W4118: Linux memory management

Instructor: Junfeng Yang

References: Modern Operating Systems (37 edition), Operating Systems
Concepts (8™ edition), previous W4118, and OS at MIT, Stanford, and UWisc

Page tables are nice, but ...

0 Page tables implement one feature: mapping
vitual pages to physical pages

0 Wanted: other memory management features
- Demand paging
= Memory map of file (e.g, mmap)
= Copy-on-write (COW)
» Page reclaiming

0 Need additional mechanisms

Mechanisms for demand paging

a0 Demand paging allocates physical pages only
when the corresponding virtual pages are
accessed = Must track what logical pages
have been allocated for each process

Q Possible to implement with page tables, but
want more: don't allocate page table entries if
virtual pages are not accessed

a Insight: address spaces are often sparse

Virtual Memory Areas (vma)

Access to memory map is protected by mmap_sem read/write semaphore

Linear Address Space

L i

-y - > o ~---: Memory Regions
¢ vim_area_struct
nmap mmap_cache V_Skart
= - = =pVi_end
. 000 s » vn_next
Memory Descriptor
mm_struct

Reference:
http://www.makelinux.net/books/ulk3/understandlk
-CHP-9-SECT-3

Types of VMA Mappings

Q File/device backed mappings (mmap):
= Code pages (binaries), libraries
« Data files
= Shared memory
= Devices

Q Anonymous mappings:
= Stack
- Heap
- CoW pages

Virtual Memory Areas

————— p vm_end: first address outside virtual memory area

—— vm_start: first address within virtual memory area

—— = —
vm_area_struct stack
——= VM READ | WM WRITE {anonymous)
| | VM_GROWS_DOWN
vm_next o
struct file L vm_area_struct
flibfld.so k—wm file— | VM_READ | VM_EXEC _ Memory
r = mapping
Wil next
struct file N vm_area_struct
/1ib/1libec.so le—wm file——— VM_READ | VM_EXEC »
ym_next —_———
L vim_area_struct Heap
VM_READ I WM_WRITE {anonymous)
xf'r_lnn:-:i' ————"
W vm_area_struct B55
VM _READ | VM _WRITE (anonymous)
vm_ next _:_:_-—_-::""
Ny vm_area_struct Data
le —wm file——| VM READ | VM_WRITE (file-
- e backed)
struct file o _ =
vim next -
/bin/gonzo T vm_area_struct Text
<—vm file———— VM_READ | VM_EXEC (file-
+ backed)

mmap
|

s | LN o httpi//duartes.org/gustavo/bl
og/post/how-the-kernel-
manages-your-memory

ki

Anatomy of a VMA

Q Pointer to start and end of region in address
space (virtual addresses)

a Data structures to index vmas efficiently
Q Page protection bits

0 VMA protection bits/flags (superset of page
bits)

0 Reverse mapping data structures

a Which file this vma loaded from?

a Pointers to functions that implement vma
operations

- E.g., page fault, open, close, etc.

struct vm_area_struct

struct vm_area_struct {

*/

e

struct mm_struct * vm_mm; /* The address space we belong to. */
unsigned long vm_start; /* Our start address within vim_mm.

unsigned long vm_end;

struct vm_area_struct *vm_next;

pgprot_t vm_page_prot; /* Access permissions of this VMA., */
unsigned long vm_flags; /* Flags, see mm.h. */

struct rb_node vm_rb;

struct raw_prio_tree_node prio_tree_node;

struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
struct vm_operations_struct * vm_ops;

unsigned long vm_pgoff;

struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */

VMA Addition and Removal

' v
P

(a) Accessrights of interval to be added are
eqgual to those of contiguous region

| I
| e e ey -

(b) Access rights of interval to be added are
different from those of contiguous region

() Interval to be removed is at the end of
existing region

............................

{(d) Interval to be removed is inside
existing region

Address space before operation

(") The existing region is enlarged

(b") Anewmemory region is created

(") The existing region is shortened

(d') Two smaller regions are created

Address space after operation

0 Occurs whenever

a new file is
mmaped, a new
shared memory
segment is
created, or a
hew section is
created (e.qg.,
library, code,
heap, stack)

Kernel tries to
merge with
adjacent
sections

VMA Search

0 VMA is very frequently accessed structure

= Must often map virtual address to vma (whenever we
have a fault, mmap, etc)

» Need efficient lookup

0 Two Indexes for different uses
= Linear linked list
+ Allows efficient traversal of entire address space
* vma->vm_hext
« Red-black tree of vmas
- Allows efficient search based on virtual address
« vma->vm_rb

Efficient Search of VMAs

0 Red-black trees allow O(lg n) search of vma
based on virtual address

0 Indexed by vim_end ending address
0 mmap_cache points to the VMA just accessed

task->mm->mmap_cache @ 'M-end=300
vm_end=100
@ .vm_end:400
® O ® vm-end=490

vm_end=30 vm_end=150

Mechanisms for mmap

a File or device backed physical pages are
stored in page cache

0 These pages may be accessed in two ways

= Direct memory reference: e.g., *p = ...
- File operations: e.g., write(fd, ...)

0 Must map file descriptor and file of fset to
physical page and offset within page
« Data structure is conceptually similar to page table
= But there's no page table for files!
= Also, file can be small or very, very large

1

Radix Tree

radix_tree_root

(rnode
| height =2 ’

radix_tree_node
count = 2

radix_tree_root

(mode
| height=1 i slots[0) slots[2]

radix_tree_node

radix_tree_node radix_tree_node
count =1

index=0 index=4 index=0 index=4 index=131
(a) radix tree of height 1 (b) radix tree of height 2

Unified abstraction: address space

0 Each file has an address space: O ... file size

a Each block device (e.g., disk) that caches data
in memory: O ... device size

Q Each process: O ... 4GB (x86)

a struct address_space

13

Mechanisms for COW

0 COW abuses page protection bits in page
tables = Must track original page protection
of each page for each process

- Easy: store original permissions and COW-or-not
info in VMAs

Q0 COW shares pages & Must track page
reference count for each physical page

« Can't use VMAs

14

Descriptor for each physical page

 Each physical page has a page descriptor associated with it
 Contains reference count for the page

« Contains a pointer to the reverse map (struct address space or
struct anon_vma)

 Contains pointers to Iru lists (to evict the page)

« Easy conversation between physical page address to descriptor
index

struct page {
unsigned long flags;
atomic_t _count;
atomic_t _mapcount;
struct address_space *mapping;
pgoff_t index;
struct list_head Iru;

b

Mechanisms for Physical Page Reclaiming

a Physical pages can be shared
» File/device backed pages
- COW pages

0 To replace a physical page, must find all
mappings of the page and invalidate them =
reverse mappings
« Field _mapcount: number of active mappings

» Field mapping: address_space (file/device backed)
or anon_vma (anonymous)

+ Least Significant Bit encodes the type (1 ==
anon_vma)

16

Reverse mapping for anonymous pages

Q Idea: maintain one reverse mapping per vma
(logical object) rather than one reverse

mapping per page
0 Based on observation most pages in VMA have
the same set of mappers

Q anon_vma contains VMAs that may map a page
» Kernel needs to search for actual PTE at runtime

17

Anonymous rmaps: anon_vma

anon_vma
anon yma anon vma
Vi _area_struct) VN _area_struct) e
anon_vma_node
e ¥m_start ym_mm
¢ pyd
mm_struct =’ page tables T page tables

'T_ mapping ’E-n%_l
v

page
descr.
index
|
, A \ Vo s |
shared shared
page page

anonymous memory region anonymous memaory region

Reverse Mapping for File/Device-
backed Pages

Q Problem: anon_vma idea is good for limited sharing

- Memory maps can be shared by large numbers of
processes, e.g., libc

= Linear search for every eviction is slow
- Also, different processes may map different ranges of a
memory map into their address space
0 Need efficient data structure

- Basic operation: given an offset in an object (such as a
file), or a range of offsets, return vmas that map that
range

i_mmap Priority Tree
Part of struct address_space in fs.h

adix size hegp radix: start of interval

heap: start + size

01 2 3 4 S\' l /
\

S S — —— 1y
e — 0,2,2
e e . e 0’4'4
p——)3 5

— 20,2
[re—— 1,2,3
= 0,0,0

(a) (b)

Types of Pages

0 Unreclaimable: pages locked in memory
(PG_locked)

a0 Swappable: anonymous pages

0 Syncable: file/device backed pages, synchronize
with original file they were loaded from (dirty)

a Discardable: unused pages in memory caches, non-
dirty pages in page cache (clean)

Algorithm for Page Reclaiming

0 Identify pages to evict using approximate LRU

- All pages are on one of 2 LRU lists: active or
inactive

= A page access causes it to be switched to the active
list (detect access via e.g., mmap(), page table bits)

= A page that hasn't been accessed in a while moves
to the inactive list

0 Unmap all mappers of shared using reverse
map (try_to_unmap function)

22

Backup Slides

23

Linux Memory Subsystem Outline

a Memory data structures

a Virtual Memory Areas (VMA)

a Page Mappings and Page Fault Management
0 Reverse Mappings

Q Page Cache and Swapping

a Physical Page Management

U O 00O

U O

Linux MM Objects Glossary

struct mm: memory descriptor (mm_types.h)
struct vm_area_struct mmap: vma (mm_types.h)

struct page: page descriptor (mm_types.h)

d, pud, pmd, pte: pgtable entries (arch/x86/include/asm/page.h,
5296332.}!\3, pngble.Egpg’rable_%.h) Pod
= pgd: page global directory
= pud page upper directory
= pmd: page middle directory
- pte: page table entry

struct anon_vma: anon vma reverse map (rmap.h)
struct prio_tree_root i_mmap: priority tree reverse map (fs.h)

0 struct radix_tree_root page_tree: page cache radix tree (fs.h)

The mm_struct Structure

a Main memory descriptor
= One per address space
= Each task_struct has a pointer to one
= May be shared between tasks (e.g., threads)

a Contains two main substructures
« Memory map of virtual memory areas (vma)
= Pointer to arch specific page tables

» Other datq, e.g., locks, reference counts, accounting
information

struct mm_stTruct

struct mm_struct {
struct vm_area_struct * mmap; /* list of VMAs */
struct rb_root mm_rb;
struct vm_area_struct * mmap_cache; /* last find_vma result */

unsigned long mmap_base; /* base of mmap area */

unsigned long task_size; /* size of task vm space */

pgd_t * pgd;

atomic_t mm_users; /* How many users with user space? */

atomic_t mm_count; /* How many references to "struct
mm_struct */

int map_count; /* number of VMAs */

struct rw_semaphore mmap_sem;

spinlock_t page_table_lock; /* Protects page tables and some

counters */
unsigned long hiwater_rss; /* High-watermark of RSS usage */
unsigned long hiwater_vm; /* High-water virtual memory usage */
unsigned long total_vm, locked_vm, shared_vm, exec_vm;
unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
cpumask_t cpu_vm_mask;
unsigned long flags; /* Must use atomic bitops to access the bits */

hor

struct vm_operations_struct

struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);

/* notification that a previously read-only page is about to become
* writable, if an error is returned it will cause a SIGBUS */
int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);

/* called by access_process_vm when get_user_pages() fails, typically
* for use by special VMAs that can switch between memory and
hardware
*/
int (*access)(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);

hor

Demand Fetching via Page Faults

2. brk({) enlarges heapVMA.
1. Program calls bri() to grow its heap New pages are not mapped onto physical memary.

free free

anonymous anonymous
/ freg / free
- T I:t) Heap
anonymous

ronn { ﬂ anonymous L "f#_‘,m o

\ free
Size: BKE, Size: 16KE,
Rss: BEKEB Rss: BKB
3. Program tries to access new memory. 4. Kernel assigns page frame to process,
Processor page faults. creates PTE, resumes execution. Program is

unaware anything happened.

free free

anonymous anonymous
— / free \—> — 74: anonymous
anonymous anonymous

,_..--*""""FJ ﬂ free

free

Size: 16KE, Size: 16KB,
R==s: BEEB Rss: 12KE

http://duartes.org/gustavo/blog/post/how-the-kernel-
manages-your-memory

Fault Handling

a Entry point: handle_pte_fault (mm/memory.c)
0 Identify which VMA faulting address falls in

0 Identify if VMA has registered a fault
handler

0 Default fault handlers
= do_anonymous_page: no page and no file
» do_linear_fault: vm_ops registered?
= do_swap_page: page backed by swap
= do_nonlinear_fault: page backed by file
» do_wp_page: write protected page (CoW)

The Page Fault Handler
¢
o Complex logic:

; easier to read
n uo/ ninemptaci Y
[\ it code than read a

s book!

wvmalloc_fault

Noncontiguous
memory atea address

memary region

Kemel page table

entry fixup Address couldbelong \ N0 ¥

to UserMode stack

y good_area

bad_area
v

Write access
 Access
in User Mode

Region is
wiitable

no_context
T \ 4

Region is readable

NO/ Address isawrong
or executable

system call parameter

do_sigbus
4 \ 4 *
Demand Paging Daiaad Siiid Kill process “Fixup code”
and/or : and kernel (typically send
Copy On Visite paging SGSEGY *Oops” Seseay)

Copy on Write

a PTE entry is marked as un-writeable
0 But VMA is marked as writeable

0 Page fault handler notices difference
= Must mean CoW
= Make a duplicate of physical page
- Update PTEs, flush TLB entry
= do_wp_page

Which page to map when no PTE?

0 If PTE doesn't exist for an anonymous mapping, its easy
= Map standard zero page
« Allocate new page (depending on read/write)

0 What if mapping is a memory map? Or shared memory?

« Need some additional data structures to map logical object to
set of pages

« Independent of memory map of individual task

0O The address_space structure
= One per file, device, shared memory segment, etc.
= Mapping between logical offset in object to page in memory
= Pages in memory are called "page cache”
- Files can be large: need efficient data structure

Page Table Structure

Linear Address
GLOBAL DIR MIDDLE DIR

Working with Page Tables

a Access page table through mm_struct->pg_d

0 Must to a recursive walk, pgd, pud, pmd, pte
« Kernel includes code to assist walking
- mm/pagewalk.c: walk_page_range

= Can specific your own function to execute for each
entry

0 Working with PTE entries
» Lots of macros provided (asm/pgtable.h, page.h)
» Set/get entries, set/get various bits

= E.g., pte_mkyoung(pte_t): clear accessed bit,
pte_wrprotect(pte_t): clear write bit

= Must also flush TLB whenever entries are changed
+ include/asm-generic/tkb.h: tIb_remove_tlb_entry(tlb)

Reverse Mappings

a Problem: how to swap out a shared mapping?
= Many PTEs may point to it
= But, we know only identity of physical page

» Could maintain reverse PTE
* i.e., for every page, list of PTEs that point to it
» Could geft large. Very inefficient.

a Solution: reverse maps

Anonymous reverse maps: anon_vma

Idea: maintain one reverse mapping per vma (logical object)
rather than one reverse mapping per page

Based on observation most pages in VMA or other logical
object (e.g., file) have the same set of mappers

rmap contains VMAs that may map a page
Kernel needs to search for actual PTE at runtime

ahonh_vma ih Action

Reference: Virtual Memory II: the return of objrmap.
http://lwn.net/Articles/75198/

ahonh_vma ih Action

Reference: Virtual Memory II: the return of objrmap
http://lwn.net/Articles/75198/

When is PFRA Invoked?

aInvoked on three different
occasions:

 Kernel detects low on memory
condition

* E.g., during alloc_pages
« Periodic reclaiming
» kernel thread kswapd
« Hibernation reclaiming
» for suspend-to-disk

Page Frame Reclaiming Algori’rhm

LOW ON MEMORY RECLAIMING HIEE RNATION REC LAIMIJ‘-HE PERIODAC RECLAIMING

..

Low memory on Low memory on Suspend to disk

buffer allocation page allocation (hibemation) reap_work

__getblk() 4 disk Imrnel [hread work queus
alloc_page_buffers() J | _alloc_pages() J|Pn_suspend_disk()

kswapd() | |cache_reap()

v

free more memory()

e p{try to free papes() balance pgdat()
§ — shrink_slab() ja— slab_destroy()
shrink_caches() v
out_of_memory() I o shrink_zone()

| shrink_cache()

v v

refill inactive_zone() 17 shrink_list()

| page_referenced() pageout ()

swap_info

The Swap Area Descriptor

swap_device
ar
swap file

swap_map

-

Swap area desaiptors

Free page slot Defective page slat
\ Occupied
Swiap area page siot
I]]] 0 32768
Array of counters
31 g7 10
Page slot index Area number 0

The Swap Cache

Q Goal: prevent race conditions due to concurrent
page-in and page-out

a Solution: page-in and page-out serialized through
a single entity: swap cache

a Page to be swapped out simply moved to cache

0 Process must check if swap cache has a page

when it wants to swap in

» If the page is there in the cache already: minor page
fault

» If page requires disk activity: major page fault

The Swap Cache

Swap area Swap area Swap area

Swap area 7 Swap area

@

Swap cache Swap cache

(d) (e)

Page Allocation

Q Buddy Allocator

QS
QS
QS

_OB: simple list of blocks
_AB allocator: data structure specific

_UB: efficient SLAB

Allocating a Physical Page

Q Physical memory is divided into "zones"

- ZONE_DMA: low order memory (<16 MB) certain older devices
can only access so much

« ZONE_NORMAL: normal kernel memory mapping into the
kernel's address space

- ZONE_HIGHMEM: high memory not mapped by kernel.
Identified through (struct page *). Must create temporary
mapping to access

a To allocate, use kmalloc or related set of functions.
Specify zone and options in mask

= kmalloc, __get_free_pages, __get_free_page,
get_zeroed_page: return virtual address (must be mapped)

= alloc_pages, alloc_page: return struct page *

