
W4118: Linux memory management

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Page tables are nice, but …

 Page tables implement one feature: mapping
vitual pages to physical pages

 Wanted: other memory management features
 Demand paging

 Memory map of file (e.g, mmap)

 Copy-on-write (COW)

 Page reclaiming

 Need additional mechanisms

1

Mechanisms for demand paging

 Demand paging allocates physical pages only
when the corresponding virtual pages are
accessed  Must track what logical pages
have been allocated for each process

 Possible to implement with page tables, but
want more: don’t allocate page table entries if
virtual pages are not accessed

 Insight: address spaces are often sparse

2

Virtual Memory Areas (vma)

Reference:
http://www.makelinux.net/books/ulk3/understandlk
-CHP-9-SECT-3

Access to memory map is protected by mmap_sem read/write semaphore

mm_struct

vm_area_struct

Types of VMA Mappings
 File/device backed mappings (mmap):

 Code pages (binaries), libraries

 Data files

 Shared memory

 Devices

 Anonymous mappings:
 Stack

 Heap

 CoW pages

Virtual Memory Areas

http://duartes.org/gustavo/bl
og/post/how-the-kernel-
manages-your-memory

Anatomy of a VMA

 Pointer to start and end of region in address
space (virtual addresses)

 Data structures to index vmas efficiently
 Page protection bits
 VMA protection bits/flags (superset of page

bits)
 Reverse mapping data structures
 Which file this vma loaded from?
 Pointers to functions that implement vma

operations
 E.g., page fault, open, close, etc.

struct vm_area_struct
struct vm_area_struct {
 struct mm_struct * vm_mm; /* The address space we belong to. */
 unsigned long vm_start; /* Our start address within vm_mm.
*/
 unsigned long vm_end;
 struct vm_area_struct *vm_next;
 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
 unsigned long vm_flags; /* Flags, see mm.h. */
 struct rb_node vm_rb;
 struct raw_prio_tree_node prio_tree_node;
 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
 struct vm_operations_struct * vm_ops;
 unsigned long vm_pgoff;
 struct file * vm_file; /* File we map to (can be NULL). */
 void * vm_private_data; /* was vm_pte (shared mem) */
};

VMA Addition and Removal

 Occurs whenever
a new file is
mmaped, a new
shared memory
segment is
created, or a
new section is
created (e.g.,
library, code,
heap, stack)

 Kernel tries to
merge with
adjacent
sections

VMA Search

 VMA is very frequently accessed structure
 Must often map virtual address to vma (whenever we

have a fault, mmap, etc)

 Need efficient lookup

 Two Indexes for different uses
 Linear linked list

• Allows efficient traversal of entire address space

• vma->vm_next

 Red-black tree of vmas
• Allows efficient search based on virtual address

• vma->vm_rb

Efficient Search of VMAs

 Red-black trees allow O(lg n) search of vma
based on virtual address

 Indexed by vm_end ending address

 mmap_cache points to the VMA just accessed

task->mm->mmap_cache vm_end=300

vm_end=150

vm_end=100
vm_end=400

vm-end=490
vm_end=30

Mechanisms for mmap

 File or device backed physical pages are
stored in page cache

 These pages may be accessed in two ways
 Direct memory reference: e.g., *p = …

 File operations: e.g., write(fd, …)

 Must map file descriptor and file offset to
physical page and offset within page
 Data structure is conceptually similar to page table

 But there’s no page table for files!

 Also, file can be small or very, very large

11

Radix Tree

Unified abstraction: address space

 Each file has an address space: 0 … file size

 Each block device (e.g., disk) that caches data
in memory: 0 … device size

 Each process: 0 … 4GB (x86)

 struct address_space

13

Mechanisms for COW

 COW abuses page protection bits in page
tables  Must track original page protection
of each page for each process
 Easy: store original permissions and COW-or-not

info in VMAs

 COW shares pages  Must track page
reference count for each physical page
 Can’t use VMAs

14

Descriptor for each physical page
• Each physical page has a page descriptor associated with it

• Contains reference count for the page

• Contains a pointer to the reverse map (struct address space or
struct anon_vma)

• Contains pointers to lru lists (to evict the page)

• Easy conversation between physical page address to descriptor
index

struct page {
 unsigned long flags;
 atomic_t _count;
 atomic_t _mapcount;
 struct address_space *mapping;
 pgoff_t index;
 struct list_head lru;
};

Mechanisms for Physical Page Reclaiming

 Physical pages can be shared
 File/device backed pages

 COW pages

 To replace a physical page, must find all
mappings of the page and invalidate them 
reverse mappings
 Field _mapcount: number of active mappings

 Field mapping: address_space (file/device backed)
or anon_vma (anonymous)

• Least Significant Bit encodes the type (1 ==
anon_vma)

16

Reverse mapping for anonymous pages

 Idea: maintain one reverse mapping per vma
(logical object) rather than one reverse
mapping per page

 Based on observation most pages in VMA have
the same set of mappers

 anon_vma contains VMAs that may map a page
 Kernel needs to search for actual PTE at runtime

17

Anonymous rmaps: anon_vma

Reverse Mapping for File/Device-
backed Pages

 Problem: anon_vma idea is good for limited sharing
 Memory maps can be shared by large numbers of

processes, e.g., libc

 Linear search for every eviction is slow

 Also, different processes may map different ranges of a
memory map into their address space

 Need efficient data structure
 Basic operation: given an offset in an object (such as a

file), or a range of offsets, return vmas that map that
range

i_mmap Priority Tree
Part of struct address_space in fs.h

radix: start of interval
heap: start + size

Types of Pages

 Unreclaimable: pages locked in memory
(PG_locked)

 Swappable: anonymous pages

 Syncable: file/device backed pages, synchronize
with original file they were loaded from (dirty)

 Discardable: unused pages in memory caches, non-
dirty pages in page cache (clean)

Algorithm for Page Reclaiming

 Identify pages to evict using approximate LRU
 All pages are on one of 2 LRU lists: active or

inactive

 A page access causes it to be switched to the active
list (detect access via e.g., mmap(), page table bits)

 A page that hasn’t been accessed in a while moves
to the inactive list

 Unmap all mappers of shared using reverse
map (try_to_unmap function)

22

Backup Slides

23

Linux Memory Subsystem Outline

 Memory data structures

 Virtual Memory Areas (VMA)

 Page Mappings and Page Fault Management

 Reverse Mappings

 Page Cache and Swapping

 Physical Page Management

Linux MM Objects Glossary

 struct mm: memory descriptor (mm_types.h)
 struct vm_area_struct mmap: vma (mm_types.h)

 struct page: page descriptor (mm_types.h)

 pgd, pud, pmd, pte: pgtable entries (arch/x86/include/asm/page.h,
page_32.h, pgtable.h, pgtable_32.h)
 pgd: page global directory
 pud page upper directory
 pmd: page middle directory
 pte: page table entry

 struct anon_vma: anon vma reverse map (rmap.h)
 struct prio_tree_root i_mmap: priority tree reverse map (fs.h)

 struct radix_tree_root page_tree: page cache radix tree (fs.h)

The mm_struct Structure

 Main memory descriptor
 One per address space

 Each task_struct has a pointer to one

 May be shared between tasks (e.g., threads)

 Contains two main substructures
 Memory map of virtual memory areas (vma)

 Pointer to arch specific page tables

 Other data, e.g., locks, reference counts, accounting
information

struct mm_struct
struct mm_struct {
 struct vm_area_struct * mmap; /* list of VMAs */
 struct rb_root mm_rb;
 struct vm_area_struct * mmap_cache; /* last find_vma result */
 unsigned long mmap_base; /* base of mmap area */
 unsigned long task_size; /* size of task vm space */
 pgd_t * pgd;
 atomic_t mm_users; /* How many users with user space? */
 atomic_t mm_count; /* How many references to "struct
mm_struct */
 int map_count; /* number of VMAs */
 struct rw_semaphore mmap_sem;
 spinlock_t page_table_lock; /* Protects page tables and some
counters */
 unsigned long hiwater_rss; /* High-watermark of RSS usage */
 unsigned long hiwater_vm; /* High-water virtual memory usage */
 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
 cpumask_t cpu_vm_mask;
 unsigned long flags; /* Must use atomic bitops to access the bits */
};

struct vm_operations_struct

struct vm_operations_struct {
 void (*open)(struct vm_area_struct * area);
 void (*close)(struct vm_area_struct * area);
 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);

 /* notification that a previously read-only page is about to become
 * writable, if an error is returned it will cause a SIGBUS */
 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);

 /* called by access_process_vm when get_user_pages() fails, typically
 * for use by special VMAs that can switch between memory and
hardware
 */
 int (*access)(struct vm_area_struct *vma, unsigned long addr,
 void *buf, int len, int write);
};

Demand Fetching via Page Faults

http://duartes.org/gustavo/blog/post/how-the-kernel-
manages-your-memory

Fault Handling

 Entry point: handle_pte_fault (mm/memory.c)

 Identify which VMA faulting address falls in

 Identify if VMA has registered a fault
handler

 Default fault handlers
 do_anonymous_page: no page and no file

 do_linear_fault: vm_ops registered?

 do_swap_page: page backed by swap

 do_nonlinear_fault: page backed by file

 do_wp_page: write protected page (CoW)

The Page Fault Handler

Complex logic:
easier to read
code than read a
book!

Copy on Write

 PTE entry is marked as un-writeable

 But VMA is marked as writeable

 Page fault handler notices difference
 Must mean CoW

 Make a duplicate of physical page

 Update PTEs, flush TLB entry

 do_wp_page

Which page to map when no PTE?
 If PTE doesn’t exist for an anonymous mapping, its easy

 Map standard zero page

 Allocate new page (depending on read/write)

 What if mapping is a memory map? Or shared memory?
 Need some additional data structures to map logical object to

set of pages

 Independent of memory map of individual task

 The address_space structure
 One per file, device, shared memory segment, etc.

 Mapping between logical offset in object to page in memory

 Pages in memory are called “page cache”

 Files can be large: need efficient data structure

Page Table Structure

Working with Page Tables

 Access page table through mm_struct->pg_d
 Must to a recursive walk, pgd, pud, pmd, pte

 Kernel includes code to assist walking
 mm/pagewalk.c: walk_page_range
 Can specific your own function to execute for each

entry

 Working with PTE entries
 Lots of macros provided (asm/pgtable.h, page.h)
 Set/get entries, set/get various bits
 E.g., pte_mkyoung(pte_t): clear accessed bit,

pte_wrprotect(pte_t): clear write bit
 Must also flush TLB whenever entries are changed

• include/asm-generic/tkb.h: tlb_remove_tlb_entry(tlb)

Reverse Mappings

 Problem: how to swap out a shared mapping?
 Many PTEs may point to it
 But, we know only identity of physical page

• Could maintain reverse PTE
• i.e., for every page, list of PTEs that point to it
• Could get large. Very inefficient.

 Solution: reverse maps
 Anonymous reverse maps: anon_vma
 Idea: maintain one reverse mapping per vma (logical object)

rather than one reverse mapping per page
 Based on observation most pages in VMA or other logical

object (e.g., file) have the same set of mappers
 rmap contains VMAs that may map a page
 Kernel needs to search for actual PTE at runtime

anon_vma in Action

Reference: Virtual Memory II: the return of objrmap.

http://lwn.net/Articles/75198/

anon_vma in Action

Reference: Virtual Memory II: the return of objrmap

http://lwn.net/Articles/75198/

When is PFRA Invoked?

Invoked on three different
occasions:
 Kernel detects low on memory

condition
• E.g., during alloc_pages

 Periodic reclaiming
• kernel thread kswapd

 Hibernation reclaiming
• for suspend-to-disk

Page Frame Reclaiming Algorithm

The Swap Area Descriptor

The Swap Cache

 Goal: prevent race conditions due to concurrent
page-in and page-out

 Solution: page-in and page-out serialized through
a single entity: swap cache

 Page to be swapped out simply moved to cache

 Process must check if swap cache has a page
when it wants to swap in
 If the page is there in the cache already: minor page

fault

 If page requires disk activity: major page fault

The Swap Cache

Page Allocation

 Buddy Allocator

 SLOB: simple list of blocks

 SLAB allocator: data structure specific

 SLUB: efficient SLAB

Allocating a Physical Page

 Physical memory is divided into “zones”
 ZONE_DMA: low order memory (<16MB) certain older devices

can only access so much

 ZONE_NORMAL: normal kernel memory mapping into the
kernel’s address space

 ZONE_HIGHMEM: high memory not mapped by kernel.
Identified through (struct page *). Must create temporary
mapping to access

 To allocate, use kmalloc or related set of functions.
Specify zone and options in mask
 kmalloc, __get_free_pages, __get_free_page,

get_zeroed_page: return virtual address (must be mapped)

 alloc_pages, alloc_page: return struct page *

