
W4118: Linux memory management 

Instructor: Junfeng Yang 

References: Modern Operating Systems (3rd edition), Operating Systems 
Concepts (8th edition),  previous W4118, and OS at MIT, Stanford, and UWisc 



Page tables are nice, but … 

 Page tables implement one feature: mapping 
vitual pages to physical pages 

 

 Wanted: other memory management features 
 Demand paging 

 Memory map of file (e.g, mmap) 

 Copy-on-write (COW) 

 Page reclaiming 
 

 Need additional mechanisms 
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Mechanisms for demand paging 

 Demand paging allocates physical pages only 
when the corresponding virtual pages are 
accessed  Must track what logical pages 
have been allocated for each process 

 

 Possible to implement with page tables, but 
want more: don’t allocate page table entries if 
virtual pages are not accessed 

 

 Insight: address spaces are often sparse 
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Virtual Memory Areas (vma) 

Reference: 
http://www.makelinux.net/books/ulk3/understandlk
-CHP-9-SECT-3 

Access to memory map is protected by mmap_sem read/write semaphore  

mm_struct 

vm_area_struct 



Types of VMA Mappings 
 File/device backed mappings (mmap): 

 Code pages (binaries), libraries 

 Data files 

 Shared memory 

 Devices 
 

 Anonymous mappings: 
 Stack 

 Heap 

 CoW pages 
 



Virtual Memory Areas 

http://duartes.org/gustavo/bl
og/post/how-the-kernel-
manages-your-memory 



Anatomy of a VMA 

 Pointer to start and end of region in address 
space (virtual addresses) 

 Data structures to index vmas efficiently 
 Page protection bits 
 VMA protection bits/flags (superset of page 

bits) 
 Reverse mapping data structures 
 Which file this vma loaded from? 
 Pointers to functions that implement vma 

operations 
 E.g., page fault, open, close, etc. 

 
 
 
 



struct vm_area_struct 
struct vm_area_struct { 
 struct mm_struct * vm_mm; /* The address space we belong to. */ 
 unsigned long vm_start;  /* Our start address within vm_mm. 
*/ 
 unsigned long vm_end;   
 struct vm_area_struct *vm_next; 
 pgprot_t vm_page_prot;  /* Access permissions of this VMA. */ 
 unsigned long vm_flags;  /* Flags, see mm.h. */ 
 struct rb_node vm_rb; 
 struct raw_prio_tree_node prio_tree_node; 
 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 
 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 
 struct vm_operations_struct * vm_ops; 
 unsigned long vm_pgoff;   
 struct file * vm_file;  /* File we map to (can be NULL). */ 
 void * vm_private_data;  /* was vm_pte (shared mem) */ 
}; 



VMA Addition and Removal 

 Occurs whenever 
a new file is 
mmaped, a new 
shared memory 
segment is 
created, or a 
new section is 
created (e.g., 
library, code, 
heap, stack) 

 Kernel tries to 
merge with 
adjacent 
sections 



VMA Search 

 VMA is very frequently accessed structure 
 Must often map virtual address to vma (whenever we 

have a fault, mmap, etc) 

 Need efficient lookup 

 Two Indexes for different uses 
 Linear linked list 

• Allows efficient traversal of entire address space 

• vma->vm_next 

 Red-black tree of vmas 
• Allows efficient search based on virtual address 

• vma->vm_rb 



Efficient Search of VMAs 

 Red-black trees allow O(lg n) search of vma 
based on virtual address 

 Indexed by vm_end ending address 

 mmap_cache points to the VMA just accessed 

 
task->mm->mmap_cache vm_end=300 

vm_end=150 

vm_end=100 
vm_end=400 

vm-end=490 
vm_end=30 



Mechanisms for mmap 

 File or device backed physical pages are 
stored in page cache 

 These pages may be accessed in two ways 
 Direct memory reference: e.g., *p = … 

 File operations: e.g., write(fd, …) 
 

 Must map file descriptor and file offset to 
physical page and offset within page 
 Data structure is conceptually similar to page table 

 But there’s no page table for files! 

 Also, file can be small or very, very large 
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Radix Tree 



Unified abstraction: address space 

 Each file has an address space: 0 … file size 

 Each block device (e.g., disk) that caches data 
in memory: 0 … device size 

 Each process: 0 … 4GB (x86) 

 

 struct address_space 
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Mechanisms for COW 

 COW abuses page protection bits in page 
tables  Must track original page protection 
of each page for each process 
 Easy: store original permissions and COW-or-not 

info in VMAs 

 

 COW shares pages   Must track page 
reference count for each physical page 
 Can’t use VMAs 
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Descriptor for each physical page 
• Each physical page has a page descriptor associated with it 

• Contains reference count for the page 

• Contains a pointer to the reverse map (struct address space or 
struct anon_vma) 

• Contains pointers to lru lists (to evict the page) 

• Easy conversation between physical page address to descriptor 
index 

 

struct page { 
 unsigned long flags;   
 atomic_t _count;  
 atomic_t _mapcount; 
 struct address_space *mapping; 
 pgoff_t index;   
 struct list_head lru;  
}; 



Mechanisms for Physical Page Reclaiming 

 Physical pages can be shared 
 File/device backed pages 

 COW pages 

 To replace a physical page, must find all 
mappings of the page and invalidate them  
reverse mappings 
 Field _mapcount: number of active mappings 

 Field mapping: address_space (file/device backed) 
or anon_vma (anonymous) 

• Least Significant Bit encodes the type (1 == 
anon_vma) 
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Reverse mapping for anonymous pages 

 Idea: maintain one reverse mapping per vma 
(logical object) rather than one reverse 
mapping per page 

 Based on observation most pages in VMA have 
the same set of mappers 

 

 anon_vma contains VMAs that may map a page 
 Kernel needs to search for actual PTE at runtime 
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Anonymous rmaps: anon_vma 



Reverse Mapping for File/Device-
backed Pages 

 Problem: anon_vma idea is good for limited sharing 
 Memory maps can be shared by large numbers of 

processes, e.g., libc 

 Linear search for every eviction is slow 

 Also, different processes may map different ranges of a 
memory map into their address space 

 Need efficient data structure 
 Basic operation: given an offset in an object (such as a 

file), or a range of offsets, return vmas that map that 
range 



i_mmap Priority Tree 
Part of  struct address_space in fs.h  

radix: start of interval 
heap: start + size 



Types of Pages 
 

 Unreclaimable: pages locked in memory 
(PG_locked) 

 Swappable: anonymous pages 

 Syncable: file/device backed pages, synchronize 
with original file they were loaded from (dirty) 

 Discardable: unused pages in memory caches, non-
dirty pages in page cache (clean) 

 



Algorithm for Page Reclaiming 

 Identify pages to evict using approximate LRU 
 All pages are on one of 2 LRU lists: active or 

inactive 

 A page access causes it to be switched to the active 
list (detect access via e.g., mmap(), page table bits) 

 A page that hasn’t been accessed in a while moves 
to the inactive list 

 Unmap all mappers of shared using reverse 
map (try_to_unmap function)  
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Backup Slides 
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Linux Memory Subsystem Outline 

 Memory data structures 

 Virtual Memory Areas (VMA) 

 Page Mappings and Page Fault Management 

 Reverse Mappings 

 Page Cache and Swapping 

 Physical Page Management 

 



Linux MM Objects Glossary 

 struct mm: memory descriptor (mm_types.h) 
 struct vm_area_struct mmap: vma (mm_types.h) 

 

 struct page: page descriptor (mm_types.h) 
 

 pgd, pud, pmd, pte: pgtable entries (arch/x86/include/asm/page.h, 
page_32.h, pgtable.h, pgtable_32.h) 
 pgd: page global directory 
 pud page upper directory 
 pmd: page middle directory 
 pte: page table entry 

 

 struct anon_vma: anon vma reverse map (rmap.h) 
 struct prio_tree_root i_mmap: priority tree reverse map (fs.h) 

 

 struct radix_tree_root page_tree: page cache radix tree  (fs.h) 



The mm_struct Structure 

 Main memory descriptor 
 One per address space 

 Each task_struct has a pointer to one 

 May be shared between tasks (e.g., threads) 

 Contains two main substructures 
 Memory map of virtual memory areas (vma) 

 Pointer to arch specific page tables 

 Other data, e.g., locks, reference counts, accounting 
information 



struct mm_struct 
struct mm_struct { 
 struct vm_area_struct * mmap; /* list of VMAs */ 
 struct rb_root mm_rb; 
 struct vm_area_struct * mmap_cache; /* last find_vma result */ 
 unsigned long mmap_base;  /* base of mmap area */ 
 unsigned long task_size;  /* size of task vm space */ 
 pgd_t * pgd; 
 atomic_t mm_users;  /* How many users with user space? */ 
 atomic_t mm_count;  /* How many references to "struct 
mm_struct */ 
 int map_count;   /* number of VMAs */ 
 struct rw_semaphore mmap_sem; 
 spinlock_t page_table_lock;  /* Protects page tables and some 
counters */ 
 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 
 unsigned long hiwater_vm; /* High-water virtual memory usage */ 
 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 
 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 
 cpumask_t cpu_vm_mask; 
 unsigned long flags; /* Must use atomic bitops to access the bits */ 
}; 



struct vm_operations_struct 

struct vm_operations_struct { 
 void (*open)(struct vm_area_struct * area); 
 void (*close)(struct vm_area_struct * area); 
 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 
 
 /* notification that a previously read-only page is about to become 
  * writable, if an error is returned it will cause a SIGBUS */ 
 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 
 
 /* called by access_process_vm when get_user_pages() fails, typically 
  * for use by special VMAs that can switch between memory and 
hardware 
  */ 
 int (*access)(struct vm_area_struct *vma, unsigned long addr, 
        void *buf, int len, int write); 
}; 



Demand Fetching via Page Faults 

http://duartes.org/gustavo/blog/post/how-the-kernel-
manages-your-memory 



Fault Handling 

 Entry point: handle_pte_fault (mm/memory.c) 

 Identify which VMA faulting address falls in 

 Identify if VMA has registered a fault 
handler 

 Default fault handlers 
 do_anonymous_page: no page and no file 

 do_linear_fault: vm_ops registered? 

 do_swap_page: page backed by swap 

 do_nonlinear_fault: page backed by file 

 do_wp_page: write protected page (CoW) 

 



The Page Fault Handler 

Complex logic: 
easier to read 
code than read a 
book! 



Copy on Write 

 PTE entry is marked as un-writeable 

 But VMA is marked as writeable 

 Page fault handler notices difference 
 Must mean CoW 

 Make a duplicate of physical page 

 Update PTEs, flush TLB entry 

 do_wp_page 



Which page to map when no PTE? 
 If PTE doesn’t exist for an anonymous mapping, its easy 

 Map standard zero page 

 Allocate new page (depending on read/write) 
 

 What if mapping is a memory map? Or shared memory? 
 Need some additional data structures to map logical object to 

set of pages 

 Independent of memory map of individual task 
 

 The address_space structure 
 One per file, device, shared memory segment, etc. 

 Mapping between logical offset in object to page in memory 

 Pages in memory are called “page cache” 

 Files can be large: need efficient data structure 



Page Table Structure 



Working with Page Tables 

 Access page table through mm_struct->pg_d 
 Must to a recursive walk, pgd, pud, pmd, pte 

 Kernel includes code to assist walking 
 mm/pagewalk.c: walk_page_range 
 Can specific your own function to execute for each 

entry 

 Working with PTE entries 
 Lots of macros provided (asm/pgtable.h, page.h) 
 Set/get entries, set/get various bits 
 E.g., pte_mkyoung(pte_t): clear accessed bit, 

pte_wrprotect(pte_t): clear write bit 
 Must also flush TLB whenever entries are changed 

• include/asm-generic/tkb.h: tlb_remove_tlb_entry(tlb) 



Reverse Mappings 

 Problem: how to swap out a shared mapping? 
 Many PTEs may point to it 
 But, we know only identity of physical page 

• Could maintain reverse PTE 
• i.e., for every page, list of PTEs that point to it 
• Could get large. Very inefficient. 

 Solution: reverse maps 
 Anonymous reverse maps: anon_vma 
 Idea: maintain one reverse mapping per vma (logical object) 

rather than one reverse mapping per page 
 Based on observation most pages in VMA or other logical 

object (e.g., file) have the same set of mappers 
 rmap contains VMAs that may map a page 
 Kernel needs to search for actual PTE at runtime 



anon_vma in Action 

Reference: Virtual Memory II: the return of objrmap. 

http://lwn.net/Articles/75198/ 



anon_vma in Action 

Reference: Virtual Memory II: the return of objrmap 

http://lwn.net/Articles/75198/ 



When is PFRA Invoked? 

Invoked on three different 
occasions: 
 Kernel detects low on memory 

condition 
• E.g., during alloc_pages 

 Periodic reclaiming 
• kernel thread kswapd 

 Hibernation reclaiming 
• for suspend-to-disk 

 



Page Frame Reclaiming Algorithm 



The Swap Area Descriptor 



The Swap Cache 

 Goal: prevent race conditions due to concurrent 
page-in and page-out 

 Solution: page-in and page-out serialized through 
a single entity: swap cache 

 Page to be swapped out simply moved to cache 

 Process must check if swap cache has a page 
when it wants to swap in 
 If the page is there in the cache already: minor page 

fault 

 If page requires disk activity: major page fault 



The Swap Cache 



Page Allocation 

 Buddy Allocator 

 SLOB: simple list of blocks 

 SLAB allocator: data structure specific 

 SLUB: efficient SLAB 

 



Allocating a Physical Page 

 Physical memory is divided into “zones” 
 ZONE_DMA: low order memory (<16MB) certain older devices 

can only access so much 

 ZONE_NORMAL: normal kernel memory mapping into the 
kernel’s address space 

 ZONE_HIGHMEM: high memory not mapped by kernel. 
Identified through (struct page *). Must create temporary 
mapping to access 

 

 To allocate, use kmalloc or related set of functions. 
Specify zone and options in mask 
 kmalloc, __get_free_pages, __get_free_page, 

get_zeroed_page: return virtual address (must be mapped) 

 alloc_pages, alloc_page: return struct page * 

 

 

 

 


