
W4118: Linux memory management 

Instructor: Junfeng Yang 

References: Modern Operating Systems (3rd edition), Operating Systems 
Concepts (8th edition),  previous W4118, and OS at MIT, Stanford, and UWisc 



Page tables are nice, but … 

 Page tables implement one feature: mapping 
vitual pages to physical pages 

 

 Wanted: other memory management features 
 Demand paging 

 Memory map of file (e.g, mmap) 

 Copy-on-write (COW) 

 Page reclaiming 
 

 Need additional mechanisms 
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Mechanisms for demand paging 

 Demand paging allocates physical pages only 
when the corresponding virtual pages are 
accessed  Must track what logical pages 
have been allocated for each process 

 

 Possible to implement with page tables, but 
want more: don’t allocate page table entries if 
virtual pages are not accessed 

 

 Insight: address spaces are often sparse 
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Virtual Memory Areas (vma) 

Reference: 
http://www.makelinux.net/books/ulk3/understandlk
-CHP-9-SECT-3 

Access to memory map is protected by mmap_sem read/write semaphore  

mm_struct 

vm_area_struct 



Types of VMA Mappings 
 File/device backed mappings (mmap): 

 Code pages (binaries), libraries 

 Data files 

 Shared memory 

 Devices 
 

 Anonymous mappings: 
 Stack 

 Heap 

 CoW pages 
 



Virtual Memory Areas 

http://duartes.org/gustavo/bl
og/post/how-the-kernel-
manages-your-memory 



Anatomy of a VMA 

 Pointer to start and end of region in address 
space (virtual addresses) 

 Data structures to index vmas efficiently 
 Page protection bits 
 VMA protection bits/flags (superset of page 

bits) 
 Reverse mapping data structures 
 Which file this vma loaded from? 
 Pointers to functions that implement vma 

operations 
 E.g., page fault, open, close, etc. 

 
 
 
 



struct vm_area_struct 
struct vm_area_struct { 
 struct mm_struct * vm_mm; /* The address space we belong to. */ 
 unsigned long vm_start;  /* Our start address within vm_mm. 
*/ 
 unsigned long vm_end;   
 struct vm_area_struct *vm_next; 
 pgprot_t vm_page_prot;  /* Access permissions of this VMA. */ 
 unsigned long vm_flags;  /* Flags, see mm.h. */ 
 struct rb_node vm_rb; 
 struct raw_prio_tree_node prio_tree_node; 
 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 
 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 
 struct vm_operations_struct * vm_ops; 
 unsigned long vm_pgoff;   
 struct file * vm_file;  /* File we map to (can be NULL). */ 
 void * vm_private_data;  /* was vm_pte (shared mem) */ 
}; 



VMA Addition and Removal 

 Occurs whenever 
a new file is 
mmaped, a new 
shared memory 
segment is 
created, or a 
new section is 
created (e.g., 
library, code, 
heap, stack) 

 Kernel tries to 
merge with 
adjacent 
sections 



VMA Search 

 VMA is very frequently accessed structure 
 Must often map virtual address to vma (whenever we 

have a fault, mmap, etc) 

 Need efficient lookup 

 Two Indexes for different uses 
 Linear linked list 

• Allows efficient traversal of entire address space 

• vma->vm_next 

 Red-black tree of vmas 
• Allows efficient search based on virtual address 

• vma->vm_rb 



Efficient Search of VMAs 

 Red-black trees allow O(lg n) search of vma 
based on virtual address 

 Indexed by vm_end ending address 

 mmap_cache points to the VMA just accessed 

 
task->mm->mmap_cache vm_end=300 

vm_end=150 

vm_end=100 
vm_end=400 

vm-end=490 
vm_end=30 



Mechanisms for mmap 

 File or device backed physical pages are 
stored in page cache 

 These pages may be accessed in two ways 
 Direct memory reference: e.g., *p = … 

 File operations: e.g., write(fd, …) 
 

 Must map file descriptor and file offset to 
physical page and offset within page 
 Data structure is conceptually similar to page table 

 But there’s no page table for files! 

 Also, file can be small or very, very large 
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Radix Tree 



Unified abstraction: address space 

 Each file has an address space: 0 … file size 

 Each block device (e.g., disk) that caches data 
in memory: 0 … device size 

 Each process: 0 … 4GB (x86) 

 

 struct address_space 
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Mechanisms for COW 

 COW abuses page protection bits in page 
tables  Must track original page protection 
of each page for each process 
 Easy: store original permissions and COW-or-not 

info in VMAs 

 

 COW shares pages   Must track page 
reference count for each physical page 
 Can’t use VMAs 
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Descriptor for each physical page 
• Each physical page has a page descriptor associated with it 

• Contains reference count for the page 

• Contains a pointer to the reverse map (struct address space or 
struct anon_vma) 

• Contains pointers to lru lists (to evict the page) 

• Easy conversation between physical page address to descriptor 
index 

 

struct page { 
 unsigned long flags;   
 atomic_t _count;  
 atomic_t _mapcount; 
 struct address_space *mapping; 
 pgoff_t index;   
 struct list_head lru;  
}; 



Mechanisms for Physical Page Reclaiming 

 Physical pages can be shared 
 File/device backed pages 

 COW pages 

 To replace a physical page, must find all 
mappings of the page and invalidate them  
reverse mappings 
 Field _mapcount: number of active mappings 

 Field mapping: address_space (file/device backed) 
or anon_vma (anonymous) 

• Least Significant Bit encodes the type (1 == 
anon_vma) 
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Reverse mapping for anonymous pages 

 Idea: maintain one reverse mapping per vma 
(logical object) rather than one reverse 
mapping per page 

 Based on observation most pages in VMA have 
the same set of mappers 

 

 anon_vma contains VMAs that may map a page 
 Kernel needs to search for actual PTE at runtime 
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Anonymous rmaps: anon_vma 



Reverse Mapping for File/Device-
backed Pages 

 Problem: anon_vma idea is good for limited sharing 
 Memory maps can be shared by large numbers of 

processes, e.g., libc 

 Linear search for every eviction is slow 

 Also, different processes may map different ranges of a 
memory map into their address space 

 Need efficient data structure 
 Basic operation: given an offset in an object (such as a 

file), or a range of offsets, return vmas that map that 
range 



i_mmap Priority Tree 
Part of  struct address_space in fs.h  

radix: start of interval 
heap: start + size 



Types of Pages 
 

 Unreclaimable: pages locked in memory 
(PG_locked) 

 Swappable: anonymous pages 

 Syncable: file/device backed pages, synchronize 
with original file they were loaded from (dirty) 

 Discardable: unused pages in memory caches, non-
dirty pages in page cache (clean) 

 



Algorithm for Page Reclaiming 

 Identify pages to evict using approximate LRU 
 All pages are on one of 2 LRU lists: active or 

inactive 

 A page access causes it to be switched to the active 
list (detect access via e.g., mmap(), page table bits) 

 A page that hasn’t been accessed in a while moves 
to the inactive list 

 Unmap all mappers of shared using reverse 
map (try_to_unmap function)  
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Backup Slides 

 

23 



Linux Memory Subsystem Outline 

 Memory data structures 

 Virtual Memory Areas (VMA) 

 Page Mappings and Page Fault Management 

 Reverse Mappings 

 Page Cache and Swapping 

 Physical Page Management 

 



Linux MM Objects Glossary 

 struct mm: memory descriptor (mm_types.h) 
 struct vm_area_struct mmap: vma (mm_types.h) 

 

 struct page: page descriptor (mm_types.h) 
 

 pgd, pud, pmd, pte: pgtable entries (arch/x86/include/asm/page.h, 
page_32.h, pgtable.h, pgtable_32.h) 
 pgd: page global directory 
 pud page upper directory 
 pmd: page middle directory 
 pte: page table entry 

 

 struct anon_vma: anon vma reverse map (rmap.h) 
 struct prio_tree_root i_mmap: priority tree reverse map (fs.h) 

 

 struct radix_tree_root page_tree: page cache radix tree  (fs.h) 



The mm_struct Structure 

 Main memory descriptor 
 One per address space 

 Each task_struct has a pointer to one 

 May be shared between tasks (e.g., threads) 

 Contains two main substructures 
 Memory map of virtual memory areas (vma) 

 Pointer to arch specific page tables 

 Other data, e.g., locks, reference counts, accounting 
information 



struct mm_struct 
struct mm_struct { 
 struct vm_area_struct * mmap; /* list of VMAs */ 
 struct rb_root mm_rb; 
 struct vm_area_struct * mmap_cache; /* last find_vma result */ 
 unsigned long mmap_base;  /* base of mmap area */ 
 unsigned long task_size;  /* size of task vm space */ 
 pgd_t * pgd; 
 atomic_t mm_users;  /* How many users with user space? */ 
 atomic_t mm_count;  /* How many references to "struct 
mm_struct */ 
 int map_count;   /* number of VMAs */ 
 struct rw_semaphore mmap_sem; 
 spinlock_t page_table_lock;  /* Protects page tables and some 
counters */ 
 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 
 unsigned long hiwater_vm; /* High-water virtual memory usage */ 
 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 
 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 
 cpumask_t cpu_vm_mask; 
 unsigned long flags; /* Must use atomic bitops to access the bits */ 
}; 



struct vm_operations_struct 

struct vm_operations_struct { 
 void (*open)(struct vm_area_struct * area); 
 void (*close)(struct vm_area_struct * area); 
 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 
 
 /* notification that a previously read-only page is about to become 
  * writable, if an error is returned it will cause a SIGBUS */ 
 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 
 
 /* called by access_process_vm when get_user_pages() fails, typically 
  * for use by special VMAs that can switch between memory and 
hardware 
  */ 
 int (*access)(struct vm_area_struct *vma, unsigned long addr, 
        void *buf, int len, int write); 
}; 



Demand Fetching via Page Faults 

http://duartes.org/gustavo/blog/post/how-the-kernel-
manages-your-memory 



Fault Handling 

 Entry point: handle_pte_fault (mm/memory.c) 

 Identify which VMA faulting address falls in 

 Identify if VMA has registered a fault 
handler 

 Default fault handlers 
 do_anonymous_page: no page and no file 

 do_linear_fault: vm_ops registered? 

 do_swap_page: page backed by swap 

 do_nonlinear_fault: page backed by file 

 do_wp_page: write protected page (CoW) 

 



The Page Fault Handler 

Complex logic: 
easier to read 
code than read a 
book! 



Copy on Write 

 PTE entry is marked as un-writeable 

 But VMA is marked as writeable 

 Page fault handler notices difference 
 Must mean CoW 

 Make a duplicate of physical page 

 Update PTEs, flush TLB entry 

 do_wp_page 



Which page to map when no PTE? 
 If PTE doesn’t exist for an anonymous mapping, its easy 

 Map standard zero page 

 Allocate new page (depending on read/write) 
 

 What if mapping is a memory map? Or shared memory? 
 Need some additional data structures to map logical object to 

set of pages 

 Independent of memory map of individual task 
 

 The address_space structure 
 One per file, device, shared memory segment, etc. 

 Mapping between logical offset in object to page in memory 

 Pages in memory are called “page cache” 

 Files can be large: need efficient data structure 



Page Table Structure 



Working with Page Tables 

 Access page table through mm_struct->pg_d 
 Must to a recursive walk, pgd, pud, pmd, pte 

 Kernel includes code to assist walking 
 mm/pagewalk.c: walk_page_range 
 Can specific your own function to execute for each 

entry 

 Working with PTE entries 
 Lots of macros provided (asm/pgtable.h, page.h) 
 Set/get entries, set/get various bits 
 E.g., pte_mkyoung(pte_t): clear accessed bit, 

pte_wrprotect(pte_t): clear write bit 
 Must also flush TLB whenever entries are changed 

• include/asm-generic/tkb.h: tlb_remove_tlb_entry(tlb) 



Reverse Mappings 

 Problem: how to swap out a shared mapping? 
 Many PTEs may point to it 
 But, we know only identity of physical page 

• Could maintain reverse PTE 
• i.e., for every page, list of PTEs that point to it 
• Could get large. Very inefficient. 

 Solution: reverse maps 
 Anonymous reverse maps: anon_vma 
 Idea: maintain one reverse mapping per vma (logical object) 

rather than one reverse mapping per page 
 Based on observation most pages in VMA or other logical 

object (e.g., file) have the same set of mappers 
 rmap contains VMAs that may map a page 
 Kernel needs to search for actual PTE at runtime 



anon_vma in Action 

Reference: Virtual Memory II: the return of objrmap. 

http://lwn.net/Articles/75198/ 



anon_vma in Action 

Reference: Virtual Memory II: the return of objrmap 

http://lwn.net/Articles/75198/ 



When is PFRA Invoked? 

Invoked on three different 
occasions: 
 Kernel detects low on memory 

condition 
• E.g., during alloc_pages 

 Periodic reclaiming 
• kernel thread kswapd 

 Hibernation reclaiming 
• for suspend-to-disk 

 



Page Frame Reclaiming Algorithm 



The Swap Area Descriptor 



The Swap Cache 

 Goal: prevent race conditions due to concurrent 
page-in and page-out 

 Solution: page-in and page-out serialized through 
a single entity: swap cache 

 Page to be swapped out simply moved to cache 

 Process must check if swap cache has a page 
when it wants to swap in 
 If the page is there in the cache already: minor page 

fault 

 If page requires disk activity: major page fault 



The Swap Cache 



Page Allocation 

 Buddy Allocator 

 SLOB: simple list of blocks 

 SLAB allocator: data structure specific 

 SLUB: efficient SLAB 

 



Allocating a Physical Page 

 Physical memory is divided into “zones” 
 ZONE_DMA: low order memory (<16MB) certain older devices 

can only access so much 

 ZONE_NORMAL: normal kernel memory mapping into the 
kernel’s address space 

 ZONE_HIGHMEM: high memory not mapped by kernel. 
Identified through (struct page *). Must create temporary 
mapping to access 

 

 To allocate, use kmalloc or related set of functions. 
Specify zone and options in mask 
 kmalloc, __get_free_pages, __get_free_page, 

get_zeroed_page: return virtual address (must be mapped) 

 alloc_pages, alloc_page: return struct page * 

 

 

 

 


