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File systems in Linux 

 Linux Second Extended File System (Ext2) 
 What is the EXT2 on-disk layout? 

 What is the EXT2 directory structure? 
 

 Linux Third Extended File System (Ext3) 
 What is the file system consistency problem? 

 How to solve the consistency problem using 
journaling? 

 

 Virtual File System (VFS) 
 What is VFS? 

 What are the key data structures of Linux VFS? 
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Ext2 

 “Standard” Linux File System 
 Was the most commonly used before ext3 came out 

 

 Uses FFS-like layout 
 Each FS is composed of identical block groups 
 Allocation is designed to improve locality 

 

 inodes contain pointers (32 bits) to blocks 
 Direct, Indirect, Double Indirect, Triple Indirect 
 Maximum file size: 4.1TB (4K Blocks) 
 Maximum file system size: 16TB (4K Blocks) 

 

 On-disk structures defined in include/linux/ext2_fs.h 
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 Files in the same directory are stored in the 
same block group 

 Files in different directories are spread 
among the block groups 

Picture from Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 

Ext2 Disk Layout 
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Block Addressing in Ext2 
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(a) A Linux directory with three files  

(b) After the file voluminous has been removed 

Ext2 Directory Structure 

Picture from Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 
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File systems in Linux 

 Linux Second Extended File System (Ext2) 
 What is the EXT2 on-disk layout? 

 What is the EXT2 directory structure? 
 

 Linux Third Extended File System (Ext3) 
 What is the file system consistency problem? 

 How to solve the consistency problem using 
journaling? 

 

 Virtual File System (VFS) 
 What is VFS? 

 What are the key data structures of Linux VFS? 
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The consistent update problem 

 Atomically update file system from one 
consistent state to another, which may require 
modifying several sectors, despite that the 
disk only provides atomic write of one sector 
at a time 
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Example: Ext2 File Creation 
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Read to In-memory Cache 
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Modify blocks 
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Crash? 

 Disk: atomically write one sector 
 Atomic: if crash, a sector is either completely 

written, or none of this sector is written 
 

 An FS operation may modify multiple sectors 

 Crash  FS partially updated 
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Possible Crash Scenarios 

 File creation dirties three blocks 
 inode bitmap (B) 
 inode for new file (I) 
 parent directory data block (D) 

 

 Old and new contents of the blocks 
 B = 01000    B’ = 01010 
 I = free       I’ = allocated, initialized 
 D = {}           D’ = {<f, 3>} 

 

 Crash scenarios: any subset can be written 
 B  I  D 
 B’  I  D 
 B  I’  D 
 B  I  D’ 
 B’  I’  D 
 B’  I  D’ 
 B  I’  D’ 
 B’ I’  D’ 
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One solution:  fsck 

 Upon reboot, scan entire disk to make FS 
consistent 
 

 Advantages 
 Simplify FS code 
 Can repair more than just crashed FS (e.g., bad sector) 

 

 Disadvantages 
 Slow to scan large disk 
 Cannot correctly fix all crashed disks (e.g., B’ I D’) 
 Not well-defined consistency 
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Another solution: Journaling 

 Write-ahead logging from database community 
 

 Persistently write intent to log (or journal), then 
update file system 

• Crash before intent is written == no-op 
• Crash after intent is written == redo op 

 
 Advantages 

• no need to scan entire disk 
• Well-defined consistency 
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Ext3 Journaling 

 Physical journaling: write real block contents of the 
update to log 
 Four totally ordered steps 

• Commit dirty blocks to journal as one transaction 
• Write commit record 
• Write dirty blocks to real file system 
• Reclaim the journal space for the transaction 

 

 Logical journaling: write logical record of the operation 
to log 
 “Add entry F to directory data block D” 
 Complex to implement 
 May be faster and save disk space 



16 

Step 1: write blocks to journal  
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Step 2: write commit record 
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Step 3: write dirty blocks to real FS 
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Step 4: reclaim journal space 
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Summary of Journaling write orders 

 Journal writes < FS writes 
 Otherwise, crash  FS broken, but no record in 

journal to patch it up 
 

 FS writes < Journal clear 
 Otherwise, crash  FS broken, but record in 

journal is already cleared 
 

 Journal writes < commit block < FS writes 
 Otherwise, crash  record appears committed, but 

contains garbage 
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Ext3 Journaling Modes 

 Journaling has cost 
 one write = two disk writes, two seeks 

 

 Several journaling modes balance consistency and 
performance 

 

 Data journaling: journal all writes, including file data 
 Problem: expensive to journal data 

 Metadata journaling: journal only metadata 
 Used by most FS (IBM JFS, SGI XFS, NTFS) 
 Problem: file may contain garbage data 

 Ordered mode: write file data to real FS first, then 
journal metadata 
 Default mode for ext3 
 Problem: old file may contain new data 
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File systems in Linux 

 Linux Second Extended File System (Ext2) 
 What is the EXT2 on-disk layout? 

 What is the EXT2 directory structure? 
 

 Linux Third Extended File System (Ext3) 
 What is the file system consistency problem? 

 How to solve the consistency problem using 
journaling? 

 

 Virtual File System (VFS) 
 What is VFS? 

 What are the key data structures of Linux VFS? 
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VFS 

 Old days: “the” file system 
 Nowadays: many file system types and 

instances co-exist 
 

 VFS: an FS abstraction layer that 
transparently and uniformly supports multiple 
file systems 
 A VFS specifies an interface 
 A specific FS implements this interface 

• Often a struct of function pointers 

 VFS dispatches FS operations through this 
interface 

• E.g.,  dir->inode_op->mkdir(); 
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Schematic View of Virtual File 
System 
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Key Linux VFS Data Structures 

 struct file 
 information about an open file 
 includes current position (file pointer) 

 struct dentry 
 information about a directory entry 
 includes name + inode# 

 struct inode 
 unique descriptor of a file or directory 
 contains permissions, timestamps, block map (data) 
 inode#: integer (unique per mounted filesystem) 
 Pointer to FS-specific inode structure 

• e.g. struct ext2_inode_info 

 struct superblock 
 descriptor of a mounted filesystem 


