
W4118: disks 

Instructor: Junfeng Yang 

References: Modern Operating Systems (3rd edition), Operating Systems 
Concepts (8th edition),  previous W4118, and OS at MIT, Stanford, and UWisc 



Outline 

 Disk characteristics 
 

 Disk scheduling 

 

 Flash/SSDs 



Disk structure 



Disk interface 

 From FS perspective: disk is addressed as a 
one dimension array of logical sectors 

 

 Disk controller maps logical sector to physical 
sector identified by surface #, track #, and 
sector # 

0 1 

2 

3 

5 
6 

7 

11 

9 

4 8 

10 12 
13 

14 

15 
16 

17 

18 

19 
20 

21 
22 

23 



Disk latencies 

 Rotational delay: rotate disk to get to the 
right sector 

 

 Seek time: move disk arm to get to the 
right track  

 

 Transfer time: get bits off the disk 
 

4 



 Full rotation time: e.g., 4-8ms 

 Average rotational delay: half of full rotation 
time 

 

Rotational delay 

5 

0 1 

2 

3 

5 
6 

7 

11 

9 

4 8 

10 12 
13 

14 

15 
16 

17 

18 

19 
20 

21 
22 

23 



 Must move arm to the right track 

 Can take a while (e.g., 0.5 – 2ms) 

 

Seek time 

6 

0 1 

2 

3 

5 
6 

7 

11 

9 

4 8 

10 12 
13 

14 

15 
16 

17 

18 

19 
20 

21 
22 

23 



 Transfer bits out of disk 

 Actually pretty fast (e.g., 125MB/s) 

Transfer time 

7 

0 1 

2 

3 

5 
6 

7 

11 

9 

4 8 

10 12 
13 

14 

15 
16 

17 

18 

19 
20 

21 
22 

23 



I/O time (T) and rate (R) 

 T = Rotational delay + seek time + txfer time 
 

 R =  Size of transfer / T 

 

 Workload 1: large sequential accesses? 

 

 Workload 2: small random accesses? 

 

 

 

 

8 



Example Barracuda Cheetah 15K.5 

Capacity 1TB 300GB 

Rotational speed 7200 RPM 15000 RPM 

Rotational latency (ms) 4.2 2.0 

Avg seek (ms) 9 4 

Max Transfer 105 MB/s 125 MB/s 

Platters 4 4 

Connects via SATA SCSI 

 Random 4KB read 
 Barracuda:  T = 13.2ms, R = 0.31MB/s 

 Cheetah:   T = 6ms, R = 0.66MB/s 

 Sequential 100 MB read 
 Barracuda: T = 950ms, R = 105 MB/s 

 Cheetah: T = 800ms, R = 125 MB/s 



Design tip: use disks sequentially 

 Disk performance differs by a factor of 200 
or 300 for random vs sequential accesses 

 

 When possible, access disks sequentially 

10 



Mapping of logical sectors to physical 

 Logical sector 0: the first sector of the first 
(outermost) track of the first surface 

 Logical sector address incremented within 
track, then tracks within cylinder, then across 
cylinders, from outermost to innermost 

 Track skew 0 1 

2 

3 

5 
6 

7 

11 

9 

4 8 

10 12 
13 

14 

15 
16 

17 

18 

19 
20 

21 
22 

23 



Pros and cons of default mapping 

 Pros 
 Simple to program 

 Default mapping reduces seek time for sequential 
access 

 

 Cons 
 FS can’t precisely see mapping 

 Reverse-engineer mapping in OS is difficult 
• # of sectors per track changes 

• Disk silently remaps bad sectors 



Disk cache 

 Internal memory (8MB-32MB) used as cache 
 

 Read-ahead: “track buffer” 
 Read contents of entire track into memory during 

rotational delay 
 

 Write caching with volatile memory 
 Write back or immediate reporting: claim written to disk 

when not 
• Faster, but data could be lost on power failure 

 Write through: ack after data written to platter 

13 



Disk technology trends 

 Data  more dense 
 More bits per square inch 
 Disk head closer to surface 
 Create smaller disk with same capacity 

 

 Disk geometry  smaller  
 Spin faster  Increase b/w, reduce rotational delay 
 Faster seek 
 Lighter weight 

 

 Disk price  cheaper 
 

 Density improving more than speed (mechanical 
limitations) 

14 



Outline 

 Disk characteristics 
 

 Disk scheduling 

 

 Flash/SSDs 



Disk scheduling 

 Goal: minimize positioning time 
 Performed by both OS and disk itself 
 Why? 

 

 Schedule requests in order received (FCFS) 
 Advantage: fair 
 Disadvantage: high seek cost and rotation 

 

 Shortest seek time first (SSTF):  
 Handle nearest cylinder next 
 Advantage: reduces arm movement (seek time) 
 Disadvantage: unfair, can starve some requests 

16 



 Disk arm sweeps across disk 

 If request comes for a block already serviced 
in this sweep, queue it for next sweep 

Elevator (aka SCAN or C-SCAN) 

17 

0 1 

2 

3 

5 
6 

7 

11 

9 

4 8 

10 12 
13 

14 

15 
16 

17 

18 

19 
20 

21 
22 

23 



Modern disk scheduling issues 

 Elevator (or SSTF) ignores rotation! 

 Shortest positioning time first (SPTF) 

 OS + disk work together to implement 

 

18 

0 1 

2 

3 

5 
6 

7 

11 

9 

4 8 

10 12 
13 

14 

15 
16 

17 

18 

19 
20 

21 
22 

23 



Outline 

 Disk characteristics 
 

 Disk scheduling 

 

 Flash/SSDs 



Flash and SSDs 

 Solid state storage 
 Use silicon transistors to store data rather than spinning 

magnetic platters 
 Fundamentally different characteristics than disks 
 Increasing popularity in mobile devices, large server farms 

 Pros 
 No moving parts - robust to mechanical failure 
 No mechanical limitations: high throughput, random access 
 Less energy use, less heat 
 High density 

 Cons 
 Expensive 
 Unfavorable reliability characteristics over time (bit rot) 
 Limitations on read-modify-write cycles 
 Complex to use 



Basic Idea 
 Use silicon devices based on MOSFETs 

 Metal Oxide Field Effect Transistor 

 Also used in DRAM 

 Each cell contains a single MOSFET with an 
additional “floating gate” 

 

 

 

 

 

Image source: 

wikipedia 



NAND Flash Programming Model 

• Can read data in page level units. Fast: 10 us. 
• Can program data in page level units. Fast: 10-100 us 
• Can only erase entire block. Slow 1-10 msec 



Reliability Characteristics 

 The process of reading/writing from a cell impacts 
it ability to retain data 

 P/E Cycles 
 High voltage, charge moves into/out of floating gate 

 Some charge gets stuck in oxide layer 

 Over time, cell gets “stuck” and cant be programmed 

 Read/write disturb 
 Occurs because multiple cells are connected in series 

 Read/program voltages on a cell can cause leakage in 
other cells, causing their values to “flip” 

 Can result in “bitrot” 



Flash Reliability 

 BER: bit error rate 

 RBER: raw bit error rate (can be reduced through error checking 
codes) 

 UBER: uncorrected bit error rate  

 P/E cycles: number of program/erase cycles a cell is subjected to 

 Typical SLC 100k P/E cycles, MLC < 10k P/E cycles for HDD-like error 
rates 

 

Figure is for 
illustrative 

purposes only 



Implications of Flash Storage 

 Block level erase 
 Erasing takes more time than reading/writing 

 Can only do block at a time 

 Wear leveling 
 Cell reliability degrades with P/E cycles 

 Distribute P/E cycles equally between cells 

 Random access 
 No concept of seeks 

 No need for scheduling 



Who deals with Flash quirks? 

 OS Filesystem 
 Log structured handles block level erase 
 Implement wear leveling through log cleaning 
 E.g., Linux JFFS/JFFS2, YAFFS (2002) for NAND flash, 

Android YAFFS2, Samsung F2FS (2012) 
 

 On disk controller 
 Block level erase handled through FTL (flash translation 

layer) 
 FTL maps logical block (LBA) to physical block 
 Modify cycle allocates new phy block and changes FTL 

mapping 
 Garbage collection pass erases partially used blocks 
 More common for high end SSD drives 
 Normal block device interface exported to OS 



TRIM 

 To garbage-collect a block, must read live pages and 
write somewhere else 

 

 What if the “live” pages are actually not used by FS? 
 FS creates then deletes a large file 
 Disk controller does not the blocks of the file are not used 
 Eventually, SSD controller thinks whole disk is full, and every 

write needs a corresponding cleaning operation 
 Excessive overhead 

 

 TRIM command 
 OS informs SSD that a particular block not being used 
 Relatively recent (e.g., OS X supports since 2011) 
 Still fairly expensive (hundreds of msec) 
 Active debate on how OS should use 



Write Amplification 

 Write amplification = Data written to 
flash/Data written by OS 

 Factors that impact write amplification 
 Garbage collection (increases WA during cleaning) 

 Over-provisioning (less cleaning, decrease WA) 

 TRIM (less cleaning, decrease WA) 

 Free user space (less cleaning, decrease WA) 

 Wear leveling (more rewrites, increase WA) 

 Separating static and dynamic data (decrease WA) 

 Sequential writes (low WA) 

 Random writes (more cleaning, more WA) 



Backup Slides 

 

29 



New mass storage technologies 

 New memory-based mass storage technologies 
avoid seek time and rotational delay 
 NAND Flash 

 Battery-backed DRAM (NVRAM) 
 

 Disadvantages 
 Price: more expensive than same capacity disk 

 Reliability: more likely to lose data 
 

 Open research question: how to effectively 
use flash in commercial storage systems 

30 



Basic Idea 
 Use silicon devices based on MOSFETs 

 Metal Oxide Field Effect Transistor 

 Also used in DRAM 

 Each cell contains a single MOSFET with an 
additional “floating gate” 

 

 

 

 

 

Image source: 

wikipedia 



Programming a Flash Cell 

• Two basic operations: erase (reset) and program 
• Erase clears charge on floating gate. Allows channel 

to conduct, setting bit to “1” 
• Program forces charge onto floating gate (via 

tunneling/hot electron injection), blocking the 
channel, and setting bit to “0” 

32 
http://www.electroiq.com/articles/sst/2011/05/solid-state-drives.html 



• Two basic types 

• Differ in how cells are connected and accessed 

• NOR: bit level addressability, lower density, expensive 

• NAND: “block” level addressability, higher density, 
cheap 

 

 

 

 
 

 

 

 

 

 

 

• NAND Flash 

• All flash cells in a “row” accessed through the one 
sense line 

• No bit addressability read out a page at a time 

 

NAND Flash 

Image source: wikipedia 



NAND Flash Structure 

Source: 
http://www.electroiq.com/articles/sst/2011/05/solid-

state-drives.html 



FTL Layer 

Block 0 

Pages Pages Pages Pages 

0 

1 

2 

3 

4 

0->B0,P0 

… 

3->B0,P3 

4->B1,P0 

0’->B1,P1 

0’ 

FTL Tables (RAM) 

FTL Layer (SSD Controller) 

Perform logical->physical remapping using FTL table 

OS block device scheduler 

Read(logical sector) Write/overwrite(logical sector) 

Read(page) Write(new page) Clean block 

Block 1 



Wear Leveling 

 No wear leveling 

 Dynamic wear leveling 
 Always write to new page 

 Garbage collect old blocks (compare to LFS) 

 Infrequently changing blocks left untouched 

 Static wear leveling 
 Similar to dynamic wear leveling, but 

 Also periodically move unmodified blocks 

 More overhead, but better leveling 


