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Abstract
Dynamic taint analysis is a well-known information flow
analysis problem with many possible applications. Taint
tracking allows for analysis of application data flow by
assigning labels to data, and then propagating those la-
bels through data flow. Taint tracking systems traditionally
compromise among performance, precision, soundness, and
portability. Performance can be critical, as these systems
are often intended to be deployed to production environ-
ments, and hence must have low overhead. To be deployed
in security-conscious settings, taint tracking must also be
sound and precise. Dynamic taint tracking must be portable
in order to be easily deployed and adopted for real world
purposes, without requiring recompilation of the operating
system or language interpreter, and without requiring access
to application source code.

We present PHOSPHOR, a dynamic taint tracking system
for the Java Virtual Machine (JVM) that simultaneously
achieves our goals of performance, soundness, precision,
and portability. Moreover, to our knowledge, it is the first
portable general purpose taint tracking system for the JVM.
We evaluated PHOSPHOR’s performance on two commonly
used JVM languages (Java and Scala), on two successive
revisions of two commonly used JVMs (Oracle’s HotSpot
and OpenJDK’s IcedTea) and on Android’s Dalvik Virtual
Machine, finding its performance to be impressive: as low
as 3% (53% on average; 220% at worst) using the DaCapo
macro benchmark suite. This paper describes our approach
toward achieving portable taint tracking in the JVM.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.4.6
[Operating Systems]: Security and Protection—Information
flow controls
Keywords Taint Tracking, Dataflow Analysis
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1. Introduction
Dynamic taint analysis (also referred to as dynamic informa-
tion flow tracking) is a powerful form of information flow
analysis useful for identifying the origin of data during ex-
ecution. Inputs to an application are “tainted,” or labeled
with a tag. As computations are performed, these labels are
propagated through the system such that any new values de-
rived from a tagged value also carry a tag derived from these
source input tags. In this way, we can inspect any object and
determine if it is derived from a tainted input by inspecting
its label. By maintaining a precise mapping from objects to
labels, we can enable a broad range of analyses, for such
purposes as end-user privacy testing [16], fine-grained data
security [3, 10, 27, 31], detection of code-injection attacks
[22, 33, 35] and improved debugging [17, 25].

Taint tracking systems typically face challenges in both
precision and soundness, in that it is generally difficult to
determine the bounds of a variable in memory. Therefore,
some parts of a variable may become dissociated with their
intended taint tag, or multiple variables may inadvertently
be tracked together as a single variable. Taint tracking sys-
tems similarly face a challenge of performance: many ap-
plications for taint tracking rely on its use in real, deployed
systems, demanding an acceptably low run time overhead.

Traditional approaches to building taint tracking sys-
tems that address these challenges normally rely on mod-
ifications to the operating system [39, 44], modifications to
the language interpreter [3, 9, 16, 20, 28, 29], or access to
source code [24, 42]. While taint tracking at the interpreter
or source code level can improve soundness and precision
(by providing variable-level memory semantics), these ap-
proaches all introduce a new challenge: portability. Such ap-
proaches can have limited applicability due to the need for
modifications to client systems (e.g. specialized operating
systems), need for specialized interpreters, or need to access
source code. For example, in the case of two taint tracking
systems that target the JVM [9, 28], they are restricted to
support only research-oriented JVMs which do not support
the full Java specification. For example, these JVMs are un-
able to execute the entirety of the popular macro-benchmark
suite DaCapo [5], an indicator that they may be impracti-
cal to deploy in client environments. We are not aware of
any taint tracking systems that target the JVM that are suffi-



ciently portable to function with commonly used JVMs from
vendors such as Oracle and the OpenJDK project.

Our key insight is that we can leverage the same ben-
efits (e.g., in soundness and precision) that interpreter-level
and source code-level approaches gain without requiring any
modification to the underlying interpreter by taking advan-
tage of the strong specification for the intermediate language
(i.e. byte code) that runs in that interpreter. This approach is
a compromise between interpreter level approaches (which
do not require access to source code but require modifica-
tions to the interpreter) and source level approaches (which
require access to source code but do not change the inter-
preter), functioning instead at the level of byte code. PHOS-
PHOR provides taint tracking within the Java Virtual Ma-
chine (JVM) without requiring any modifications to the lan-
guage interpreter, VM, or operating system, and without re-
quiring any access to source code. Moreover, PHOSPHOR
can be applied to any commodity JVM, and functions with
code written in any language targeting the JVM, such as Java
and Scala.

PHOSPHOR’s approach to tracking variable level taint
tags (without modifying the JVM) seems simple at first:
we essentially need only instrument all code such that ev-
ery variable maps to a “shadow” variable, which stores the
taint tag for that variable. However, such changes are actu-
ally quite invasive, and become complicated as our modified
Java code begins to interact with (non-modified) native li-
braries. In fact, we are unaware of any previous work that
makes such invasive changes to the bytecode executed by
the JVM: most previous taint tracking systems for the JVM
use slower mechanisms to maintain this shadow data [40].
We present a detailed description of the challenges that we
faced implementing our instrumentation, and describe how
our general approach could be used for other sorts of dy-
namic data and control flow analyses in Java.

We evaluated PHOSPHOR on a variety of macro and mi-
cro benchmarks on several widely-used JVMs from Oracle
and the OpenJDK project, finding its overhead to be impres-
sively low: as low as 3.32%, on average 53.31% (and up
to 220%) in macro benchmarks. We also compared PHOS-
PHOR to the popular, state of the art Android-only taint track-
ing system, TaintDroid [16], finding that our approach is far
more portable, is more precise, and is comparable in perfor-
mance.

The contributions of this paper are:

• A general purpose approach to efficiently storing meta-
data for variables in the JVM, without requiring any
modifications to the JVM.

• A general purpose approach to propagating this shadow
information in the form of taint tracking, again, without
requiring any modifications to the JVM.

• A description of our open source implementation of this
technique: PHOSPHOR (released on GitHub [4]).

2. Motivation
Although several existing systems target Java applications
(e.g. [12, 21, 22]) by modifying application or library byte
code, these are not general purpose: they can only track data
flow of Java Strings (and not of any other type), and there-
fore are unable to continue tracking those Strings in the event
that they are converted by the application to another repre-
sentation (such as a character array). Moreover, these sys-
tems can not track inputs that are not Strings (e.g. integers,
or a language-specific version of String in another, non-Java
JVM language).

Several existing systems can perform taint tracking on all
data types in Java, but are highly restricted in portability,
functioning only on research JVMs. The JVMs targeted by
[28] (Kaffe [37]) and [9] (Jikes RVM [36]) support only a
subset of Java version 6, severely limiting applicability. We
will refer to both of these incomplete JVMs as “research
JVMs,” as they do not implement the complete Java spec-
ification, and are principally used within the research com-
munity (rather than in production environments).

We also note that while we focus on dynamic taint track-
ing, static taint analysis is also a topic of interest. However,
while static taint analysis for Java [2, 34, 38] can determine
a priori where data might leak from a system, it may report
false positives from code which can not execute in practice,
and as with all static analysis tools for Java, it must model
reflective calls, possibly further increasing the likelihood of
false positives.

There is a need for a general purpose taint tracking system
that is sufficiently decoupled from specific data types to
support a wide range of precise and sound analyses (i.e. with
no false positives or false negatives) for applications running
on any production JVM. We briefly describe work in three
broad areas that could benefit from PHOSPHOR.

2.1 Detecting injection attacks
Taint tracking has been widely studied as a mechanism for
improving application security. Taint tracking can be used
to ensure that untrusted inputs from external sources (such
as an end-user) are not used as inputs to critical functions
[22, 33, 35]. For instance, consider an application that takes
an input string from the user, and then reads a file based
on that input, returning the file to the user. An attacker
could perhaps craft an input to coerce the application to
read and return an arbitrary file, including sensitive files such
as /etc/passwd. Similar injection attacks can occur when
calling external processes, or performing SQL queries. SQL
injection attacks are the fifth most prevalent type of attack
reported by CVE [14].

Taint tracking has been shown to be effective in detecting
these sorts of attacks: all user input is tagged with a taint, and
any function that may be an injection point is instrumented
to first check its arguments to ensure that there are no taint
tags. Trusted input sanitizers that sit between the user’s input



and the injection point can be used to allow sanitized inputs
to flow to possible injection points (with the assumption that
they will correctly sanitize the input).

2.2 Privacy testing and fine grained-access control
Taint tracking has also been successfully applied to fine-
grained information access control [3, 10, 27, 31], and to
end-user privacy testing [16]. In both cases, taint tracking is
used to improve the granularity of existing mechanisms for
enforcing rules about information flow. For access control,
taint tracking is useful as it allows developers or system
administrators to specify access rules based on data. For
instance, administrators may wish to restrict the operations
that users may perform on certain data, without a priori
knowledge of where in the application’s control flow that
data may appear from. As another example, an application
may include untrusted libraries during run time, and want to
restrict those libraries from accessing sensitive data.

For end-user privacy testing, users specify system-wide
taint sources (e.g. on a mobile device, GPS location, per-
sonal contacts, etc.), and destinations, where tainted data
must never flow to (e.g. system-level functions that send data
over the network). In this way, users can determine if their
private information is being transferred to remote servers.

Note that both of these applications of taint tracking de-
mand a system that is both performant and portable. For
example, an end-user may wish to observe the privacy vi-
olations of an application, without the prior planning of the
application developers to support taint-tracking, and with-
out requiring specialized hardware or a specialized operating
system. Both systems would be challenging to implement in
the JVM without a taint tracking system.

2.3 Testing and Debugging
Taint tracking has also been employed to improve the testing
and debugging process. For instance, taint tracking can be
used to increase test coverage when using automated input
generators [25]. In this application, the taint tracking system
labels each input, and at each conditional branch, records
what label (or set of labels) the jump condition had. This
information is then fed back to the input generator to focus
input generation on those that are known to be restricting
control flow. This approach can also be useful for debugging
program failure by using taint tracking to identify which
inputs were relevant to the crash [17].

3. Approach
In designing PHOSPHOR, our primary goal was to enable
studies and analyses of dynamic data flow in languages that
target the JVM, such as Java, Scala and Clojure. While some
of theses analyses may be targeted towards researchers run-
ning experiments in closed environments (in which case, run
time overhead and portability are unlikely to be significant
concerns), others may target actual use by end-users (e.g.

the privacy study performed in [16]). Hence, a key goal for
PHOSPHOR was to ensure that it has both relatively low run
time overhead and was portable (i.e. could be used on a va-
riety of JVMs and platforms).

In general, common challenges to building taint tracking
systems in support of such analyses include:

1. Soundness: When working with native binaries, it can
be difficult or impossible to determine the correct level
of granularity to assign distinct taint tags. Should each
byte be distinctly tagged? Each word? These questions
are difficult if not impossible to answer in the general
case, and can directly impact the soundness of the tool.
If a tool is not sound, then it may incorrectly drop taint
information from variables.

2. Precision: In the process of improving soundness of a
taint tracking system, systems often trade higher accu-
racy for lower precision, leading to over tainting, where
taint tags are propagated between values even when there
is no actual connection between them. In some cases,
over tainting can lead to significant decreases in preci-
sion, with values marked by the wrong tag. If a tool is
not precise, it may incorrectly add additional taint infor-
mation to variables.

3. Portability: Most taint tracking systems require access to
application source code [24, 42], require modified oper-
ating systems [39, 44] or modified language interpreters
[3, 9, 20, 28, 29].

4. Performance: Taint tracking often adds a very high per-
formance overhead (commonly showing slowdowns of
1x-30x depending on the tool and benchmark), limiting
its use in deployment environments.

Our approach to taint tracking uses variable-level track-
ing, inspired by previous work that modified the interpreter
to support taint-tracking in Java [9, 16, 28]. A key obser-
vation is that when operating within the JVM (e.g. in Java,
Scala and others), we can bypass the common challenges
related to accuracy and precision: variables are clear units
of data, and because code can not access arbitrary memory
addresses, we can be certain that if we associate a taint tag
with a variable, any access to that variable can be mapped
to the taint tag. Therefore, this design choice can elimi-
nate some difficulties associated with maintaining precision
in taint tracking that typically affect systems operating at a
lower level (e.g. at the OS level [39, 44], or via binary in-
strumentation [11, 13]).

Most taint tracking systems for other memory man-
aged languages (e.g. targeting JavaScript [20], php [33, 43],
Dalvik [16], Java [9, 28] and others), rely on modifications
or extensions to the interpreter, which allows taint tracking
code access to significantly lower level memory operations
than taint tracking code running within a managed environ-
ment like the JVM. However, in order to ensure portability,
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Figure 1: The high level architecture of PHOSPHOR

we designed PHOSPHOR to run entirely within the confines
of an unmodified JVM.

The decision to run within the confines of code execut-
ing in the JVM (and not inside of the JVM’s interpreter)
raises several unique challenges because our taint tracking
instrumentation is subject to the same memory management
restrictions that any other code is. The prime challenge in
creating PHOSPHOR (and our key contribution), therefore, is
to efficiently maintain a mapping from values to taint tags
within the confines of a memory-managed environment.

3.1 JVM Background
Before describing how PHOSPHOR works, we first provide
a brief background on data organization within the JVM
(based on the JVM specification, version 7 [26]).

There are eight “primitive” types supported by the JVM,
all of which are stored and passed by value: boolean, byte,
character, integer, short, long, float, and double. In addition
to primitive types, the JVM supports two reference types:
objects and arrays. Objects are instances of classes, which
may contain fields (which are members of each instance)
and static fields (which are members of each class). Arrays
can be declared to store either reference types (which would
include other arrays) or primitive types. Reference types can
be cast to a super type, which affects what operations are
available on that instance of that type, and are all sub-types
of the root type, java/lang/Object.

The JVM is a stack machine, with stack memory split into
two components: the operand stack and the local variable
area. The operand stack is used for passing operands to in-
structions and can only be manipulated with stack operators,
while the local variable area is indexed. Method arguments
are passed by placing them on the operand stack, and are ac-
cessed by the receiver as local variables. The combination
of the operand stack and local variable area make up a JVM
frame. When a method is invoked, a new frame is created for
that method, and when it returns, the frame is destroyed. It
is impossible for code can to access any frame other than the
current frame.

3.2 High Level Design
Figure 1 shows a high level overview of our approach to
portable taint tracking with PHOSPHOR: we modify all byte
code running within the JVM, and then run that code in

a completely unmodified JVM, running on an unmodified
operating system, with commodity hardware.

PHOSPHOR’s taint tracking is based on variable-level
tracking, storing a tag for every variable. When operations
are performed on these variables, PHOSPHOR combines their
taint tags to create the new tag for the resulting combination.

PHOSPHOR modifies byte code to include storage for
taint tags and to include instructions to propagate these tags.
We use the ASM [6] byte code manipulation library to insert
our instrumentation and support all recent versions of the
Java byte code specification (up to version 8). This instru-
mentation normally occurs offline (before execution) but in
the event that a class is defined at run time (and hence, wasn’t
instrumented), PHOSPHOR intercepts all classes as they are
loaded, ensuring that every single class is instrumented. The
instrumentation process is performed only once per class and
is relatively quick, requiring only 1.4 minutes to instrument
the entire Java 7 JRE (approximately 19,000 classes). Fig-
ure 2 shows an example of the sorts of transformations that
are applied to byte code. Note that our example is shown as
Java source code for ease of understanding, but in reality, all
transformations occur at the level of Java byte code.

At the high level, PHOSPHOR adds a field to every Class
to track the tag of instances of that Class, and adds a shadow
variable for every variable (be they local variables, method
arguments, or fields) that is not an instance of a Class to
track that variable’s tag. When it’s impossible to add such
a shadow variable (e.g. to pass the tag of a primitive re-
turn value from a method), PHOSPHOR combines the taint
tag with the value into a container class, which encapsulates
both the tag and the value into one reference (which is then
the return value). Formally, PHOSPHOR consults the follow-
ing five properties to determine how to store or retrieve the
taint tag for a variable:

Property 3.1. Let R be a reference to an instance of an
Object. Then the taint tag of R is stored as a component of
the object to which R points.

Property 3.2. Let A be a reference to an array of references.
Then the taint tag of array element A[i] is stored as a com-
ponent of the object to which A[i] points.

Property 3.3. Let V be a primitive value. Then the taint tag
of V is stored as a shadow value next to V .

Property 3.4. Let A be a primitive array reference. Then
a shadow array As is stored next to A, and the taint tag of
primitive value A[i] is As[i].

Property 3.5. Let A be a primitive array reference and As

be the reference to its shadow array. If A is stored as the type
Object, then A and As are first boxed into a container, as
C(A,As).

Note that by these properties, every single variable has its
own distinct taint tag: each element in an array is tracked
distinctly (unlike in other taint tracking systems, such as



1 p u b l i c c l a s s Example{ / / O r i g i n a l Code
2
3 s t a t i c i n t v a l ;
4 b y t e [ ] bArray ;
5 S t r i n g s t r ;
6
7
8 Example ( i n t n ) {
9 bArray = new b y t e [ n ] ;

10
11 }
12 i n t doMath ( i n t i n ) {
13 i n t r e t = i n + v a l ;
14
15 r e t u r n r e t ;
16 }
17 }

(a) The original class

1 p u b l i c c l a s s Example { / / With T a i n t i n g
2 i n t phosphorTag ;
3 s t a t i c i n t v a l ;
4 s t a t i c i n t v a l t a g ;
5 b y t e [ ] bArray ;
6 i n t [ ] b A r r a y t a g ;
7 S t r i n g s t r ;
8 Example ( i n t n t a g , i n t n ) {
9 bArray = new b y t e [ n ] ;

10 b A r r a y t a g = new i n t [ n ] ;
11 }
12 T a i n t e d I n t doMath ( i n t i n t a g , i n t i n ) {
13 i n t r e t = i n + v a l ;
14 i n t r e t t a g = i n t a g | v a l t a g ;
15 r e t u r n T a i n t e d I n t . va lueOf ( r e t t a g , r e t ) ;
16 }
17 }

(b) The modified class, ready to track taint tags

Figure 2: A basic example of the sort of transformations that PHOSPHOR applies at the byte code level to support taint tracking.
Underlined lines call out to changes made by PHOSPHOR. Example shown at the source level, for easier reading.

[9, 16], which sacrifice this precision for added performance
by storing only a single taint tag for all of the elements in
an array). The implementation and rationale behind each of
these properties is described in much greater detail in §4.1.

These properties are also enforced when programs dy-
namically access fields and invoke methods via Java’s re-
flection interface, which we patch to propagate taint tags.

PHOSPHOR can automatically apply a taint tag to vari-
ables that are returned from pre-defined taint “source” meth-
ods (for instance, methods that take user input). When apply-
ing taint-tracking transformations to byte code, PHOSPHOR
consults a configuration file for a list of methods that should
result in their return value (or arguments) being tainted.
PHOSPHOR also consults the same configuration file for a
list of methods that should check their arguments to deter-
mine if any of them are tainted (a “taint sink,” for instance, a
method that executes a SQL command), logging the occur-
rence or raising an exception in the case that they are tainted.

For more complicated semantics to mark variables with
taint tags and respond to variables that are marked, PHOS-
PHOR provides a simple API, exposing the simple functions
setTaint and getTaint, which respectively set the taint
tag of a variable and retrieve the taint tag of a variable. These
functions are useful for implementers of analyses that build
upon PHOSPHOR, and are not intended to need to be inserted
into any target application code directly.

PHOSPHOR represents the taint of a variable as a 32-bit
long bit vector, allowing for a total of 32 distinct taints (simi-
lar to other systems, such as TaintDroid [16]. When taint tags
are combined, they are bit-wise OR’ed. Alternatively, a de-
veloper could specify more complex logic for generating and

combining taint tags, allowing for 232 possible taint tags, al-
though with perhaps greater overhead (an evaluation which
we leave for future work and consider out of scope). We also
have anecdotal evidence showing that PHOSPHOR can use
any arbitrary type (e.g., objects) to represent the taint tag of
a variable — not just a primitive number.

3.3 Approach Limitations
There are several limitations to our approach. First: PHOS-
PHOR is a system for tracking dynamic data flow through
taint analysis, and does not track taint tags through control
flow. That is, tags are combined through “explicit” opera-
tions (i.e. data flow), and not through “implicit” operations
(i.e. control flow). However, existing approaches towards
implementing control flow tracking (e.g. [9, 13, 28]) could
be combined with our approach for data flow tracking, which
we consider outside of the scope of this paper.

Next, as PHOSPHOR functions within the confines of the
JVM, it is unable to track data flow through native code exe-
cuting outside of but interacting with the JVM. We have im-
plemented the current best-practices for handling such flows
(i.e., assuming that all native code propagates taints from
all inputs to all outputs), discussed further in §4.3. Finally,
since our approach requires modifying the byte code of ap-
plications, this could modify the behavior of applications
that somehow use that byte code as an input, since the byte
code will have been modified by PHOSPHOR to include taint
propagation instructions. Typically in Java, such inspection
is done using the Reflection interface, which our implemen-
tation patches to hide all traces of PHOSPHOR. PHOSPHOR
works with applications that use Java’s Reflection to read



their byte code, but does not work with applications that use
other, non-standard approaches to read their code.

4. Implementation
PHOSPHOR consists of an instrumenter that modifies each
Java class (either offline, or dynamically at load-time by in-
tercepting classes as they are loaded) to add additional vari-
ables and instructions to perform taint tracking, and a small
runtime library. The runtime library is very small, and con-
sists only of several helper methods used for ensuring that
taint tags are tracked through calls to Java’s reflection in-
terface. There are no central data structures that store taint
tags: as shown in Figure 2(b), taint tags are stored in vari-
ables adjacent to the variables that they are tracking. This
lack of centralized structure allows PHOSPHOR to be both
performant and thread-safe.

4.1 Taint Tag Storage
Based on the discussion above of memory organization
within the JVM, we consider shadow variable storage (for
taint tags) in four different areas: as fields, as local vari-
ables, on the operand stack, and as method return values.
Moreover, based on the discussion of types in the JVM, we
consider five broad categories of variables for which we may
need different taint tag representations: primitives, primitive
arrays, multi-dimensional primitive arrays, arrays of other
references, and general references. For each of these types,
we will enumerate rules for their taint tag storage.

4.1.1 Reference Types
PHOSPHOR stores one taint tag per-variable, so there is no
tag stored for each reference to a variable: the taint tag of
a reference is simply the tag of the value that it points to.
Storing the taint tag for references that point to instances of
classes (i.e. objects) is straightforward: PHOSPHOR adds a
new field to that type, such that each instance of the class
has an extra field in which we can store the taint tag. This
model extends to support arrays of reference types, since the
taint tag of each reference type in the array is stored directly
as part of the reference type. From these two observations,
we can derive Properties 3.1 and 3.2.

However, there are reference types for which PHOSPHOR
can not add an extra field to track the taint tag of that type:
notably, primitive multi-dimensional arrays. Recall that
primitive arrays are reference types, so a multi-dimensional
primitive array must be an array of reference types. Since
arrays are not objects, we can not simply add a field to that
type: instead, we create a new class to box the primitive
array and its taint tag into a single type. For example, an
N -dimension array char[][][], will be mapped to an (N −
1)-dimension array of MultiDimensionCharArray[][],
where MultiDimensionCharArray is a class that has
two fields: a char[] field to store the value of the final di-
mension of the array, and an int[] field to store its taint

tags. All references to multi-dimension primitive arrays are
remapped to access the array through the container, ensuring
that Property 3.2 continues to hold.

4.1.2 Primitives and Primitive Arrays
For variables that are primitives (or primitive arrays), we
cannot simply add an extra field to the type to store the
tag, since there is no structure exposed within the JVM
that represents these types that we could modify. Instead,
PHOSPHOR stores the taint tag (or a reference to the taint
tag) in a shadow, alongside the actual value (Properties 3.3
and 3.4). This subsection will describe exactly where that
shadow is stored.

For variables that are stored as fields in a class, PHOS-
PHOR creates a shadow field to store the taint tag for that
element. For instance, if a class has a member private

int val, then PHOSPHOR adds another field: private

int val tag.
To support primitive values and primitive arrays as local

variables, PHOSPHOR creates an additional local variable to
store the taint tag, for each local variable that represents a
primitive or primitive array. Primitive and primitive array
method arguments are supported similarly to local variables:
we create shadow arguments to track the taint tag for each
primitive and primitive array argument.

Primitive and primitive array return types are supported
by boxing the value and its taint tag into a container just be-
fore return. PHOSPHOR changes the return type of all such
methods to be the appropriate container, and modifies the re-
turn instruction to first construct the container, and then re-
turn it (instead of just returning the primitive value or primi-
tive array reference). Just after the call site to a method that
returns a container type, the container is unboxed, leaving
the primitive return value on the stack, with the taint tag
just below it. To reduce overhead, each method pre-allocates
containers at its entry point for the methods that it will call,
passing these containers to each method called. In this way,
if a method makes several calls to another method which re-
turns a primitive value, only one container is allocated, and
is re-used for each call.

To support primitive values and primitive arrays on the
operand stack, PHOSPHOR instruments every stack operator
to ensure that before any primitive value or primitive array
reference is pushed onto the stack its taint tag is pushed
as well, and just after a primitive value or primitive array
reference is popped, its taint tag is as well.

PHOSPHOR creates these extra fields and variables as nec-
essary based on the type information for the field or variable.
However, note that because primitive arrays are reference
types, they are assignable to fields and variables with the
generic type Object (for which PHOSPHOR would not have
a priori created a shadow variable). PHOSPHOR accounts for
this situation by automatically boxing primitive arrays with
their taint tags before assigning them to the generic type



Object, and by automatically unboxing them when casting
from the generic type Object back to a primitive array.

4.2 Propagating Taint Tags
The remainder of this section will describe the specific
changes made to application and library byte code to propa-
gate taint tags. A complete listing of all byte codes available
and the modifications that PHOSPHOR makes is available in
the appendix to this paper, in Table 4.

Method and Field Declarations: PHOSPHOR rewrites
all method declarations to include taint tags for each primi-
tive or primitive array, and to change all primitive and prim-
itive array return types to be container types, which include
the taint tag on the primitive value in addition to the actual
value. All references to multi-dimension primitive arrays (in
both fields and method descriptors) are replaced with con-
tainer types. PHOSPHOR adds a new instance field to every
class, used to track the taint tag of that instance. Finally, for
every field that is a primitive or primitive array, PHOSPHOR
adds an additional field that stores the taint of that primitive
or primitive array.

Array Instructions: For all array load or store instruc-
tions, PHOSPHOR must remove the taint tag of the array
index from the operand stack before the instruction is exe-
cuted. For stores to primitive arrays, PHOSPHOR inserts in-
structions to also store the taint tag of the value being stored
into the taint array. For loads from primitive arrays, PHOS-
PHOR similarly inserts instructions to load the taint tag from
the taint array. For stores to reference type arrays, if the item
being stored is a primitive array, PHOSPHOR inserts code to
box the array and tag into a container before storing it.

PHOSPHOR instruments instructions that create new one-
dimension primitive arrays with additional instructions to
also create a taint tag array with the same length. For instruc-
tions that create multi-dimension primitive arrays, PHOS-
PHOR modifies them to instead create arrays of our contain-
ers (as discussed in §4.1.1).

The last array instruction that PHOSPHOR instruments
is ARRAYLENGTH, which pops an array off of the operand
stack and pushes onto the stack the length of that array.
For this instruction, PHOSPHOR adds instructions to pop the
taint array from the stack (if the array is a primitive array),
and to add an empty taint (i.e. 0) to the returned value (we
consider array length to be a control flow operation, and do
not propagate any array taints into the taint of the length of
each array).

Local Variable Instructions: PHOSPHOR adds an in-
struction to store a variable’s taint tag immediately after each
instruction that stores a primitive or primitive array variable.
Similarly, for instructions that store object references to local
variables, if the variable type is a primitive array, PHOSPHOR
also stores the taint tag array for that variable. If the variable
type is not a primitive array (i.e. Object), but the item being
stored is a primitive array, then PHOSPHOR inserts instruc-
tions to first box the array into a container, before storing

the array. For instructions that load local variables onto the
operand stack, if the variable is a primitive or primitive array,
then just before the variable is loaded, PHOSPHOR loads the
pre-existing shadow variable (containing the taint tag) onto
the stack.

Method Calls: PHOSPHOR instruments every method
call, first modifying the method descriptor (i.e. the argu-
ments and return type) to pass taint tags. Next, PHOSPHOR
ensures that for every parameter of the generic type Object,
if the parameter being passed is a primitive array, its taint
array is boxed with it into a container. If the method is an
instance method (i.e. has a receiver instance), PHOSPHOR
ensures that if the receiver is a primitive array, its taint tag is
dropped from the operand stack before the call. Immediately
after the method call, if its return type had been changed to
a container type, instructions are inserted to unbox the con-
tainer, placing on the top of the stack the return value fol-
lowed by the taint tag.

Method Returns: PHOSPHOR ensures that all return in-
structions that would otherwise return a primitive value or
reference to a primitive array first box the primitive or prim-
itive array with its taint tag(s) before returning.

Arithmetic Instructions: For arithmetic operators that
take two operands (e.g. addition, subtraction, multiplication,
etc), each operator expects that the top two values on the
stack are the operands, yet with PHOSPHOR, the top value
will be the first operand, while the second will be the taint
tag of the first operand, and the third the second operand,
with the fourth its taint tag (as shown in Figure 3). PHOS-
PHOR prepends each arithmetic operator with instructions to
combine the two taint tags (by bitwise ORing them), placing
the new taint tag under the two (intended) operands, allow-
ing the arithmetic to complete successfully.

Type Instructions: The JVM provides the instanceof

instruction, which pops an object reference off of the stack
and returns an integer indicating if that reference is an in-
stance of a specified type. For this instruction, PHOSPHOR
inserts a null taint tag (i.e. “0”) under the return value of
the instruction (similar to array length, we consider this to
be a control flow operation). Additionally, if the reference
type on the operand stack is a primitive array, then its taint
tag array is dropped from the stack. If the type argument
to instanceof is a multidimensional primitive array, then
PHOSPHOR changes the argument to instead refer to the ap-
propriate container type (since again, we have eliminated
multidimensional primitive arrays).

The other type instruction that PHOSPHOR instruments
is the checkcast instruction, which ensures that the object
reference at the top of the stack is an instance of a speci-
fied type, throwing an exception if not. PHOSPHOR rewrites
this instruction to be aware of our boxed container types:
if the cast is to a one-dimension primitive array type and
the operand is a container, PHOSPHOR first unboxes the ar-
ray and its taint tag array. If the cast is to a multi-dimension



primitive array, then PHOSPHOR changes the type cast to be
to the appropriate container type (since PHOSPHOR elimi-
nates multi-dimensional primitive arrays), leaving it boxed.

Stack Manipulators: There are several instructions that
directly manipulate the order of elements on the operand
stack, for instance, swapping the top two values. In all cases,
PHOSPHOR modifies each instruction based on the contents
of the operand stack just before execution. For instance, if an
instruction will swap the top two elements on the stack, and
the top element is a primitive value (with a taint tag stored
beneath it), but the element below that is an object reference
(hence, with no taint tag beneath it on the stack), PHOSPHOR
removes the swap instruction, replacing it with instructions
to place the top two elements beneath the third.

Locking Instructions: There are two instructions in Java
byte code related to locking, one to procure a lock on an
object reference, and one to release a lock already held on
an object reference. In both cases, PHOSPHOR checks the
top stack value, and if it is a one dimensional primitive array
(which implies that there is a taint tag array on the stack
beneath it), PHOSPHOR pops the taint tag array after the lock
is acquired or released.

Jump Instructions: The JVM provides several jump in-
structions, jumping on either one or two object references or
primitive values. For those that jump based on primitive val-
ues, in all cases PHOSPHOR first removes the taint tag from
the value(s) being checked before the jump. For those that
jump based on object references, PHOSPHOR removes the
taint array tag, if the value(s) being checked before the jump
are references to one dimensional primitive arrays.

4.3 Native Code and Reflection
As PHOSPHOR is implemented within the JVM, it is re-
stricted from propagating taint tags in code that executes
outside of the JVM. The JVM allows for “native” methods,
which are implemented in native machine code, and can be
called by normal code running inside of the JVM. We follow
the same approach used by TaintDroid [16] for patching taint
flow through these methods: we surround each with a wrap-
per that can propagate taint tags from the arguments of the
method into the return value. As with TaintDroid, our imple-

O1
T1
O2
T2

O1 (op) O2
T1 OR T2

Pre-invoke arithmetic
instruction “op”

Post 
invocation

Figure 3: Operand stack before and after performing two-
operand arithmetic. The actual operands are shown as O, and
their taint tags as T .

1 p u b l i c s t a t i c I n t e g e r va lueOf ( i n t i ) {
2 a s s e r t I n t e g e r C a c h e . h igh >= 127 ;
3 i f ( i >= I n t e g e r C a c h e . low && i <=

I n t e g e r C a c h e . h igh )
4 r e t u r n I n t e g e r C a c h e . cache [ i + (−

I n t e g e r C a c h e . low ) ] ;
5 r e t u r n new I n t e g e r ( i ) ;
6 }

Figure 4: Java’s Integer.valueOf method, a very com-
monly used method with an indirect data flow caused by
caching. If the input is between IntegerCache.low and In-
tegerCache.high, the output will have no taint tag, even if
the input did. PHOSPHOR uses a special case to patch it.

mentation currently assigns the taint tag of the return type
to be the union of the taint tags of all primitive, primitive
array and String parameters. The wrapper is also necessary
to wrap and unwrap values from their container types. For
example, if a native method returns a primitive integer, the
calling code will expect that the return value will actually be
a BoxedTaintedInteger (rather than the primitive integer that
it would normally return).

Java supports reflection, a feature that allows code to dy-
namically access and invoke classes and methods. PHOS-
PHOR patches all reflective calls to propagate taint tags as
necessary, following the exact same semantics used for regu-
lar method calls and field accesses. PHOSPHOR also patches
calls that inspect the fields and methods that exist in classes
to hide any artifacts of the taint tracking process, removing
additional fields and arguments as applicable.

4.4 Java-Specific Features
While our taint tracking process is generic to any lan-
guage running in the JVM, we found that its support of
Java could be significantly enhanced with several optimiza-
tions and modifications. For instance, both JVMs that we
evaluated (OpenJDK and Oracle’s HotSpot JVM) make im-
plicit assumptions about the internal structure of several
classes (notably the super-type: java.lang.Object, and
several of the classes internally used as containers for prim-
itive types: java.lang.Character, java.lang.Byte,
java.lang.Boolean, and java.lang.Short), which would
prevent PHOSPHOR from adding taint storage fields to these
classes. PHOSPHOR does not track taint tags on raw in-
stances of the class java.lang.Object, which has no
fields itself, and therefore, we do not believe is relevant in
data flow analyses. For the four restricted primitive container
types, PHOSPHOR instead stores the taint tag for instances of
these types in a HashMap (similar to the technique used by
[40]), hence avoiding the need to modify the internal struc-
ture of the class. Storing taint tags in a HashMap is much
slower than as individual variables (when using it to store all
taint tags, [40] showed a slowdown of up to 526x).



We also make a small modification to support a very
commonly used indirect data flow in Java. Primitive con-
tainer types can be very frequently used in Java, and are
used within the JVM when necessary to represent a primitive
value as an instance of a reference type. For efficiency, for
each primitive type there is a cache of instances of the con-
tainer class for all low values of that type. Listing 4 repro-
duces the code used to fetch an instance of class Integer.
Due to the implicit flow in lines 3-4, if an integer is found in
the cache, then its taint tag is dropped. If the integer does not
exist in the cache, then the taint tag will be propagated into
the new instance of Integer in line 5. PHOSPHOR modifies
the code that calls the valueOf method for each of the prim-
itive container types to ensure that if the primitive argument
has a non-zero taint tag, a new instance of the container is
created with the tag, hence continuing to propagate taints.

4.5 Optimizations
The entire instrumentation process is implemented in a
stream-processing manner: for each byte code instruction,
PHOSPHOR outputs new instructions, without context of in-
structions that previously were output, or those that will be
output next. After the instrumentation process, we add sev-
eral short optimization passes to provide a small amount of
context to PHOSPHOR, greatly reducing the size of outputted
methods.

First, PHOSPHOR detects instances where taint tags may
be loaded to the stack, then immediately popped: for in-
stance, variables loaded to the operand stack and used as
operands for jump conditions. PHOSPHOR simply ignores
loading the taint tags in these places.

Next, PHOSPHOR detects large methods that perform no
instructions other than to load constants into arrays. Rather
than initialize the taint tag for each constant as each constant
is loaded, PHOSPHOR instead reasons that all tags will be 0,
and can instead rapidly initialize them all at once, rather than
initializing them one-by-one. This optimization was neces-
sary in several cases in order to ensure that the generated
methods remained within the maximum method size (64
kilobytes; this limitation is based on the size of the JVM’s
internal program counter).

Finally, after all instrumentation has been completed,
PHOSPHOR scans each generated method for simplifica-
tions. For example, given our rules outlined in the previous
section, for any method that returns a primitive value, in-
structions are inserted after its call site to unbox the taint
tag and return value from the return container. However, if
both of those values will be immediately discarded from the
stack (i.e. pop’ed), then we can simplify the instructions that
load and then discard the return value and return taint tag to
simply not load the value or tag.

To some extent, these optimizations can also be achieved
by the JIT compiler as it compiles the byte code, but we
have found that performing them in advance still improves

run time (and in some cases, is necessary to ensure that the
generated code fits within the maximum method size).

4.6 Application to Android and Dalvik
Although we designed PHOSPHOR for the JVM, we recog-
nized that it could also be applicable to the language vir-
tual machine used by Android, the Dalvik Virtual Machine
(DVM). Nearly all applications for Android devices are writ-
ten in Java, which is then compiled to Java byte code and
translated into the DVM’s form of byte code, called dex.

Because it executes a translated form of Java byte code,
and PHOSPHOR operates at the byte code level, we can
apply PHOSPHOR to Android and the DVM by inserting
taint propagation logic in the intermediate Java byte code
before it is translated to dex. PHOSPHOR could even be
applied without needing this intermediate Java byte code,
by using a tool such as [15], which translates dex byte
code back into Java byte code. Note that although it runs
a translated form of Java byte code, the DVM should not be
confused with a JVM; our primary target remains the JVM,
and any modifications to the DVM or access to intermediate
compiled code described in this subsection are unnecessary
for JVM taint tracking.

There are many optimizations that the DVM performs
beyond those of the JVM, perhaps due to the tight verti-
cal integration of Android devices (from operating system
to interpreter to language to APIs and applications). Sev-
eral of these optimizations pose significant challenges for
PHOSPHOR, as they significantly increase coupling between
the interpreter and other classes, beyond those discussed in
§4.4. Notably, the DVM provides very efficient native im-
plementations of the java.lang.String methods charAt,
compareTo, equals, fastIndexOf, isEmpty and length.
These implementations rely on compile-time knowledge of
the run-time organization of the class java.lang.String
(i.e. the byte-level offsets of each field). Further, the DVM
assumes in several cases that all internal primitive container
types (not just the several assumed by the JVMs evaluated)
contain only a single field containing the primitive value, and
no other fields. While we could in principle support taint
tracking instances of these classes by storing their taint tag
in a HashMap (as for the several classes similarly restricted
in the JVMs evaluated), doing so for all of the tightly cou-
pled classes would have posed a prohibitive overhead.

Instead, we made several very small modifications to the
Dalvik VM to decouple the VM from the implementation
of these classes. Note that although we chose to modify the
DVM in this case, the number of changes is significantly
smaller than those necessary for TaintDroid, as we are not
modifying the interpreter to perform taint tracking, but only
to decouple it. These changes required modifying seven con-
stants defined in header files, and modifying six lines of na-
tive code that handle reflection. In comparison, the most re-
cent version of TaintDroid (4.3.1) contains a total of over
32,000 lines of new code in the Dalivk VM (as reported by



executing a diff of the repository), of which over 18,000 are
in assembly code files, and 10,661 in C source code files.

5. Related Work
Dynamic taint analysis is a problem widely studied, with
many different systems tailored to specific purposes and lan-
guages. For instance, there are several system-wide tainting
approaches based on modifications to the operating system
([35] and others). However, PHOSPHOR tracks taint tags by
instrumenting application byte code. This general approach
is most similar to other approaches that track taint tags by in-
strumenting application binaries. When available, we com-
pared the Java-based systems directly to PHOSPHOR (an
evaluation presented in Section 6), but please note that the
performance overheads reported in this section are to pro-
vide ballpark information only — the selection of bench-
marks used varies greatly from system-to-system (the slow-
downs reported here are provided by the original authors).

DyTan is a general purpose taint tracking system target-
ing x86 binaries that supports implicit (control) flow taint-
ing, in addition to data flow tainting, with runtime slowdown
ranging from 30x-50x [13] (where a slowdown of 1x means
that the system now takes twice as much time to run). Taint-
Trace only performs data flow tainting (like PHOSPHOR),
and achieves an average slowdown of 5.53x [11]. Libdft, an-
other binary taint tracking tool, shows overheads between
1.14x-6x, thanks to optimizations largely based on assump-
tions that data (overall) will be infrequently tainted [23].
In contrast, PHOSPHOR does not assume that variables are
mostly not tainted (and hence does not make such optimiza-
tions, although they mostly are still applicable to the JVM),
and therefore its performance will remain constant regard-
less of the frequency of tainting.

Another general class of taint tracking systems target in-
terpreted languages and make modifications to the language
interpreter, targeting, for example, JavaScript [41], Python
[43], PHP [29, 33, 43], Dalvik [16] and the JVM [9, 28]. In
general, interpreter level approaches can benefit from addi-
tional information available in the context of the language
that defines the exact boundary of each object in memory
(so soundness and precision can be improved over binary-
level approaches). The portability of these systems is often
restricted, as they require modifications to the language in-
terpreter and/or modifications to application source code.

Of these interpreter-based taint tracking systems, the
most relevant to PHOSPHOR are Trishul [28], an approach
by Chandra et al. [9], and TaintDroid [16]. Trishul per-
forms data and control flow taint tracking by modifying the
Kaffe interpreted JVM, an open source JVM implementa-
tion (in a purely interpreted mode, with no JIT compilation
— adding an inherent slowdown of several orders of mag-
nitude). Chandra et al. modifies the Jikes Research Virtual
Machine to perform data and control flow taint tracking,
showing slowdowns of up to 2x on micro-benchmarks, but

its implementation depends on the usage of the research
VM, rather than a more popularly deployed JVM [9]. Nei-
ther the Jikes nor the Kaffe JVM support the complete Java
language specification. TaintDroid is a popular taint tracking
system for Android’s Dalvik Virtual Machine (DVM), im-
plemented by modifying the Dalvik interpreter [16]. Taint-
Droid only maintains a single taint tag for every element in
an array (unlike PHOSPHOR, which maintains a tag for each
element), allowing TaintDroid to perform more favorably on
array-based benchmarks, but at the cost of precision.

While all of these approaches employ variable-level
tracking, like PHOSPHOR, the key difference that sets PHOS-
PHOR apart is its portability: each of the above systems re-
quires modifications to the language interpreter. For exam-
ple, TaintDroid’s most recent version (version 4.3 at time of
publication) adds over 32,000 lines of code to the VM (as
measured by lines of code in the TaintDroid patch to An-
droid 4.3.1). For any new release of the VM, the changes
must be ported into the new version and if a researcher or
user wished to use a different VM (or perhaps a different
architecture), they would need to port the tracking code to
that VM. PHOSPHOR, on the other hand, is designed with
portability in mind: PHOSPHOR runs within the JVM with-
out requiring any modifications to the interpreter (and we
show its applicability to the popular Oracle HotSpot and
OpenJDK IcedTea JVMs). This design choice also allows
us to support Android’s Dalvik Virtual Machine with only
minor modifications, as discussed in §4.6.

There have been several recent works in dynamic taint
tracking for Java that operate by modifying core Java li-
braries to track taint tags. Without requiring interpreter mod-
ification, WASP detects and prevents SQL injection attacks
in Java by using taint tracking with low overhead (1-19%),
but is restricted to only track taint tags on Strings [22], much
like the earlier Java tainting system by Haldar et al. [21], and
Chin et al’s optimized version of the same technique [12].
These systems simply provide a replacement for the class,
java.lang.String that is manually modified to perform
taint tracking for those objects, and the approach is there-
fore unsuited to general purpose taint tracking (aside from
Strings). PHOSPHOR differs from all of these approaches in
that it tracks taints on all forms of data within the JVM: not
just Strings.

Vitasek et al. propose a solution to a problem related to
taint tracking: in addition to assigning labels to each object
in the JVM, their ShadowData system can also enumerate all
such labels [40]. Vitasek et al. evaluated several approaches
to this, finding the most efficient to be storing the mapping
from object to label in a HashMap, showing slowdown rang-
ing from 4.8x-185.5x, largely due to contention in accessing
that HashMap, a drawback that PHOSPHOR’s decentralized
taint tag storage avoids (but note that PHOSPHOR does not
provide the ability to enumerate all data that is tagged).



6. Evaluation
We evaluated PHOSPHOR in the dimensions of performance
(as measured by runtime overhead and memory overhead)
and in soundness and precision. We have also compared the
performance of PHOSPHOR with that of TaintDroid, when
running within the Dalivk VM on an Android device. We
were restricted from comparing against other taint tracking
systems, as many were unavailable for download and did not
utilize standardized benchmarks in their evaluations. All of
our JVM experiments were performed on an Apple Macbook
Pro (2013) running Mac OS 10.9.1 with a 2.6Ghz Intel Core
i7 processor and 16 GB of RAM. We used four JVMs:
Oracle’s “HotSpot” JVM, version 1.7.0 45 and 1.8.0 and
the OpenJDK “IcedTea” JVM, of the same two versions.
All instrumentation was performed ahead of time and the
dynamic instrumenter therefore only needed to instrument
classes that were dynamically generated (for example, by the
Tomcat benchmark, which compiles JSP code into Java and
runs it).

For all experiments, no other applications were running
and the system was otherwise at rest. All of our Android ex-
periments were performed on a Nexus 10, running Android
version 4.3.1, built from the Android Open Source Project
repository. No other applications were running on the An-
droid device during our experiments.

6.1 Performance: Macro benchmarks
Our first performance evaluation focused on macro bench-
marks, from the DaCapo [5] benchmark suite (9.12 “bach”),
and the Scalabench [32] benchmark suite (0.1.0-20120216).
The DaCapo benchmark suite contains 14 benchmarks that
exercise popular open source applications with workloads
designed to be representative of real-world usage. Several of
these workloads are highly relevant to taint tracking applica-
tions, as they benchmark web servers: the “tomcat,” “trade-
beans” and “tradesoap” workloads. The Scalabench suite
contains 12 benchmarks written in Scala that are also broad
in scope. In all cases, we used the “default” size workload.

First, we ran the benchmarks using both the Oracle
“HotSpot” JVM and the OpenJDK “IcedTea” JVM in our
test environment to measure baseline execution time. Then,
we instrumented both JVMs and all of the benchmarks to
perform taint tracking, and measured the resulting execution
time and the maximum heap usage reported by the JVM. To
control for JIT and other factors, we executed each bench-
mark multiple times in the same JVM until the coefficient
of variation (a normalized measure of deviation: the ratio
of the standard deviation of a sample to its mean) dropped
to at most 3 over a window of the 3 last runs (a technique
recommended in [18]). Our measurements were then taken
in the next execution of the benchmark in that JVM. This
process was repeated 10 times, starting a new JVM to run
each experiment, and we then averaged these results.

We include results for all benchmarks except for the
“scalac” benchmark from the scalabench workloads, a bench-
mark that exercises the Scala compiler. The Scala compiler
has certain expectations about the structure and contents of
class files that it compiles, so injecting taint tracking code
into the compiler itself (plus the intermediate code that is
being compiled) causes runtime errors. A general limitation
of our approach is that applications that inspect their own
byte code directly (rather than that code being read and in-
terpreted by the JVM, and rather than using Java’s reflection
interface to inspect it) may not function correctly, as we have
changed that byte code (a limitation discussed in §3.3).

Table 1 presents the results of this study, showing detailed
results for Oracle’s HotSpot JVM (version 7), and summary
results for HotSpot 8, and OpenJDK’s IcedTea JVMs (ver-
sions 7 and 8). We focus on the results for HotSpot 7, as it is
far more widely adopted than version 8 (at time of submis-
sion, Java 7 was approximately three years old, and Java 8
was approximately one week old). Using Oracle’s HotSpot
JVM 7, for the DaCapo suite, the average runtime overhead
was 51.9%, and across the Scalabench suite, the average run-
time overhead was 55.1% (runtime overhead for other JVMs
is shown in Table 1). The average heap overhead was 239.1%
for DaCapo, and 311.5% for Scalabench (heap usage in the
other JVMs was similar). This heap overhead is unsurpris-
ing: in addition to requiring additional memory to store the
taint tags, PHOSPHOR also increases memory usage by its
need to allocate containers to box and unbox primitives and
primitive arrays for return values, and primitive arrays when
casting them to the generic type java.lang.Object (as
discussed in §4.1.2).

There are several interesting factors that can contribute to
the heap overhead growing to be more then twice as large.
First, note that a Java integer is four bytes, while a byte is
1 byte, and chars and shorts are both two bytes. Therefore,
the space overhead to store the taint tag for a variable can be
as high as 4x.

The second factor that can adversely impact heap over-
head comes from our container types. For every method that
returns a primitive type, we replace its primitive return type
with an object that wraps the primitive value with its taint
tag. Although we pre-allocate these return types and attempt
to reuse them, our implementation will only allow for reuse
when (1) a method calls multiple other methods that return
the same primitive type, or (2) a method calls other meth-
ods that return the same primitive type as the caller. These
allocations are relatively cheap in terms of execution time
(and are represented in our overall execution overhead mea-
sures), but can put significant pressure on the garbage collec-
tor that wouldn’t exist without PHOSPHOR, as primitive val-
ues are not reference-tracked. We saw a particularly heavy
allocation pattern in the xalan benchmark, where approxi-
mately 36 million instances of TaintedInt and 35 million



Oracle Hotspot 7 Other JVMs
Runtime (ms) Heap Size (MB) Runtime Overhead
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avrora 2333± 53 2410± 27 3.3% 75 223 198.8% .7% 3.8% 3.6%
batik 903± 15 1024± 15 13.5% 105 211 100.2% 12.1% N/A* N/A*
eclipse 15305± 702 48907± 1885 219.6% 1026 2901 182.7% 138.8% 209.8% 124.0%
fop 203± 6 320± 7 57.7% 100 261 162.0% 63.3% 57.4% 49.8%
h2 3718± 136 5137± 138 38.2% 739 2738 270.5% 34.0% 34.7% 35.2%
jython 1343± 19 2107± 47 56.9% 412 805 95.1% 25.7% 59.4% 26.8%
luindex 454± 50 642± 44 41.6% 39 157 303.6% 52.9% 44.4% 53.2%
lusearch 584± 65 1126± 73 92.8% 619 2750 344.2% 86.6% 102.0% 92.6%
pmd 1336± 20 1705± 56 27.6% 172 583 239.5% 26.8% 29.8% 23.5%
sunflow 1616± 76 2182± 231 35.0% 532 1086 104.3% 28.8% 28.2% 29.1%
tomcat 1364± 35 1885± 41 38.2% 173 881 410.7% 33.4% 30.0% 36.8%
tradebeans 3175± 94 4189± 136 31.9% 1093 2225 103.6% 33.3% 41.4% 34.3%
tradesoap 12159± 2416 14657± 2470 20.6% 1910 3058 60.1% 17.5% 14.1% 3.6%
xalan 498± 40 748± 102 50.2% 91 790 771.9% 49.2% 38.5% 75.7%

Average 3214 6217 51.9% 506 1334 239.1% 43.1% 53.4% 45.2%
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actors 2523± 103 2663± 130 5.5% 90 716 692.0% 4.0% .6% 3.5%
apparat 7874± 640 13516± 1102 71.7% 509 2430 377.0% 102.6% 66.7% 92.8%
factorie 19262± 1812 25063± 781 30.1% 2769 2791 .8% 38.7% 32.1% 35.5%
kiama 238± 5 381± 11 60.3% 151 529 250.7% 51.1% 52.9% 59.7%
scaladoc 1092± 25 2206± 85 102.1% 174 1225 602.7% 98.0% 94.0% 94.0%
scalap 136± 6 227± 7 67.3% 86 298 248.8% 82.1% 61.6% 82.3%
scalariform 419± 15 523± 8 24.6% 88 304 246.1% 28.9% 21.8% 23.5%
scalatest 840± 55 1133± 73 34.9% 153 599 292.1% 45.4% 32.8% 41.9%
scalaxb 288± 6 540± 38 87.8% 87 413 373.6% 218.8% 79.9% 219.2%
specs 1268± 44 1770± 21 39.6% 162 714 340.8% 24.6% 36.5% 40.6%
tmt 3755± 65 6834± 33 82.0% 2733 2777 1.6% 95.0% 81.5% 93.5%

Average 3427 4987 55.1% 637 1163 311.5% 71.7% 50.9% 71.5%

All Average 3307 5676 53.3% 563 1259 270.9% 55.7% 52.2% 57.3%

Table 1: Runtime duration for macro benchmarks, showing baseline time (Tb), PHOSPHOR time (Tp) and relative overhead
for Oracle’s HotSpot JVM version 1.7.0 45, indicating standard deviation of measurements with ±. We also show heap size
measurements for the baseline execution (Mb) and PHOSPHOR execution (Mp), as well as the percent overhead for heap
size. For HotSpot 8, IcedTea 7 and IcedTea 8, we show only runtime overhead. *The “batik” benchmark depends on Oracle-
proprietary classes, and therefore does not execute on the OpenJDK IcedTea JVM.

instances of TaintedBooleanwere allocated to encapsulate
return types.

In terms of runtime overhead, we saw the best perfor-
mance from PHOSPHOR in the “avrora” benchmark, and
worst performance in the “eclipse” benchmark. The “avrora”
benchmark runs a simulator of an AVR micro controller, and
from our inspection, contains many primitive-value opera-
tions. We believe that it was a prime target for optimization
by the JIT compiler; indeed, when disabling the JIT compiler
and running the benchmark in a purely interpreted mode, we
saw an 87% overhead, much more in line with the average
performance of PHOSPHOR. “Eclipse” represents a greater
mix of operations that are more complicated and compu-
tationally expensive for PHOSPHOR to implement. For in-

stance, many parts of the Eclipse JDT Java compiler (a com-
ponent of the benchmark) store primitive arrays into fields
declared with the generic type, java.lang.Object. For ev-
ery access to these fields, PHOSPHOR must insert several in-
structions to box or unbox the array, which requires allocat-
ing a new container each time, and hence, adding signifi-
cantly to the overhead.

To compare broadly to other binary-instrumentation based
taint tracking systems, DyTan [13] shows a performance
overhead of 30x in a macro benchmark, with a memory
overhead of 240x. LibDFT [23] shows a performance over-
head of 1.14-6x on macro benchmarks. PHOSPHOR showed
an average overhead of 1.5x, ranging overall from 1.03x to
3.19x. Again, it is impossible to compare directly to these



Benchmark Oracle - HotSpot 7 Rel. Overhead (Other JVMs) Rel. Overhead (DVM)
Tb (ns) Tp (ns) Rel. Overhead Hotspot 8 IcedTea 7 IcedTea 8 PHOSPHOR TaintDroid

Float 5620± 25 7765± 47 38.2% 108% 37.7% 114.2% 131.2% 63.9%
Logic 1338± 4 1341± 5 0.2% -0.3% -0.6% 0.2% 1.5% 11.2%
Loop 3283± 59 4060± 38 23.7% 23.4% 22.2% 23.3% 43.9% 64%
Method 266± 5 642± 4 141.3% 140.1% 132.4% 137.6% 9.8% 25.3%
Sieve 6128± 42 7062± 87 15.2% 12.8% 14.3% 13.6% 27.7% 3.2%
String Buffer 1081± 7 3396± 43 214.2% 212.9% 215.9% 208.4% 183.3% 30.8%

Average 2953 4044 72.1% 82.8% 70.3% 82.9% 66.2% 33.1%

Table 2: Runtime duration (in nanoseconds) and overhead for micro benchmarks, showing baseline time (Tb), PHOSPHOR time
(Tp) with standard deviation as ±, and relative overhead for Oracle’s HotSpot JVM version 1.7.0 45 and 1.8.0, OpenJDK’s
IcedTea JVM version 1.7.0 45 and 1.8.0, and Android’s DVM version 4.3.1. For the DVM, we also show TaintDroid’s overhead
(relative to the same baseline Android configuration).

systems, as they target different platforms (i.e., not the JVM)
and there was no standard benchmark that we could use for
the purpose.

The most applicable systems to compare PHOSPHOR to
are TaintDroid [16], Trishul [28] and Chandra et al’s ap-
proach [9]. Of these, we were able to obtain TaintDroid and
Trishul (the authors of [9] were unable to find their imple-
mentation [8]), but were unable to use our macro bench-
marks to compare to these systems as the benchmarks are
not supported by Dalvik and Kaffe respectively (the VMs
used by Trishul and TaintDroid). The authors of TaintDroid
used the CaffeineMark [30] benchmark in their evaluation,
and the authors of Trishul used the jMocha benchmark [19]
in their evaluation. We compare PHOSPHOR’s performance
directly to TaintDroid and Trishul in the following section.

6.2 Performance: Micro Benchmarks
We performed a series of micro benchmarks to further ana-
lyze PHOSPHOR’s runtime performance overhead. Our mi-
cro benchmarks are based on the CaffeineMark [30] suite
of micro benchmarks, commonly used by Android develop-
ers – including by the authors of TaintDroid [16]. We mod-
ified these benchmarks to run under Google’s Caliper micro
benchmark tool, so that they could benefit from the frame-
work’s warmup, timing, and validation features (the original
CaffeineMark benchmarks do not contain any warmup phase
and therefore the results can be skewed by JIT compilation).
The “embedded” suite (used in the TaintDroid study) con-
sists of six benchmarks: “Float” (simulates 3D rotation of
objects around a point; uses arrays), “Logic” (contains many
simple branch conditions), “Loop” (contains sorting and se-
quence generation; uses arrays), “Sieve” (uses the sieve of
eratosthenes to find primes; uses arrays), “Method” (features
many recursive method calls) and “String” (performs string
concatenation; uses arrays). Each benchmark was executed
several times in the same JVM over the course of 3 seconds
to warm up, and then executed for a period of 1 second. For
that last second, we measure the amount of time in nanosec-

onds that each benchmark took (by running it many times
and averaging). We did this entire process 10 times, and av-
eraged the results of each trial.

Table 2 shows the results of this study, showing the run-
time for PHOSPHOR for Oracle’s HotSpot 7 JVM (being
the most popular JVM at time of publication), and the run-
time overhead for all of the subject JVMs, plus the Android
DVM. We also show our measured overhead of TaintDroid,
relative to the same baseline Android DVM. PHOSPHOR’s
fine-grained array taint tag tracking (i.e. that it stores a taint
tag per-element, rather than a single tag per-array) caused it
to perform somewhat poorer than TaintDroid in the bench-
marks that relied heavily on arrays. Recall that this optimiza-
tion will result in a loss in precision for TaintDroid, which
does not affect PHOSPHOR.

However, in the benchmarks that did not involve sig-
nificant array usage (e.g. “Logic,” “Loop,” and “Method”),
PHOSPHOR outperformed TaintDroid. It would be interest-
ing to perform a followup study by modifying TaintDroid to
also track taint tags per-element, to see which approach is
faster in that case. Another interesting observation from the
micro benchmarks is that the average overhead across these
micro benchmarks for PHOSPHOR (72.13%), is somewhat
higher than its average overhead across the macro bench-
marks (52.06%). Perhaps these less than optimal cases oc-
cur less in practice than those cases wherein PHOSPHOR is
faster. Unfortunately we are severely restricted in availabil-
ity of macro benchmarks for Android (DaCapo is not easily
ported to Android as many of its benchmarks rely on Java
APIs that are not included in the Android Dalvik VM), and
therefore could not perform a macro benchmark study com-
paring TaintDroid with PHOSPHOR.

To compare to Trishul [28], we hoped to use the same
suite of micro-benchmarks (the suite used by the authors of
Trishul, jMocha, is no longer available) used above. How-
ever, we found that the benchmark framework that we used
to collect timing information (Google Caliper version 0.5)
was incompatible with Kaffe, the JVM that Trishul is built



Relative Overhead to HotSpot 7

Benchmark Group Kaffe Trishul PHOSPHOR

Arithmetic 64.4% 74.5% 10.7%
Assign 56.5% 86.6% 50.2%
Cast 87.1% 86.7% 13%
Create 98.5% 98.8% 24.4%
Exception 90.0% 69.9% 1.7%
Loop 2.3% 89.0% 7.6%
Math 89.1% 96.5% 96.0%
Method 42.2% 76.0% 6.3%
Serial 90.04% N/A* 21.14%

Average 68.9% 84.7% 25.7%

Table 3: Runtime overhead of PHOSPHOR, Kaffe 1.1.7 [37]
and Trishul [28] compared to Oracle HotSpot 1.7.0 55 on
the JavaGrande benchmark [7]. *Threw exception

upon. Therefore, we selected another suite of micro bench-
marks to run for this purpose: JavaGrande [7], a micro
benchmark suite from 2000, which was popular at the time
(and worked with Kaffe). We performed these experiments
in an Ubuntu 6.10 VirtualBox VM with 3.5GB of RAM
(running on the same MacBook Pro 2.6Ghz Intel Core i7,
16 GB of RAM) that was provided by the Trishul authors.
We measured the performance of Oracle’s HotSpot 7 run-
ning within this VM as a baseline, and then also measured
the performance of Kaffe 1.1.7 (which Trishul is based on),
Trishul, and a PHOSPHOR-instrumented HotSpot 7. Again,
we executed each benchmark 10 times (each time in a sepa-
rate JVM), but here, with no warmup phase, as JavaGrande’s
benchmark runner does not support a warmup phase (and we
were unable to use Google Caliper to control for warmup as
it was not supported by Kaffe VM).

Table 3 presents the results of this evaluation (overheads
presented are relative to HotSpot 7). Note that in most cases,
Kaffe itself (the VM that Trishul is built on) is significantly
slower relative to HotSpot, and hence, perhaps some large
amount of the overhead imposed by Trishul can be attributed
to the underlying VM. In all cases, PHOSPHOR had signif-
icantly lower overhead than Trishul (in the case of the “Se-
rial” benchmark, Trishul threw an exception and was un-
able to execute the benchmark). Trishul’s performance on
the loop and method benchmarks was particularly poor (even
relative to an unmodified Kaffe VM), likely due to the fact
that it performs control flow tainting, and not just data flow
tainting. Adding control flow tainting to PHOSPHOR would
likely also increase its overhead in these two benchmarks.

6.3 Soundness and Precision
We evaluated the soundness and precision of PHOSPHOR
using two benchmark suites. First, we wrote our own suite
of unit tests, testing that each of our taint tracking properties
(as described in §4.1) are not violated, for each primitive

and primitive array type, as well as for reference types.
PHOSPHOR passed all of these tests. These unit tests are
included in our GitHub repository [4].

To add additional validity to our claim that PHOSPHOR
is sound and precise, we also implemented the DroidBench
[2] taint tracking benchmark, removing the components that
were Android specific so that it would run on a desktop JVM.
DroidBench consists of 64 test cases for taint tracking sys-
tems, of which, we found 35 to be Android-specific (test-
ing taint propagation through Android-specific callbacks and
life-cycle events), leaving 29 tests. These tests are designed
to test both soundness (that variables that should be tainted
are indeed tainted with the correct taint) and precision (that
variables that should not be tainted are not tainted) of taint
tracking. Four of the tests are designed to test taint tracking
through implicit flows. PHOSPHOR passed all data flow tests
and failed on the four implicit flow tests as expected.

6.4 Portability
We further studied the portability of PHOSPHOR by attempt-
ing to apply it to three completely different JVMs (in ad-
dition to the two versions of Oracle’s HotSpot and Open-
JDK’s IcedTea, plus the Dalvik DVM). We downloaded the
most recent versions of the Apache Harmony JVM (version
6.0M3) [1], Kaffe VM (version 1.1.9) [37] and Jikes RVM
(version 3.1.3) [36]. For each VM, we attempted to exe-
cute our soundness and precision tests as a basic indicator
of whether PHOSPHOR would work.

While PHOSPHOR did not work immediately with Har-
mony or Kaffe, after approximately 30 minutes of debug-
ging, we identified several additional classes that were
tightly coupled between the class library and the interpreter.
For instance, no JVM that we tested allowed for unrestricted
modifications of the class java.lang.Object; Harmony
and Kaffe similarly would not allow for modifications of the
class java.lang.VMObject (which does not exist in Ora-
cle or OpenJDK’s class library). We patched around these
classes, and can confirm that PHOSPHOR works with Har-
mony and Kaffe.

However, we were unable to successfully apply PHOS-
PHOR to the Jikes RVM, which is a JVM implemented in
Java. We believe that this is due to our inherent design limita-
tion (discussed further in the following section), that should
an application try to read its own byte code, it will see un-
expected entires (namely, everything added by PHOSPHOR).
Jikes uses its own internal implementation of Java’s reflec-
tion library for configuring its bootstrap class image, and
PHOSPHOR does not currently patch this to hide its modi-
fications, causing it to fail. We believe that it would be pos-
sible to modify PHOSPHOR to be compatible with Jikes, but
have not investigated this further.

6.5 Threats to Validity
The main threats to validity to our experiments are related
to our claims of portability. We claim that PHOSPHOR is



portable to any JVM that fulfills the official JVM specifi-
cations versions 7 and 8, as it only requires modifications to
application byte code and library byte code. We evaluated
this claim on four JVMs, including two versions of two very
widely used JVMs (Oracle HotSpot and OpenJDK IcedTea),
and two much less frequently used JVMs (Kaffe and Har-
mony). Just as these JVMs had tight coupling for several
classes, preventing PHOSPHOR from adding fields to them to
track taint tags, it is certainly possible that other JVMs have
even more constraints on more classes (such coupling be-
tween class libraries and interpreter are not discussed in the
JVM specification). However, we are confident that if such
cases arose, PHOSPHOR would still be applicable, falling
back to storing taint tags for instances of such classes with a
HashMap, an approach that would still work, though perhaps
with somewhat higher overhead (such changes would need
to be manually implemented). We believe that PHOSPHOR’s
incompatibility with the Jikes Research Virtual Machine is
an exceptional case in that (1) it is intended specifically for
research purposes and not production purposes, (2) it is writ-
ten in Java itself and is self-hosted (i.e. its Java code runs on
itself). Moreover, although we were unable to find any us-
age statistics, we believe that Oracle HotSpot and OpenJDK
IcedTea dominate the JVM market by far.

Although we selected popular, well-accepted macro bench-
marks for evaluating PHOSPHOR, it is possible that the
selected benchmarks are not representative of the sorts of
workloads that would normally are targets for taint tracking.
However, because three of these benchmarks involve work-
loads on web servers, and taint tracking has been shown to
be highly applicable to detecting and preventing code injec-
tion attacks in web servers, we believe that the benchmarks
are sufficient.

There are several key limitations to our approach, as dis-
cussed previously in §3.3, most notably that PHOSPHOR
only tracks data flows, and not control flows (“implicit
flows”), much like other well known taint tracking systems
[10, 16, 23]. Note that implicit flow tracking primarily re-
quires static analysis, and its implementation should be un-
affected by PHOSPHOR’s approach to data flow tracking.
Support for implicit flows would be interesting to add as an
optional feature to PHOSPHOR (e.g. DyTan [13] supports
both sorts of tracking), but we consider this to be future
work, outside of the scope of this paper.

Java provides a simple reflection API (also used by many
Scala applications) to access information about class files,
such as the list of methods available in a class. PHOSPHOR
patches this API to hide all of its changes from applications,
however, if an application directly reads in the byte stream of
a Class file (without using this API) and parses its structure,
that application will find potentially unexpected artifacts of
PHOSPHOR in the Class. This scenario arose in our macro
benchmark study exactly once: in the case of the Scala com-
piler (“scalac”), which does not use the reflection API. We

do not believe that this is a common occurrence outside of
the scope of compilers, as Java’s reflection API is widely
used for this purpose.

7. Conclusions
Due to difficulties simultaneously achieving precision, sound-
ness, and performance, all previous implementations of dy-
namic taint analysis for JVM based languages have been
restricted, functioning only within specialized research-
oriented JVMs, making their deployment difficult. We pre-
sented PHOSPHOR, our approach to providing accurate, pre-
cise, and performant taint tracking within the JVM without
requiring any modifications to it, demonstrating its appli-
cability to two very popular JVMs: Oracle’s HotSpot and
OpenJDK’s IcedTea, each for the two most recent versions:
1.7 and 1.8. Moreover, PHOSPHOR does not require any spe-
cialized operating system or specialized hardware or access
to application source code. PHOSPHOR is released with an
open-source license via GitHub [4], and we hope that it can
be used by other researchers to further their work in fields
such as security, debugging and testing.
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A. Appendix: JVM Byte Code Opcode Reference
PHOSPHOR modifies the operation of many byte code instructions by inserting additional instructions around them. This table
lists all byte code instructions supported by the Java Virtual machine, and for each one, a brief description of the change(s) that
PHOSPHOR makes.

Table 4: All JVM byte codes, annotated with descriptive transformation information

Opcode(s) Brief Description PHOSPHOR Modifications

aastore Stores reference to array Removes the taint tag for the index before storing;
if the ref. is to a primitive array, boxes before
storing

aaload Loads reference to array Removes the taint tag for the index to load
anewarray Allocates new array for references If the array type is a mutli-d primitive array,

change to a container type
arraylength Returns length of array as integer Place the tag ”0” just below return val on the

operand stack after execution
areturn Exit a method, returning the object

reference at the top of the stack
If the top of the stack is a primitive array, boxes
the array and its taint tags before return

astore Store an object to a local variable If the variable type is a primitive array, store the
taint tags also to their variable. If the variable type
is ”Object” and the item being stored is a primitive
array, box it.

baload, caload, daload,
iaload, faload, laload,
saload

Loads a value from a primitive array Removes the taint tag for the index to load; loads
the taint tag for the corresponding element too

bastore, castore, das-
tore, iastore, fastore,
lastore, sastore

Stores a value to a primitive array Removes the taint tag for the index to store to;
stores the taint tag for the corresponding element
too

bipush, sipush, iconst,
lconst, dconst, fconst

Loads a constant to the stack Loads the taint tag ”0” before loading the constant
requested

checkcast Casts the top Object ref If casting to a primitive array, unbox the boxed
primitive array

Xadd, Xmul, Xdiv,
Xrem, Xsub, Xand,
Xor, Xshl, Xshr, Xushr,
Xxor, lcmp, dcmpl,
dcmpg

Performs binary-operand math on
top two stack elements

Moves taint tags of operands out of way and ORs
them, placing new tag just below the result

dload, fload, iload,
lload

Load a primitive local variable Load the taint tag, just before loading the re-
quested variable

dstore, fstore, istore,
lstore

Store a primitive local variable After storing the requested variable, store the taint
tag

dup, dup2, dup2 x1,
dup2 x2, dup x1,
dup x2

Duplicates the top N words on
operand stack, possibly placing un-
der the third or fourth word

Also duplicates the taint tag (if there is one) and
if placing under other elements, places under their
taint tag (if present)

dreturn, ireturn, fre-
turn, lreturn

Exit a method, returning the primi-
tive value at the top of the stack

Boxes the primitive into a container, then executes
ARETURN instead

getfield, getstatic Retrieves the value of an instance
field of an object

If applicable, also retrieves the taint tag just before
performing the getfield/getstatic

if acmpeq, if acmpne Jump if the top two object references
on stack are/aren’t equal

If either operand is a primitive array, pops the taint
tag before executing

if icmplt, if icmpge,
if icmple, if icmple,
if icmpeq, if icmpne

Compare top 2 ints and jumps Pops the taint tag for both integers before execut-
ing



Table 4: All JVM byte codes, annotated with descriptive transformation information

Opcode(s) Brief Description PHOSPHOR Modifications

ifeq, ifne, ifgt, ifge,
ifle, iflt

Compares top 1 int and jumps Pops the taint tag before executing

ifnonnull, ifnull Jump if top reference is/isn’t null If operand is a primitive array, pops taint tag be-
fore executing

instanceof Return 0/1 if the top reference is (or
isn’t) the instance of a requested type

If the operand is a primitive array, pops the taint
tag before executing. Inserts the taint tag ”0” just
under the result.

invokespecial, invoke-
virtual, invokeinter-
face, invokestatic

Invoke a method, popping the argu-
ments from the stack and placing on
top the return value

If the callee is a primitive array, pops the taint tag
(all cases but invokestatic); Remaps the method
descriptor to include taint tags as necessary; If any
parameter is of type ”Object” but the type being
passed is a primitive array, box it into a container.
After return, if return was a container, then unbox
it

ldc, ldcw, ldc2 w Loads a constant onto the stack If loading a primitive type, load taint tag ”0” on
stack first

lookup/table switch Computed jump Pops the taint tag of the operand before executing
monitorenter Obtain lock on the ref. on stack If the ref. is a primitive array, pops the taint tag

before executing
monitorexit Release lock on the ref. on stack If the ref. is a primitive array, pops the taint tag

before executing
newarray Create a new 1D primitive array of a

given length
Remove the taint for the length of the array; Create
a 1D int array of same length to store taint tags
before executing.

pop, pop2 Removes the top 1 or 2 words from
the stack

If a word being popped is a primitive or primitive
array, also remove its taint tag

putfield, putstatic Stores a value to a field If the value being stored is a primitive or primitive
array, also store taint tag. If storing primitive array
to a field of type ”Object” then box it first

swap Swaps the top two words on the stack If either operand has a taint tag, then ensure that
the tags are swapped with the values

multianewarray Create (and possibly initializes) a
multidimensional array

Removes the taint tag of all operands. If element
type is primitive, then changes to a container type,
and initializes the last dimension if it would have
been otherwise

aconst null Loads the constant “null” onto the
stack

No modification necessary

athrow Pops an exception off of the top of
the stack and throws it

No modification necessary

d2f, d2i, d2l, f2d, f2i,
f2l, i2b, i2c, i2d, i2f,
i2l, i2s, l2d, l2f, l2i

Casts primitive types No modification necessary

dneg, fneg, ineg, lneg Negates a primitive type No modification necessary
goto, jsr, ret Unconditional jump No modification necessary
new Creates a new uninitialized object No modification necessary
return Returns “void” from a method No modification necessary
iinc Increments a local variable No modification necessary
wide Indicates that the next instruction ac-

cesses a local variable with an index
greater than 255

No modification necessary


