
W4118: Linux file systems

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

1

File systems in Linux

 Linux Second Extended File System (Ext2)
 What is the EXT2 on-disk layout?

 What is the EXT2 directory structure?

 Linux Third Extended File System (Ext3)
 What is the file system consistency problem?

 How to solve the consistency problem using
journaling?

 Virtual File System (VFS)
 What is VFS?

 What are the key data structures of Linux VFS?

1

2

Ext2

 “Standard” Linux File System
 Was the most commonly used before ext3 came out

 Uses FFS-like layout
 Each FS is composed of identical block groups
 Allocation is designed to improve locality

 inodes contain pointers (32 bits) to blocks
 Direct, Indirect, Double Indirect, Triple Indirect
 Maximum file size: 4.1TB (4K Blocks)
 Maximum file system size: 16TB (4K Blocks)

 On-disk structures defined in include/linux/ext2_fs.h

3

 Files in the same directory are stored in the
same block group

 Files in different directories are spread
among the block groups

Picture from Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Ext2 Disk Layout

4

Block Addressing in Ext2

Inode

Indirect

 Blocks

Indirect

 Blocks

Indirect

 Blocks

Double

Indirect

Indirect

 Blocks

Indirect

 Blocks

Double

Indirect

Triple

Indirect

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

direct blocks

BLKSIZE/4

(BLKSIZE/4)2

(BLKSIZE/4)3

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

5

(a) A Linux directory with three files

(b) After the file voluminous has been removed

Ext2 Directory Structure

Picture from Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

6

File systems in Linux

 Linux Second Extended File System (Ext2)
 What is the EXT2 on-disk layout?

 What is the EXT2 directory structure?

 Linux Third Extended File System (Ext3)
 What is the file system consistency problem?

 How to solve the consistency problem using
journaling?

 Virtual File System (VFS)
 What is VFS?

 What are the key data structures of Linux VFS?

6

7

The consistent update problem

 Atomically update file system from one
consistent state to another, which may require
modifying several sectors, despite that the
disk only provides atomic write of one sector
at a time

7

8

Example: Ext2 File Creation

8

01000 01000 /

inode
bitmap

block
bitmap

inode blocks

Disk

Memory

9

Read to In-memory Cache

9

01000 01000 /

inode
bitmap

block
bitmap

inode data blocks

01000 /
. 1

.. 1

10

Modify blocks

10

01000 01000 /

inode
bitmap

block
bitmap

inode data blocks

01010 /

“Dirty” blocks,
 must write to disk

. 1

.. 1

f 3

11

Crash?

 Disk: atomically write one sector
 Atomic: if crash, a sector is either completely

written, or none of this sector is written

 An FS operation may modify multiple sectors

 Crash  FS partially updated

11

12

Possible Crash Scenarios

 File creation dirties three blocks
 inode bitmap (B)
 inode for new file (I)
 parent directory data block (D)

 Old and new contents of the blocks
 B = 01000 B’ = 01010
 I = free I’ = allocated, initialized
 D = {} D’ = {<f, 3>}

 Crash scenarios: any subset can be written
 B I D
 B’ I D
 B I’ D
 B I D’
 B’ I’ D
 B’ I D’
 B I’ D’
 B’ I’ D’

12

13

One solution: fsck

 Upon reboot, scan entire disk to make FS
consistent

 Advantages
 Simplify FS code
 Can repair more than just crashed FS (e.g., bad sector)

 Disadvantages
 Slow to scan large disk
 Cannot correctly fix all crashed disks (e.g., B’ I D’)
 Not well-defined consistency

13

Another solution: Journaling

 Write-ahead logging from database community

 Persistently write intent to log (or journal), then
update file system

• Crash before intent is written == no-op
• Crash after intent is written == redo op

 Advantages

• no need to scan entire disk
• Well-defined consistency

14

15

Ext3 Journaling

 Physical journaling: write real block contents of the
update to log
 Four totally ordered steps

• Commit dirty blocks to journal as one transaction
• Write commit record
• Write dirty blocks to real file system
• Reclaim the journal space for the transaction

 Logical journaling: write logical record of the operation
to log
 “Add entry F to directory data block D”
 Complex to implement
 May be faster and save disk space

16

Step 1: write blocks to journal

 16

01000 01000 /

/

“Dirty” blocks,
 must write to disk

journal

01010

. 1

.. 1

f 3

01010

17

Step 2: write commit record

 17

01000 01000 /

/

“Dirty” blocks,
 must write to disk

journal

01010

. 1

.. 1

f 3

01010 commit

18

Step 3: write dirty blocks to real FS

 18

01000 01000 /

/

“Dirty” blocks,
 must write to disk

journal

01010

. 1

.. 1

f 3

01010

commit 01010

19

Step 4: reclaim journal space

 19

01000 01000 /

/

“Dirty” blocks,
 must write to disk

journal

01010

. 1

.. 1

f 3

01010

commit 01010

20

Summary of Journaling write orders

 Journal writes < FS writes
 Otherwise, crash  FS broken, but no record in

journal to patch it up

 FS writes < Journal clear
 Otherwise, crash  FS broken, but record in

journal is already cleared

 Journal writes < commit block < FS writes
 Otherwise, crash  record appears committed, but

contains garbage

21

Ext3 Journaling Modes

 Journaling has cost
 one write = two disk writes, two seeks

 Several journaling modes balance consistency and
performance

 Data journaling: journal all writes, including file data
 Problem: expensive to journal data

 Metadata journaling: journal only metadata
 Used by most FS (IBM JFS, SGI XFS, NTFS)
 Problem: file may contain garbage data

 Ordered mode: write file data to real FS first, then
journal metadata
 Default mode for ext3
 Problem: old file may contain new data

22

File systems in Linux

 Linux Second Extended File System (Ext2)
 What is the EXT2 on-disk layout?

 What is the EXT2 directory structure?

 Linux Third Extended File System (Ext3)
 What is the file system consistency problem?

 How to solve the consistency problem using
journaling?

 Virtual File System (VFS)
 What is VFS?

 What are the key data structures of Linux VFS?

22

23

VFS

 Old days: “the” file system
 Nowadays: many file system types and

instances co-exist

 VFS: an FS abstraction layer that
transparently and uniformly supports multiple
file systems
 A VFS specifies an interface
 A specific FS implements this interface

• Often a struct of function pointers

 VFS dispatches FS operations through this
interface

• E.g., dir->inode_op->mkdir();

24

Schematic View of Virtual File
System

25

Key Linux VFS Data Structures

 struct file
 information about an open file
 includes current position (file pointer)

 struct dentry
 information about a directory entry
 includes name + inode#

 struct inode
 unique descriptor of a file or directory
 contains permissions, timestamps, block map (data)
 inode#: integer (unique per mounted filesystem)
 Pointer to FS-specific inode structure

• e.g. struct ext2_inode_info

 struct superblock
 descriptor of a mounted filesystem

