
W4118: Linux memory management

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Page tables are nice, but …

 Page tables implement one feature: mapping
vitual pages to physical pages

 Wanted: other memory management features
 Demand paging

 Memory map of file (e.g, mmap)

 Copy-on-write (COW)

 Page reclaiming

 Need additional mechanisms

1

Mechanisms for demand paging

 Demand paging allocates physical pages only
when the corresponding virtual pages are
accessed Must track what logical pages
have been allocated for each process

 Possible to implement with page tables, but
want more: don’t allocate page table entries if
virtual pages are not accessed

 Insight: address spaces are often sparse

2

Virtual Memory Areas (vma)

Reference:
http://www.makelinux.net/books/ulk3/understandlk
-CHP-9-SECT-3

Access to memory map is protected by mmap_sem read/write semaphore

mm_struct

vm_area_struct

Types of VMA Mappings
 File/device backed mappings (mmap):

 Code pages (binaries), libraries

 Data files

 Shared memory

 Devices

 Anonymous mappings:
 Stack

 Heap

 CoW pages

Virtual Memory Areas

http://duartes.org/gustavo/bl
og/post/how-the-kernel-
manages-your-memory

Anatomy of a VMA

 Pointer to start and end of region in address
space (virtual addresses)

 Data structures to index vmas efficiently
 Page protection bits
 VMA protection bits/flags (superset of page

bits)
 Reverse mapping data structures
 Which file this vma loaded from?
 Pointers to functions that implement vma

operations
 E.g., page fault, open, close, etc.

struct vm_area_struct
struct vm_area_struct {
 struct mm_struct * vm_mm; /* The address space we belong to. */
 unsigned long vm_start; /* Our start address within vm_mm.
*/
 unsigned long vm_end;
 struct vm_area_struct *vm_next;
 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
 unsigned long vm_flags; /* Flags, see mm.h. */
 struct rb_node vm_rb;
 struct raw_prio_tree_node prio_tree_node;
 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
 struct vm_operations_struct * vm_ops;
 unsigned long vm_pgoff;
 struct file * vm_file; /* File we map to (can be NULL). */
 void * vm_private_data; /* was vm_pte (shared mem) */
};

VMA Addition and Removal

 Occurs whenever
a new file is
mmaped, a new
shared memory
segment is
created, or a
new section is
created (e.g.,
library, code,
heap, stack)

 Kernel tries to
merge with
adjacent
sections

VMA Search

 VMA is very frequently accessed structure
 Must often map virtual address to vma (whenever we

have a fault, mmap, etc)

 Need efficient lookup

 Two Indexes for different uses
 Linear linked list

• Allows efficient traversal of entire address space

• vma->vm_next

 Red-black tree of vmas
• Allows efficient search based on virtual address

• vma->vm_rb

Efficient Search of VMAs

 Red-black trees allow O(lg n) search of vma
based on virtual address

 Indexed by vm_end ending address

 mmap_cache points to the VMA just accessed

task->mm->mmap_cache vm_end=300

vm_end=150

vm_end=100
vm_end=400

vm-end=490
vm_end=30

Mechanisms for mmap

 File or device backed physical pages are
stored in page cache

 These pages may be accessed in two ways
 Direct memory reference: e.g., *p = …

 File operations: e.g., write(fd, …)

 Must map file descriptor and file offset to
physical page and offset within page
 Data structure is conceptually similar to page table

 But there’s no page table for files!

 Also, file can be small or very, very large

11

Radix Tree

Unified abstraction: address space

 Each file has an address space: 0 … file size

 Each block device (e.g., disk) that caches data
in memory: 0 … device size

 Each process: 0 … 4GB (x86)

 struct address_space

13

Mechanisms for COW

 COW abuses page protection bits in page
tables Must track original page protection
of each page for each process
 Easy: store original permissions and COW-or-not

info in VMAs

 COW shares pages Must track page
reference count for each physical page
 Can’t use VMAs

14

Descriptor for each physical page
• Each physical page has a page descriptor associated with it

• Contains reference count for the page

• Contains a pointer to the reverse map (struct address space or
struct anon_vma)

• Contains pointers to lru lists (to evict the page)

• Easy conversation between physical page address to descriptor
index

struct page {
 unsigned long flags;
 atomic_t _count;
 atomic_t _mapcount;
 struct address_space *mapping;
 pgoff_t index;
 struct list_head lru;
};

Mechanisms for Physical Page Reclaiming

 Physical pages can be shared
 File/device backed pages

 COW pages

 To replace a physical page, must find all
mappings of the page and invalidate them
reverse mappings
 Field _mapcount: number of active mappings

 Field mapping: address_space (file/device backed)
or anon_vma (anonymous)

• Least Significant Bit encodes the type (1 ==
anon_vma)

16

Reverse mapping for anonymous pages

 Idea: maintain one reverse mapping per vma
(logical object) rather than one reverse
mapping per page

 Based on observation most pages in VMA have
the same set of mappers

 anon_vma contains VMAs that may map a page
 Kernel needs to search for actual PTE at runtime

17

Anonymous rmaps: anon_vma

Reverse Mapping for File/Device-
backed Pages

 Problem: anon_vma idea is good for limited sharing
 Memory maps can be shared by large numbers of

processes, e.g., libc

 Linear search for every eviction is slow

 Also, different processes may map different ranges of a
memory map into their address space

 Need efficient data structure
 Basic operation: given an offset in an object (such as a

file), or a range of offsets, return vmas that map that
range

i_mmap Priority Tree
Part of struct address_space in fs.h

radix: start of interval
heap: start + size

Types of Pages

 Unreclaimable: pages locked in memory
(PG_locked)

 Swappable: anonymous pages

 Syncable: file/device backed pages, synchronize
with original file they were loaded from (dirty)

 Discardable: unused pages in memory caches, non-
dirty pages in page cache (clean)

Algorithm for Page Reclaiming

 Identify pages to evict using approximate LRU
 All pages are on one of 2 LRU lists: active or

inactive

 A page access causes it to be switched to the active
list (detect access via e.g., mmap(), page table bits)

 A page that hasn’t been accessed in a while moves
to the inactive list

 Unmap all mappers of shared using reverse
map (try_to_unmap function)

22

Backup Slides

23

Linux Memory Subsystem Outline

 Memory data structures

 Virtual Memory Areas (VMA)

 Page Mappings and Page Fault Management

 Reverse Mappings

 Page Cache and Swapping

 Physical Page Management

Linux MM Objects Glossary

 struct mm: memory descriptor (mm_types.h)
 struct vm_area_struct mmap: vma (mm_types.h)

 struct page: page descriptor (mm_types.h)

 pgd, pud, pmd, pte: pgtable entries (arch/x86/include/asm/page.h,
page_32.h, pgtable.h, pgtable_32.h)
 pgd: page global directory
 pud page upper directory
 pmd: page middle directory
 pte: page table entry

 struct anon_vma: anon vma reverse map (rmap.h)
 struct prio_tree_root i_mmap: priority tree reverse map (fs.h)

 struct radix_tree_root page_tree: page cache radix tree (fs.h)

The mm_struct Structure

 Main memory descriptor
 One per address space

 Each task_struct has a pointer to one

 May be shared between tasks (e.g., threads)

 Contains two main substructures
 Memory map of virtual memory areas (vma)

 Pointer to arch specific page tables

 Other data, e.g., locks, reference counts, accounting
information

struct mm_struct
struct mm_struct {
 struct vm_area_struct * mmap; /* list of VMAs */
 struct rb_root mm_rb;
 struct vm_area_struct * mmap_cache; /* last find_vma result */
 unsigned long mmap_base; /* base of mmap area */
 unsigned long task_size; /* size of task vm space */
 pgd_t * pgd;
 atomic_t mm_users; /* How many users with user space? */
 atomic_t mm_count; /* How many references to "struct
mm_struct */
 int map_count; /* number of VMAs */
 struct rw_semaphore mmap_sem;
 spinlock_t page_table_lock; /* Protects page tables and some
counters */
 unsigned long hiwater_rss; /* High-watermark of RSS usage */
 unsigned long hiwater_vm; /* High-water virtual memory usage */
 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
 cpumask_t cpu_vm_mask;
 unsigned long flags; /* Must use atomic bitops to access the bits */
};

struct vm_operations_struct

struct vm_operations_struct {
 void (*open)(struct vm_area_struct * area);
 void (*close)(struct vm_area_struct * area);
 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);

 /* notification that a previously read-only page is about to become
 * writable, if an error is returned it will cause a SIGBUS */
 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);

 /* called by access_process_vm when get_user_pages() fails, typically
 * for use by special VMAs that can switch between memory and
hardware
 */
 int (*access)(struct vm_area_struct *vma, unsigned long addr,
 void *buf, int len, int write);
};

Demand Fetching via Page Faults

http://duartes.org/gustavo/blog/post/how-the-kernel-
manages-your-memory

Fault Handling

 Entry point: handle_pte_fault (mm/memory.c)

 Identify which VMA faulting address falls in

 Identify if VMA has registered a fault
handler

 Default fault handlers
 do_anonymous_page: no page and no file

 do_linear_fault: vm_ops registered?

 do_swap_page: page backed by swap

 do_nonlinear_fault: page backed by file

 do_wp_page: write protected page (CoW)

The Page Fault Handler

Complex logic:
easier to read
code than read a
book!

Copy on Write

 PTE entry is marked as un-writeable

 But VMA is marked as writeable

 Page fault handler notices difference
 Must mean CoW

 Make a duplicate of physical page

 Update PTEs, flush TLB entry

 do_wp_page

Which page to map when no PTE?
 If PTE doesn’t exist for an anonymous mapping, its easy

 Map standard zero page

 Allocate new page (depending on read/write)

 What if mapping is a memory map? Or shared memory?
 Need some additional data structures to map logical object to

set of pages

 Independent of memory map of individual task

 The address_space structure
 One per file, device, shared memory segment, etc.

 Mapping between logical offset in object to page in memory

 Pages in memory are called “page cache”

 Files can be large: need efficient data structure

Page Table Structure

Working with Page Tables

 Access page table through mm_struct->pg_d
 Must to a recursive walk, pgd, pud, pmd, pte

 Kernel includes code to assist walking
 mm/pagewalk.c: walk_page_range
 Can specific your own function to execute for each

entry

 Working with PTE entries
 Lots of macros provided (asm/pgtable.h, page.h)
 Set/get entries, set/get various bits
 E.g., pte_mkyoung(pte_t): clear accessed bit,

pte_wrprotect(pte_t): clear write bit
 Must also flush TLB whenever entries are changed

• include/asm-generic/tkb.h: tlb_remove_tlb_entry(tlb)

Reverse Mappings

 Problem: how to swap out a shared mapping?
 Many PTEs may point to it
 But, we know only identity of physical page

• Could maintain reverse PTE
• i.e., for every page, list of PTEs that point to it
• Could get large. Very inefficient.

 Solution: reverse maps
 Anonymous reverse maps: anon_vma
 Idea: maintain one reverse mapping per vma (logical object)

rather than one reverse mapping per page
 Based on observation most pages in VMA or other logical

object (e.g., file) have the same set of mappers
 rmap contains VMAs that may map a page
 Kernel needs to search for actual PTE at runtime

anon_vma in Action

Reference: Virtual Memory II: the return of objrmap.

http://lwn.net/Articles/75198/

anon_vma in Action

Reference: Virtual Memory II: the return of objrmap

http://lwn.net/Articles/75198/

When is PFRA Invoked?

Invoked on three different
occasions:
 Kernel detects low on memory

condition
• E.g., during alloc_pages

 Periodic reclaiming
• kernel thread kswapd

 Hibernation reclaiming
• for suspend-to-disk

Page Frame Reclaiming Algorithm

The Swap Area Descriptor

The Swap Cache

 Goal: prevent race conditions due to concurrent
page-in and page-out

 Solution: page-in and page-out serialized through
a single entity: swap cache

 Page to be swapped out simply moved to cache

 Process must check if swap cache has a page
when it wants to swap in
 If the page is there in the cache already: minor page

fault

 If page requires disk activity: major page fault

The Swap Cache

Page Allocation

 Buddy Allocator

 SLOB: simple list of blocks

 SLAB allocator: data structure specific

 SLUB: efficient SLAB

Allocating a Physical Page

 Physical memory is divided into “zones”
 ZONE_DMA: low order memory (<16MB) certain older devices

can only access so much

 ZONE_NORMAL: normal kernel memory mapping into the
kernel’s address space

 ZONE_HIGHMEM: high memory not mapped by kernel.
Identified through (struct page *). Must create temporary
mapping to access

 To allocate, use kmalloc or related set of functions.
Specify zone and options in mask
 kmalloc, __get_free_pages, __get_free_page,

get_zeroed_page: return virtual address (must be mapped)

 alloc_pages, alloc_page: return struct page *

