W4118: RAID

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

RAID motivation

- Performance
 - Disks are slow compared to CPU
 - Disk speed improves slowly compared to CPU
- Reliability
 - In single disk systems, one disk failure → data loss
- Cost
 - A single fast, reliable disk is expensive

RAID idea

- RAID idea: use redundancy to improve performance and reliability
 - Redundant array of cheap disks as one storage unit
 - Fast: simultaneous read and write disks in the array
 - Reliable: use parity to detect and correct errors
- RAID can have different redundancy levels, achieving different performance and reliability
 - Seven different RAID levels (0-6)

Evaluating RAID

- Cost: check disk capacity / total capacity
 - Storage utilization: data capacity / total capacity
- Reliability
 - Tolerance of disk failures
- Performance
 - (Large) sequential read, write, read-modify-write
 - (Small) random read, write, read-modify-write
 - Speedup over a single disk

Computing cost

D = number of data disks in a RAID group
C = number of check disks in a RAID group

 $\Box Cost = C/(D+C)$

Computing reliability

- N = total number of disks
- D = number of data disks in a RAID group
- C = number of check/parity disks in a RAID group
- MTTF(disk) = mean time to failure for a disk
 - Estimated as MTTF (in years) = 1 / AFR (annual failure rate)
 - Ex) 114 years (1M hours) = 1 / 0.88%
 - Source: "Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you?", FAST'07
- □ MTTR = mean time to repair for a failed disk
- MTTF(group) = mean time to two failed disks before first gets repaired in one group
- MTTF(raid) = mean time to failure over entire array
- MTTF(raid) = MTTF(group) / Num. groups

Computing reliability (cont'd)

- Assume single-error tolerance in one group
 - If another error comes before repair, group fails
- MTTF(group) = MTTF(1 disk) / Prob[Another failure within MTTR]
 - If Prob[...] ≈ 1, MTTF(group) same as MTTF(1 disk) no benefit of RAID
 - If Prob[...] ≈ 0, MTTF(group) approaches ∞.
- MTTF(1 disk) = MTTF(disk)/(D+C)
- MTTF(another disk) = MTTF(disk)/(D+C-1)
- Prob[Another failure within MTTR] = MTTR/(MTTF(disk)/(D+C-1))
- MTTF(group) = MTTF(1 disk)/Prob[Another failure within MTTR] = (MTTF(disk))2/((D+C)*(D+C-1)*MTTR)
- □ Num groups G = N / (D+C)
- MTTF(raid) = MTTF(group) / G = MTTF(group) / (N/(D+C))
- □ Thus: MTTF(raid) = (MTTF(disk))2 / (N * (D+C-1) * MTTR)
- But: are the assumptions valid?

RAID 0: non-redundant striping

- Structure
 - Data striped across all disks in an array
 - No parity
- Advantages:
 - Good performance: with N disks, roughly N times speedup
- Disadvantages:
 - Poor reliability: one disk failure → data loss
 - MTTF(raid)=MTTF(disk)/N

RAID 0 performance

- □ Large read of 100 blocks.
 - One disk: 100 * t,
 - Raid0: 100/N * t * 5
 - S: slowdown. Need to wait for slowest disk to complete before return.
- Performance:
 - Large read: N/S
 - Large write: N/S
 - Large R-M-W: N/S
 - Small read: N
 - Small write: N
 - Small R-M-W: N

RAID 1: mirroring

- Structure
 - Keep a *mirrored* (shadow) copy of data
- Advantages
 - Good reliability: one disk failure OK
 - Good read performance
- Disadvantage
 - High cost: one data disk requires one parity disk

RAID 1 performance

MTTF(raid) = MTTF(disk)2/(N*MTTR)

Performance

- Large read: N/S
- Large write: N/25
- Large R-M-W: 2N/35
 - X sectors, 2X events (X reads, X writes)
 - Speedup (w.r.t. to 1 disk) = 2X / (X/(N/S) + X/(N/2S)) = 2N/3S
- Small read: N (no S here since only two disks)
- Small write: N/2
- Small R-M-W: 2N/3

RAID 2: error-correction parity

□ Structure

- A data sector striped across data disks
- Compute error-correcting parity and store in parity disks
- Advantages
 - Good reliability with higher storage utilization than mirroring
- Disadvantages
 - Unnecessary cost: disk can already detect failure
 - Poor random performance

RAID 3: bit-interleaved parity

- Structure
 - Single parity disk (XOR of each stripe of a data sector)
- Advantages
 - Same reliability with one disk failure as RAID2 since disk controller can determine what disk fails
 - Higher storage utilization
- Disadvantages
 - Poor random performance

RAID 4: block-interleaved parity

- Structure
 - A set of data sectors (*parity group*) striped across data disks
- Advantages
 - Same reliability as RAID3
 - Good random read performance
- Disadvantages
 - Poor random write and read-modify-write performance

RAID 4 performance

- One parity disk (XOR of data sectors)
 - Write data disk + parity disk
 - To update parity, don't have to read all disk sectors
 - Parity = oldParity xor (changed bits) = oldParity xor newData xor oldData
- □ Number of groups: G = N/(D+1) = number of check disks
- Performance
 - Large read: (N-G)/S
 - Large write: (N-G)/S
 - Large R-M-W: (N-G)/S
 - Small read: N-G
 - Small write: $\frac{1}{2}$ *G (for each block, need a read and a write to parity disk)
 - RAID: X sectors. $X/((X/1) + (X/1)) = \frac{1}{2}$
 - Small R-M-W: 1*G
 - RAID: X sectors. 2X/((X/1) + (X/1)) = 1

RAID 5: block-interleaved distributed parity

- Structure
 - Parity sectors distributed across all disks
- Advantages
 - Good performance

RAID 5 performance

- Same as RAID4 except no single parity disk
 - Good small write and read-modify-write performance
- Performance
 - Large read: (N-G)/S
 - Large write: (N-G)/S
 - Large R-M-W: (N-G)/S
 - Small read: N
 - Small write: N/4
 - One disk: X sectors * t.
 - Raid 5: (X (read original) + X (read parity) + X (write original) + X (write parity)) / N * t
 - Raid5 can do 4X over all N disks
 - Small R-M-W: N/2
 - Same as small write, except read-original is not wasted.

RAID6: P+Q redundancy

- Structure
 - Same as RAID 5 except using two parity sectors per parity group
- Advantages
 - Can tolerate two disk failures

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.