1) the
server successfully avoids the failure via rollback and re-execution
in changed execution environments; (2) the buffer is full; or (3) this
re-execution fails again. For the first two cases, the proxy sends the
buffered responses to the corresponding clients and the correspond-
ing requests are marked as “answered”. Thus, responses generated
in subsequent re-execution attempts will be dropped to ensure that
only one response for each request goes to the client. For the last
case, the responses are thrown away.

For applications such as on-line shopping that require strict ses-
sion consistency (i.e. later requests in the same session depend on
previous responses), Rx can record the signatures (hash values) of
all committed responses for each outstanding session, and perform
MD5 hash-based consistency checks during re-execution. If a re-
execution attempt generates a response that does not match with a
committed response for the same request in an outstanding session,
this session can be aborted to avoid confusing users.

The proxy also supports multiple checkpoints. When an old
checkpoint is discarded, the proxy discards the marks associated
with this checkpoint. If this checkpoint is the oldest one, the proxy
also discards all the requests received before the second oldest check-
point since the server can never roll back to the oldest checkpoint
any more.

The space overhead incurred by the proxy is small. It mainly
consists of two parts: (1) space used to buffer requests received
since the undeleted oldest checkpoint, (2) a fixed size space used
to buffer “unanswered” responses generated during re-execution in
the recovery mode. The first part is small because usually requests
are small, and the proxy can also discard the oldest checkpoint to
save space as described in Section 3.2. The second part has a fixed
size and can be specified by administrators.

3.5 Control Unit
The control unit coordinates all the other components in the Rx.

It performs three functions: (1) directs the CR to checkpoint the
server periodically and requests the CR to roll back the server upon
failures. (2) diagnoses an occurring failure based on the failure
symptoms and its accumulated experiences, then decides what en-
vironmental changes should be applied and where the server should
be rolled back to. (3) provides programmers useful failure-related
information for postmortem bug analysis.

After several failures, the control unit gradually builds up a fail-
ure table to capture the recovery experience for future reference.
More specifically, during each re-execution attempt, the control
unit records the effects (success or failure) and the corresponding
environmental changes into the table. The control unit assigns a
score vector 〈s1, s2, · · · , sm〉 to each failure, where m is the num-
ber of possible environmental changes. Each element si in the vec-
tor is the score for each corresponding environmental change Ci for
a certain failure. For a successful re-execution, the control unit adds
one point to all the environmental changes that are applied during
this re-execution. For a failed re-execution,the control unit sub-
tracts one point from all the applied environmental changes. When
a failure happens, the control unit searches the failure table based
on failure symptoms, such as type of exceptions, instruction coun-
ters, call chains, etc, provided by the Rx sensors. If one table entry
matches, it then applies those environmental changes whose scores
are larger than a certain threshold Ts. Otherwise, it will follow the
rules described in Section 2 to determine the order how environ-
mental changes should be applied during re-execution. This failure

table can be provided to programmers for postmortem bug analy-
sis. It is possible to borrow ideas from machine learning (e.g., a
Bayesian classifier) or use some statistical methods as a more “ad-
vanced” technique to learn what environmental changes are the best
cure for a certain type of failures. Such optimization remains as our
future work.

4. DESIGN AND IMPLEMENTATION ISSUES
Inter-Server Communication In many real systems, servers are
tiered hierarchically to provide service. For example, a web server
is usually linked to an application server, which is then linked to
a backend database server. In this case, rolling back one failed
server may not be enough to survive a failure because the failure
may be caused by its front-end or back-end servers. To address
this problem, Rx should be used for all servers in this hierarchy
so that it is possible to rollback a subset or all of them in order to
survive a failure. We can borrow many ideas, such as, coordinated
checkpointing, asynchronous recovery, etc, from previous work on
supporting fault tolerance in distributed systems [15, 16, 24, 45, 1],
and also from recent work such as micro-reboot [14]. More specif-
ically, during the normal execution, Rx in the tiered servers take
checkpoints coordinately. Once a failure is detected, Rx rolls back
the failed server and also broadcasts its rollback to other correlated
servers, which then roll back correspondingly to recover the whole
system. Currently, we have not implemented such support in the
Rx and it remains a topic for future study.
Multi-threaded Process Checkpointing Taking a checkpoint on
a multi-threaded process is particularly challenging because, when
Rx needs to take a checkpoint, some threads may be executing sys-
tem calls or could be blocked inside the kernel waiting for asyn-
chronous events. Capturing the transient state of such threads could
easily lead to state inconsistency upon rollback. For example, there
can be some kernel locks which have been acquired during check-
point, and rolling back to such state may cause two processes hold
the same kernel locks. Therefore, it is essential that we force all the
threads to stay at the user level before checkpointing. We imple-
ment this by sending a signal to all threads, which makes them exit
from blocked system calls or waiting events with an EINTR return
code. After the checkpoint, the library wrapper in Rx retries the
prematurely returned system calls and thus hides the checkpoint-
ing process from the target application. This has a bearing on the
checkpointing frequency, as a high checkpointing frequency will
severely impair the performance of normal I/O system calls, which
are likely to be retried multiple times (once at every checkpoint)
before long I/Os finish. Therefore, we cannot set the checkpointing
interval too small.
Unavoidable Bug/Failure for Rx Even though Rx should be
able to help servers recover from most software failures caused by
common software bugs such as memory corruptions and concur-
rency bugs, there are still some types of bugs that Rx cannot help
the server to avoid via re-execution in changed execution environ-
ments. Resource leakage bugs, such as memory leaks, which have
accumulative effects on system and may take hours or days to cause
system to crash, cannot be avoided by only rolling the server back
to a recent checkpoint. Therefore, for resource leaking, Rx resorts
to the whole program restart approach because restart can refresh
server with plenty of resources. For some of the semantic bugs, Rx
may not be effective to avoid them since they may not be related to
execution environments. Finally, Rx are not able to avoid the bugs
or failures that sensors cannot detect. Solving this problem would
require more rigorous dynamic checkers as sensors.

5. EVALUATION METHODOLOGY
The experiments described in this section were conducted on two

machines with a 2.4GHz Pentium processor, 512KB L2 cache, 1GB
of memory, and a 100Mbps Ethernet connection between them. We
run servers on one machine and clients on the other. The operating
system we modified is the Linux kernel 2.6.10. The Rx proxy is
currently implemented at user level for easy debugging. In the fu-
ture, we plan to move it to the kernel level to improve performance.

We evaluate four different real-world server applications as shown
in Table 2, including a web server (Apache httpd), a web cache and
proxy server (Squid), a database server (MySQL), and a concurrent
version control server (CVS). The servers contain various types of
bugs, including buffer overflow, data race, double free, dangling
pointer, uninitialized read, and stack overflow bugs. Four of them
were introduced by the original programmers. We have not yet
located server applications which contain uninitialized read or dan-
gling pointer bugs. To evaluate Rx’s functionality of handling these
two types of bugs, we inject them into Squid separately, renaming
the two Squids as Squid-ui (containing an uninitialized read bug)
and Squid-dp (containing a dangling pointer bug), respectively.

App Ver Bug #LOC App Description
MySQL 4.1.1.a data race 588K a database server
Squid 2.3.s5 buffer overflow 93K a Web proxy
Squid-ui 2.3.s5 uninitialized read cache server
Squid-dp 2.3.s5 dangling pointer
Apache 2.0.47 stack overflow 283K a Web server
CVS 1.11.4 double free 114K a version

control server

Table 2: Applications and Bugs (App means Application. Ver
means Version. LOC means lines of code).

In this paper, we design four sets of experiments to evaluate the
key aspects of Rx:

• The first set evaluates the functionality of Rx in surviving
software failures caused by common software defects by roll-
back and re-execution with environmental changes. We com-
pare Rx with whole program restart in terms of client ex-
periences during failure, and in terms of recovery time. In
addition, we also compare Rx with the simple rollback and
re-execute with no environmental changes. This approach is
implemented by disabling environmental changes in Rx.

• The second set evaluates the performance overhead of Rx for
both server throughput and average response time without
bug occurrence. Additionally, we evaluate the space over-
head caused by checkpoints and the proxy.

• The third set evaluates how Rx would behave under certain
degree of malicious attacks that continuously send bug-expo-
sing requests triggering buffer overflow or other software de-
fects. We measure the throughput and average response time
under different bug arrival rates. In this set of experiments,
we also compare Rx with the whole program restart approach
in terms of performance.

• The fourth set evaluates the benefits of Rx’s mechanism of
learning from previous failure experiences, which are stored
in the failure table to speed up recovery.

For all the servers, we implement clients in a similar manner
as previous work, such as httperf [38] or WebStone [56], sending
continuous requests over concurrent connections. For Squid and
Apache, the clients spawn 5 threads. Each thread sends out re-
quests to fetch different files whose sizes range in 1KB, 2KB, ...,
512KB with uniform distribution. For CVS, the client exports a

30KB source file. For MySQL, we use two loads. To trigger the
data race, the client spawns 5 threads, each of them sending out
begin, select, and commit requests on a small table repeatedly. The
size of individual requests must be as small as possible to maximize
the probability of the race occurring. For the overhead experiments
with MySQL, a more realistic load with updates is used. To demon-
strate that Rx can avoid server failures, we use another client that
sends bug-exposing requests to those servers.

6. EXPERIMENTAL RESULTS
6.1 Overall Results

Table 3 demonstrates the overall effectiveness of Rx in avoiding
bugs. For each buggy application, the table shows the type of bug,
what symptom was used to detect the bug, and what environmental
change was eventually used to avoid the bug. The table also com-
pares Rx to two alternative approaches: the ordinary whole pro-
gram restart solution and a simple rollback and re-execution with-
out environmental changes. For Rx, the checkpoint intervals in
most cases are 200ms except for MySQL and CVS. For MySQL,
we use a checkpoint interval of 750ms because too frequent check-
pointing causes its data race bug to disappear in the normal mode.
The reason for using 50ms as the checkpoint interval for CVS will
be explained later when we discuss the recovery time. The average
recovery time is the recovery time averaged across multiple bug
occurrences in the same execution. Section 6.4 will discuss the dif-
ference in Rx recovery time between the first time bug occurrence
and subsequent bug occurrences.

As shown in Table 3, Rx can successfully avoid various types of
common software defects, including 5 deterministic memory bugs
and 1 concurrency bug. These bugs are avoided during re-execution
because of Rx’s environmental changes. For example, by padding
buffers allocated during re-execution, Rx can successfully avoid
the buffer overflow bug in Squid. Apache survives the stack over-
flow bug because Rx drops the bug-exposing user request during
re-execution. Squid-ui survives the uninitialized read bug because
Rx zero-fills all buffers allocated during re-execution. These results
indicate that Rx is a viable solution to increase the availability of
server applications.

In contrast, the two alternatives, restart and simple rollback/re-
execution, cannot successfully recover the three servers (Squid,
Apache and CVS) that contain deterministic bugs. For the restart
approach, this is because the client notices a disconnection and tries
to resend the same bug-exposing request, which causes the server
to crash again. For the simple rollback and re-execution approach,
once the server rolls back to a previous checkpoint and starts re-
execution, the same deterministic bug will occur again, causing the
server to crash immediately. These two alternatives have a 40%
recovery rate for MySQL that contains a non-deterministic concur-
rency bug because in 60% cases the same bug-exposing interleav-
ing is used again after restart or rollback. Such results show that
these two alternative approaches, even though simple, cannot sur-
vive failures caused by many common software defects and thus
cannot provide continuous services. The results also indicate that
applying environmental changes is the key reason why Rx can sur-
vive software failures caused by common software defects, espe-
cially deterministic bugs.

Because the Rx’s proxy hides the server failure and recovery pro-
cess from its clients, clients do not experience any failures. In con-
trast, with restart, clients experience failures due to broken network
connections. To be fault tolerant, clients need to reconnect to the
server and reissue all unreplied requests. With the simple rollback
and re-execution, since the server cannot recover from the failure,
clients eventually time out and thus experience server failures.

Apps Bugs Failure Environmental Clients Experience Recoverable? Average Recovery
Symptoms Changes Failure? Time (s)

Alternatives Rx Alternatives Rx Restart Rx
Squid Buffer Overflow SEGV Padding Yes No No Yes 5.113 0.095

MySQL Data Race SEGV Schedule Change Yes No 40% probablity Yes* 3.500 0.161
Apache Stack Overflow Assert Drop User Request Yes No No Yes 1.115 0.026

CVS Double Free SEGV Delay Free Yes No No Yes 0.010 0.017
Squid-ui Uninit Read SEGV Zero All Yes No No Yes 5.000 0.126
Squid-dp Dangling Pointer SEGV Delay Free Yes No No Yes 5.006 0.113

Table 3: Overall results: comparison of Rx and alternative approaches (whole program restart, and simple rollback and re-execution without
environmental changes). The results are obtained by running each experiment 20 times. The recovery time for the restart approach is measured by
having the client not resend the bug-exposing request after reconnection. Otherwise, the server will crash again immediately after restart. *For MySQL,
during the 20 runs, the data race bug never occur during re-execution in Rx after applying various timing-related environmental changes.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t (

M
bp

s)

Elapsed Time (sec)

Squid-Baseline

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t (

M
bp

s)

Elapsed Time (sec)

Squid-Restart

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t (

M
bp

s)

Elapsed Time (sec)

Squid-Rx

(a) Throughput

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 R
es

po
ns

e
 T

im
e

(s
ec

)

Elapsed Time (sec)

Squid-Baseline

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 R
es

po
ns

e
 T

im
e

(s
ec

)

Elapsed Time (sec)

Squid-Restart

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 R
es

po
ns

e
 T

im
e

(s
ec

)

Elapsed Time (sec)

Squid-Rx

(b) Average Response Time

Figure 4: Throughput and average response time of Squid with Rx and Restart for one bug occurrence (Between time period (7,11.5),
there are no measurements for restart because no requests are responded during this period.)

Table 3 also shows that Rx provides a significantly better (21-53
times faster) recovery time than restart except for CVS. This is be-
cause rollback is a lightweight and fine-grained action due to the
in-memory checkpoints. Also, as we find that most faults are de-
tected promptly (usually by crashing), we rarely need to roll back
further than the recent checkpoint. This minimizes the amount of
re-execution necessary. Furthermore, since we are starting from
a recent execution state, it is unnecessary to initialize data struc-
tures or to warm up buffer caches from disks. In contrast, restart
is much slower. This is because restart requires the program to be
reloaded and reinitialized from the beginning. Any memory state
such as buffer caches and data structures need to be warmed up or
initialized. Squid is a particularly clear example. For Squid, restart
requires 5.113 seconds to recover from a crash, whereas Rx takes
only 0.095 seconds. Since our experiments use only a small work-
load, we expect that, with a real world workload, it will take an
even longer time for the whole program restart approach to recov-
ery from failures because it requires a long time to warm up caches
and other memory data structures. This result indicates that Rx en-
ables servers to provide highly available services despite common
software defects. Instead of experiencing a failure, clients experi-
ence an increased response time for a very short period. We expect
that after the Rx’s proxy is pushed into the kernel, the Rx results

will be even better since such optimization will reduce the number
of context switches and memory coping overhead.

If the bug-exposing request is not resent after failure, restart has
similar recovery time for CVS (otherwise, restart cannot recover
the failure for CVS). Restart takes only .01 seconds to recover for
CVS, while Rx takes .017 seconds. This is because CVS is im-
plemented using the xinetd daemon as its network monitor. Each
connection to CVS causes xinetd to fork and exec a new instance
of CVS. Therefore, CVS must have a very low startup time in
order to provide adequate performance. Additionally, there is no
state shared between different CVS processes except for that of the
repository, which is persistently stored on disk. As such, CVS has
only minimal state to initialize. Given such a simple application,
ordinary restart technique are good enough. For the same reason,
even when Rx takes a checkpoint every 50ms, the overhead is still
small, less than 11%. But even with such frequent checkpoints,
Rx’s recovery time is still slightly higher than restart, which indi-
cates for CVS-like servers, restart is a better alternative in terms
of recovery time. But note that restart is not failure transparent to
clients, and, if the bug-exposing request is resent again by the client
after the failure, the same bug (especially deterministic one) is very
likely to happen again.

Rx does not hide software defects. Instead, Rx reacts only after

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

Bug Arrival Rate (bugs/sec)

Squid

Restart
Rx

0

0.5

1

1.5

2

2.5

3

0 0.02 0.04 0.06 0.08 0.1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Bug Arrival Rate (bugs/sec)

Squid

Restart
Rx

(a) Throughput (b) Average Response Time

Figure 5: Throughput and average response time with different bug arrival rates

0

20

40

60

80

100

0 0.5 1 1.5 2

T
hr

ou
gh

pu
t (

M
bp

s)

Checkpoint Interval (sec)

Squid

Baseline
Rx

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2
A

ve
ra

ge
 R

es
po

ns
e

T
im

e
(s

ec
)

Checkpoint Interval (sec)

Squid

Baseline
Rx

(a) Throughput and average response time for Squid

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t (

tr
an

s/
se

c)

Checkpoint Interval (sec)

MySQL

Baseline
Rx

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1A
ve

ra
ge

 L
at

en
cy

 (
se

c/
tr

an
s)

Checkpoint Interval (sec)

MySQL

Baseline
Rx

(b) Throughput and average response time for MySQL

Figure 6: Rx overhead in terms of throughput and average response time for two representative applications: Squid and MySQL. In
these experiments, we do not send the bug-exposing request since we want to compare the pure overhead of Rx with the baseline in
normal cases.

a defect is exposed. In addition, Rx’s failure and recovery experi-
ences provide programmers with extra information to diagnose the
occurring or occurred software defects. For example, for CVS, Rx
is able to avoid the bug by delaying the recycling of recently freed
buffers during re-execution. Programmers then should investigate
more in the direction of double-free or dangling pointers.

6.2 Recovery Performance
We have compared Rx with restart in terms of performance dur-

ing recovery. As shown in Figure 4, Rx maintains throughput levels
close to that of the baseline case. At the time of bug occurrence (at
7 seconds from the very beginning), the server throughput drops by
33% and the average response time increases by a factor of two for
only a very short period of time (17-161 milliseconds). There-
fore, a bug occurrence imposes only a small overhead, and has a
minimal impact on overall throughput and response time. Restart,
on the other hand, has a 5 second period of zero throughput. It
services no requests during this period, so there are no measure-

ments for response time. Once Squid has restarted, there is a spike
in response time because all of the clients get their requests sat-
isfied after a long queuing delay. Because Squid cannot service
requests until it has completed the lengthy startup and initialization
process, the whole program restart approach significantly degrades
the performance upon a failure. Similarly, with a large real-world
workload, we expect that the performance with restart will be even
worse since the recovery time will become longer and many more
requests will be queued, waiting to be serviced.

Figure 5 further illustrates the Rx’s performance in the case of
continuous attacks by malicious users who keep issuing bug-exposing
requests. The throughput and response time of Rx remains constant
as the rate of bug occurrences increases, whereas the performance
of restart degrades rapidly. This is because Rx has very small recov-
ery time, while restart spends a long time in recovery. Therefore, if
such a bug were triggered by an Internet-wide worm [51] or a ma-
licious user, restart cannot cope. However, since Rx can deal with
higher bug arrival rates, Rx can tolerate such attacks much better.

Apps Rx Space Overhead (kB/checkpoint)
kernel proxy total

Squid 405.35 3.70 409.05
Mysql 300.00 0.16 300.16

Apache 460.00 3.60 463.60
CVS 42.22 2.89 45.11

Table 4: The average space overhead per checkpoint

6.3 Rx Time and Space Overhead
Figures 6 shows the overhead of Rx compared to the baseline

(without Rx) for various frequencies of checkpointing. The per-
formance of Rx degrades somewhat as the checkpoint interval de-
creases, but the amount of degradation is small. For squid, both
throughput and response time are very close to baseline for all
tested checkpoint rates. This is because the network remains the
bottleneck for all cases. For MySQL, the performance degrades
slightly at small checkpoint intervals. Since MySQL is more CPU
bound, the additional memory-copying imposed by frequent check-
points causes some degradation. It is expected that as checkpoints
are taken extremely frequently, Rx’s overhead will become domi-
nant. However, there is no need for very frequent checkpointing.
As shown earlier, even when Rx checkpoints every 200 millisec-
onds, it is able to provide very good recovery performance. With
such a checkpoint interval, the overhead imposed by Rx is quite
small, almost negligible for Squid and only 5% for MySQL.

Table 4 shows the average memory space overhead of Rx per
checkpoint. The space overhead of Rx for each checkpoint is rel-
atively small (45.11-463.60kB). It mainly comes in two parts: up-
dates made during the checkpoint interval and the proxy message
buffers. For the first part, Rx uses copy-on-write to reduce space
overhead. For the second part, since Rx only records requests in the
normal mode and request sizes are usually small, the proxy does
not occupy much memory per checkpoint. Therefore, if 2-3MB of
space can be used by Rx, Rx is able to maintain 5-20 checkpoints:
enough for our recovery purpose.

6.4 Benefits of the Failure Table
Figure 7 reports the server recovery time with Rx when the server

encounters the bug for the first time and for subsequent times in the
same run. The results show that the failure table can effectively re-
duce the recovery time when the same bug/failure occurs again. For
example, to deal with the first time occurrence of the buffer over-
flow bug in Squid, Rx applies message reordering, delaying free
+ message reordering, padding + message reordering sequentially
in three consecutive re-execution trials, and finally avoid the bug
at the third re-execution. The entire recovery process lasts around
216.7 milliseconds. However, for any subsequent occurrences of
the same bug, which can be located in the failure table, Rx applies
the correct environmental changes (padding + message reordering)
in the first re-execution attempt, thus the recovery time is reduced
to 94.7 milliseconds. For CVS, the failure table also helps to re-
duce the recovery time from 25 milliseconds to 16.9 milliseconds.
For MySQL, the data race bug is avoided at the very first try with
message reordering and therefore there is no difference between the
first bug occurrence and subsequent ones.

7. RELATED WORK
Our work builds on much previous work. Due to space limita-

tions, this section only briefly describes those works that are not
discussed in previous sections.

The idea of using checkpointing to provide fault tolerance is
old [10], and well known [24, 43]. These checkpoints may be done

 0

 50

 100

 150

 200

 250

 300

 350

Sq
ui

d-
dp

Sq
ui

d-
ui

A
pa

ch
e

M
yS

Q
L

C
V

S

Sq
ui

d

A
ve

ra
ge

 R
ec

ov
er

y
T

im
e

(m
s)

First Subseqent

Figure 7: Rx recovery time to avoid the first and subsequent
bug occurrences

to disk [20, 31, 33, 60], remote memory [3, 61, 40], or non-volatile
or persistent memory [36]. These checkpoints can be provided with
relatively low overhead. If there are messages and operations in
flight, logging is also needed [7, 35, 34, 32]. After failure, many,
but not all, errors can be avoided by reattempting the failed compu-
tation [27]. To deal with resource exhaustion or operating system
crashes, monitoring, logging and recovery can be done remotely
via support by special network interface cards [9]. In some cases,
great care is taken to ensure deterministic replay [23, 46, 25]. How-
ever, unlike deterministic replay used by other techniques, we are
purposely and systematically perturbing the re-execution environ-
ment to avoid determinism. As such, we have requirement and can
use more lightweight checkpoints. Additionally, by changing envi-
ronments, we can tolerate faults which simple re-execution cannot.

Failure-Oblivious Computing [44] proposes modifying the be-
havior of what it detects to be incorrect memory accesses. It dis-
cards or redirects incorrect writes to a separate hash table and man-
ufactures values for incorrect reads. It has shortcomings in that it
is restricted to memory related bugs, imposes high overheads (1-8x
slowdown [44],) and may introduce unpredictable behavior due to
its potentially unsafe modifications to the memory interface. The
recently proposed reactive immune system [49] has similar limi-
tations since it also speculatively “fixes” defects on-the-fly. As a
result, unlike Rx, these approaches can be unsafe for correctness-
critical server applications.

Recovery-Oriented Computing (ROC) [39] proposes restructur-
ing the entire software platform to focus on and allow recovery.
System components are to be isolated and failure aware. How-
ever, this requires not only restructuring individual servers, but all
of the programs in the entire system. Micro-rebootable [14] soft-
ware advocates software whose components are fail-stop, and indi-
vidually recoverable, thereby making it easier to build fault-tolerant
systems. Again, this requires reengineering of existing software.

Rx can make use of dynamic bug detectors as sensors to deter-
mine when a bug has occurred. For memory bugs, dynamic check-
ers include Purify [29], and StackGuard [22]. Many of these use
instrumentation to monitor memory accesses, and hence impose
high overhead. Some techniques can perform such checks with
lower overhead, such as CCured [21] and SafeMem [41]. Beyond
memory bugs, it is also possible to detect deadlock and races.

Our proxy is similar to the shadow drivers used in [55], in that
it interposes itself between the user of a service and the actual
provider of that service in order to mask failures. However, rather
than being between a kernel driver and applications calling on that
driver, we are between a server process and the client processes.
Furthermore the proxy does not replicate the original server during
failure, but merely acts as a standin until the server recovers.

The environmental changes we make are similar to noisemak-
ers [52], except that, instead of trying to spur non-deterministic
bugs into occurring, we are attempting to prevent deterministic and
non-deterministic bugs by finding a legitimate execution path in
which they simply do not arise.

8. CONCLUSIONS AND LIMITATIONS
In summary, Rx is a safe, non-invasive and informative method

for quickly surviving software failures caused by common software
defects such as memory corruptions and concurrency bugs and thus
providing highly available services. It does so by re-executing the
buggy program region in a modified execution environment. It can
deal with both deterministic and non-deterministic bugs, and re-
quires few to no modifications to applications’ source code. Be-
cause Rx does not forcefully change programs’ execution by re-
turning speculative values, it introduces no uncertainty or misbe-
havior into programs’ execution. Moreover, it provides additional
feedback to programmers for their bug diagnosis.

Our experimental studies of four server applications that con-
tain six bugs of different types show that Rx can successfully avoid
software defects during re-execution and thus provide non-stop ser-
vices. In contrast, the two tested alternatives, a whole program
restart approach and a simple rollback and re-execution without
environmental changes, cannot recover the three servers (Squid,
Apache and CVS) that contain deterministic bugs, and only have
a 40% recovery rate for the server (MySQL) that contains a non-
deterministic concurrency bug. These results indicate that apply-
ing environmental changes is crucial to survive software failures
caused by common software defects, especially deterministic bugs.
In addition, Rx also provides fast recovery within 0.017-0.16 sec-
onds, 21-53 times faster than the whole program restart approach
for all but one case (CVS). With Rx, clients do not experience any
failures except a small increase in the average response time for a
very short period of time. To provide such fast recovery, Rx im-
poses small time and small space overheads.

There are several limitations that we wish to address in our future
work. First, we are trying to evaluate Rx with more server applica-
tions containing real bugs under various workloads. Second, cur-
rently the Rx’s proxy is implemented at the user level. To improve
performance, we plan to move it into the kernel, thereby avoiding
context switches and memory copying. Third, we plan to extend
Rx to support multi-tier server hierarchy as described in Section 4.
This is relative easy since Rx already works with a database server
(MySQL), a web server (Apache), and a Web proxy server (Squid).
Fourth, our experiments so far have evaluated only I/O bound ap-
plications such as network servers whose availability is of critical
importance. We plan to evaluate the Rx’s overheads on computa-
tion intensive applications, and we expect the overheads are likely
to be higher. Finally, we have only compared with two alterna-
tive approaches: the whole program restart approach and a simple
rollback and re-execution without environmental changes. This is
because many other alternate approaches require substantial efforts
to restructure/redesign applications.

While Rx can effectively and efficiently recover from many soft-
ware failures caused by common software defects, Rx is certainly
not a panacea. Like almost all previous solutions, Rx cannot guar-
antee recovery from all software failures. For example, as we dis-
cuss in Section 4, neither semantic bugs nor resource leaks can be
directly addressed by Rx. Also, as described in Section 2, in some
rare cases, it is possible that a bug still occurs during re-execution
but its symptoms are not detected in-time by the sensors. In this
case, Rx will claim a false recovery success. While similar rare
cases can also appear in many previous solutions, it is still worthy
addressing by using more rigorous dynamic integrity and correct-
ness checkers as Rx’s sensors. This is currently an active research
area with many recent innovations. Additionally, Rx cannot deal
with latent bugs–bugs in which the fault is introduced at a time
long before any obvious symptoms. As discussed by Chandra and
Chen [19], this problem is general to all checkpoint-based recovery

solutions. Fortunately, this is a rare case, as a previous study [28]
shows that most errors tend to cause quick crashes.

9. ACKNOWLEDGMENTS
The authors would like to thank the shepherd, Ken Birman, and

the anonymous reviewers for their invaluable feedback. We ap-
preciate useful discussion with the OPERA group members. This
research is supported by IBM Faculty Award, NSF CNS-0347854
(career award), NSF CCR-0305854 and NSF CCR-0325603 grant.

10. REFERENCES[1] L. Alvisi and K. Marzullo. Trade-offs in implementing optimal
message logging protocols. In Proceedings of the 15th ACM
Symposium on the Principles of Distributed Computing, May 1996.

[2] P. E. Ammann and J. C. Knight. Data diversity: An approach to
software fault tolerance. IEEE Transactions on Computers,
37(4):418–425, 1988.

[3] C. Amza, A. Cox, and W. Zwaenepoel. Data replication strategies for
fault tolerance and availability on commodity clusters. In
Proceedings of the 2000 International Conference on Dependable
Systems and Networks, Jun 2000.

[4] A. Avizienis. The N-version approach to fault-tolerant software.
IEEE Transactions on Software Engineering, SE-11(12), 1985.

[5] A. Avizienis and L. Chen. On the implementation of N-version
programming for software fault tolerance during execution. In
Proceedings of the 1st International Computer Software and
Applications Conference, Nov 1977.

[6] J. F. Bartlett. A NonStop kernel. In Proceedings of the 8th
Symposium on Operating Systems Principles, Dec 1981.

[7] K. P. Birman. Building Secure and Reliable Network Applications,
chapter 19. Manning ISBN: 1-884777-29-5, 1996.

[8] A. Bobbio and M. Sereno. Fine grained software rejuvenation
models. In Proceedings of the 1998 International Computer
Performance and Dependability Symposium, Sep 1998.

[9] A. Bohra, I. Neamtiu, P. Gallard, F. Sultan, and L. Iftode. Remote
repair of operating system state using backdoors. In Proceedings of
the 2004 International Conference on Autonomic Computing, May
2004.

[10] A. Borg, J. Baumbach, and S. Glazer. A message system supporting
fault tolerance. In Proceedings of the 9th Symposium on Operating
Systems Principles, Oct 1983.

[11] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault
tolerance under UNIX. ACM Transactions on Computer Systems,
7(1), 1989.

[12] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance.
ACM Transactions on Computer Systems, 14(1):80–107, Feb 1996.

[13] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Garg, and R. Gowda.
Reducing recovery time in a small recursively restartable system. In
Proceedings of the 2002 International Conference on Dependable
Systems and Networks, Jun 2002.

[14] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot – A technique for cheap recovery. In Proceedings of the
6th Symposium on Operating System Design and Implementation,
Dec 2004.

[15] M. Castro and B. Liskov. Practical byzantine fault tolerance. In
Proceedings of the 3rd Symposium on Operating System Design and
Implementation, Feb 1999.

[16] M. Castro and B. Liskov. Proactive recovery in a
Byzantine-Fault-Tolerant system. In Proceedings of the 4th
Symposium on Operating System Design and Implementation, Oct
2000.

[17] CERT/CC. Advisories. http://www.cert.org/advisories/.
[18] S. Chandra and P. M. Chen. Whither generic recovery from

application faults? A fault study using open-source software. In
Proceedings of the 2000 International Conference on Dependable
Systems and Networks, Jun 2000.

[19] S. Chandra and P. M. Chen. The impact of recovery mechanisms on
the likelihood of saving corrupted state. In Proceedings of the 13th
International Symposium on Software Reliability Engineering, Nov
2002.

[20] Y. Chen, J. S. Plank, and K. Li. CLIP: A checkpointing tool for
message-passing parallel programs. In Proceedings of the 1997
ACM/IEEE Supercomputing Conference, Nov 1997.

[21] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer.
CCured in the real world. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation,
Jun 2003.

[22] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In Proceedings
of the 7th USENIX Security Symposium, Jan 1998.

[23] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
Revirt: Enabling intrusion analysis through virtual-machine logging
and replay. In Proceedings of the 5th Symposium on Operating
System Design and Implementation, Dec 2002.

[24] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
survey of rollback-recovery protocols in message-passing systems.
ACM Computer Surveys, 34(3):375–408, 2002.

[25] Y. A. Feldman and H. Schneider. Simulating reactive systems by
deduction. ACM Transactions on Software Engineering and
Methodology, 2(2):128–175, 1993.

[26] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. On the analysis of
software rejuvenation policies. In Proceedings of the Annual
Conference on Computer Assurance, Jun 1997.

[27] J. Gray. Why do computers stop and what can be done about it? In
Proceedings of the 5th Symposium on Reliable Distributed Systems,
Jan 1986.

[28] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z.-Y. Yang. Characterization
of Linux kernel behavior under errors. In Proceedings of the 2003
International Conference on Dependable Systems and Networks, Jun
2003.

[29] R. Hasting and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Proceedings of the USENIX Winter 1992 Technical
Conference, Dec 1992.

[30] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software
rejuvenation: Analysis, module and applications. In Proceedings of
the 25th Annual International Symposium on Fault-Tolerant
Computing, Jun 1995.

[31] D. Johnson and W. Zwaenepoel. Recovery in distributed systems
using optimistic message logging and checkpointing. In Proceedings
of the 7th Annual ACM Symposium on Principles of Distributed
Computing, Aug 1988.

[32] D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems
using optimistic message logging and check-pointing. Journal of
Algorithms, 11(3):462–491, 1990.

[33] K. Li, J. Naughton, and J. Plank. Concurrent real-time checkpoint for
parallel programs. In Proceedings of the 2nd ACM SIGPLAN
Symposium on Princiles & Practice of Parallel Programming, Mar
1990.

[34] D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failure
transparency and the limits of generic recovery. In Proceedings of the
4th Symposium on Operating System Design and Implementation,
Oct 2000.

[35] D. E. Lowell and P. M. Chen. Free transactions with rio vista. In
Proceedings of the 16th Symposium on Operating Systems
Principles, Oct 1997.

[36] D. E. Lowell and P. M. Chen. Discount checking: Transparent,
low-overhead recovery for general applications. Technical report,
CSE-TR-410-99, University of Michigan, Jul 1998.

[37] E. Marcus and H. Stern. Blueprints for High Availability. John
Willey & Sons, 2000.

[38] D. Mosberger and T. Jin. httperf - a tool for measuring web server
performance. SIGMETRICS Performance Evaluation Review,
26(3):31–37, 1998.

[39] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,
P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer,
N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft. Recovery
oriented computing (ROC): Motivation, definition, techniques, and
case studies. Technical report, Technical Report UCB//CSD-02-1175,
U.C.Berkeley, Mar 2002.

[40] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE

Transactions on Parallel and Distributed Systems, 9(10):972–986,
1998.

[41] F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting ECC-memory for
detecting memory leaks and memory corruption during production
runs. In Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, Feb 2005.

[42] B. Randell. System structure for software fault tolerance. IEEE
Transactions on Software Engineering, 1(2):220–232, 1975.

[43] B. Randell, P. A. Lee, and P. C. Treleaven. Reliability issues in
computing system design. ACM Computer Surveys, 10(2):123–165,
1978.

[44] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee, Jr. Enhancing server availability and security through
failure-oblivious computing. In Proceedings of the 6th Symposium on
Operating System Design and Implementation, Dec 2004.

[45] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using abstraction to
improve fault tolerance. In Proceedings of the 18th Symposium on
Operating Systems Principles, Oct 2001.

[46] M. Russinovich and B. Cogswell. Replay for concurrent
non-deterministic shared-memory applications. In Proceedings of the
ACM SIGPLAN 1996 Conference on Programming Language Design
and Implementation, May 1996.

[47] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W.
Carton, and J. Ofir. Deciding when to forget in the Elephant file
system. In Proceedings of the 17th ACM Symposium on Operating
System Principles, Dec 1999.

[48] D. Scott. Assessing the costs of application downtime. Gartner
Group, May 1998.

[49] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis.
Building a reactive immune system for software services. In
Proceedings of the USENIX 2005 Annual Technical Conference, Apr
2005.

[50] S. Srinivasan, C. Andrews, S. Kandula, and Y. Zhou. Flashback: A
light-weight extension for rollback and deterministic replay for
software debugging. In Proceedings of the USENIX 2004 Annual
Technical Conference, Jun 2004.

[51] S. Staniford, V. Paxson, and N. Weaver. How to own the internet in
your spare time. In Proceedings of the 11th USENIX Security
Symposium, Aug 2002.

[52] S. D. Stoller. Testing concurrent Java programs using randomized
scheduling. In Proceedings of the 2nd Workshop on Runtime
Verification, Jul 2002.

[53] R. Strom and S. Yemini. Optimistic recovery in distributed systems.
ACM Transactions on Computer Systems, 3(3):204–226, 1985.

[54] M. Sullivan and R. Chillarege. Software defects and their impact on
system availability – A study of field failures in operating systems. In
Proceedings of the 21th Annual International Symposium on
Fault-Tolerant Computing, Jun 1991.

[55] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering device drivers. In Proceedings of the 6th Symposium on
Operating System Design and Implementation, Dec 2004.

[56] G. Trent and M. Sake. Webstone: The first generation in http server
benchmarking, 1995.

[57] W. Vogels, D. Dumitriu, A. Agrawal, T. Chia, and K. Guo.
Scalability of the Microsoft Cluster Service. In Proceedings of the
2nd USENIX Windows NT Symposium, Aug 1998.

[58] W. Vogels, D. Dumitriu, K. Birman, R. Gamache, M. Massa,
R. Short, J. Vert, J. Barrera, and J. Gray. The design and architecture
of the Microsoft Cluster Service. In Proceedings of the 28th Annual
International Symposium on Fault-Tolerant Computing, Jun 1998.

[59] Y.-M. Wang, Y. Huang, and W. K. Fuchs. Progressive retry for
software error recovery in distributed systems. In Proceedings of the
23rd Annual International Symposium on Fault-Tolerant Computing,
Jun 1993.

[60] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. M. R. Kintala.
Checkpointing and its applications. In Proceedings of the 25th
Annual International Symposium on Fault-Tolerant Computing, Jun
1995.

[61] Y. Zhou, P. M. Chen, and K. Li. Fast cluster failover using virtual
memory-mapped communication. In Proceedings of the 1999 ACM
International Conference on Supercomputing, Jun 1999.

