
W4118: virtual memory

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

1

Background: memory hierarchy

 Levels of memory in computer system

disk

memory

cache

registers

size
speed

cost

<100 ns

a few cycles

< 1 cycle

a few ms

2

Virtual memory motivation

 Previous approach to memory management
 Must completely load user process in memory
 One large AS or too many AS out of memory

 Observation: locality of reference
 Temporal: access memory location accessed just now
 Spatial: access memory location adjacent to locations

accessed just now

 Implication: process only needs a small part of address
space at any moment!

3

Virtual memory idea

 OS and hardware produce illusion of a disk as
fast as main memory

 Process runs when not all pages are loaded in
memory
 Only keep referenced pages in main memory

 Keep unreferenced pages on slower, cheaper backing
store (disk)

 Bring pages from disk to memory when necessary

4

Virtual memory illustration

Virtual memory operations

 Detect reference to page on disk

 Recognize disk location of page

 Choose free physical page
 OS decision: if no free page is available, must

replace a physical page

 Bring page from disk into memory
 OS decision: when to bring page into memory?

 Above steps need hardware and software
cooperation

5

Detect reference to page on disk and
recognize disk location of page

 Overload the valid bit of page table entries

 If a page is on disk, clear valid bit in
corresponding page table entry and store disk
location using remaining bits

 Page fault: if bit is cleared then referencing
resulting in a trap into OS

 In OS page fault handler, check page table
entry to detect if page fault is caused by
reference to true invalid page or page on disk

6

7

Steps in handling a page fault

8

OS decisions

 Page selection
 When to bring pages from disk to memory?

 Page replacement
 When no free pages available, must select victim

page in memory and throw it out to disk

9

Page selection algorithms

 Demand paging: load page on page fault
 Start up process with no pages loaded
 Wait until a page absolutely must be in memory

 Request paging: user specifies which pages are
needed
 Requires users to manage memory by hand
 Users do not always know best
 OS trusts users (e.g., one user can use up all memory)

 Prepaging: load page before it is referenced
 When one page is referenced, bring in next one
 Do not work well for all workloads

• Difficult to predict future

10

Page replacement algorithms

 Optimal: throw out page that won’t be used for
longest time in future

 Random: throw out a random page

 FIFO: throw out page that was loaded in first

 LRU: throw out page that hasn’t been used in
longest time

10

Evaluating page replacement algorithms

 Goal: fewest number of page faults

 A method: run algorithm on a particular string
of memory references (reference string) and
computing the number of page faults on that
string

 In all our examples, the reference string is

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

11

Optimal algorithm

 Throw out page that won’t be used for longest
time in future

1 2 3 4 1 2 5 1 2 3 4 5

1 1

2

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

5

1

2

3

5

1

2

3

5

1

2

3

5

4

2

3

5

4

2

3

5

6 page faults

Problem: difficult to predict future!

12

Fist-In-First-Out (FIFO) algorithm

 Throw out page that was loaded in first

1 2 3 4 1 2 5 1 2 3 4 5

1 1

2

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

5

2

3

4

5

1

3

4

5

1

2

4

5

1

2

3

4

1

2

3

4

5

2

3

10 page faults

Problem: ignores access patterns

13

Fist-In-First-Out (FIFO) algorithm
(cont.)

 Results with 3 physical pages

1 2 3 4 1 2 5 1 2 3 4 5

1 1

2

1

2

3

4

2

3

4

1

3

4

1

2

5

1

2

5

1

2

5

1

2

5

3

2

5

3

4

5

3

4

9 page faults

Problem: fewer physical pages fewer faults!

belady anomaly
14

15

Ideal curve of # of page faults v.s. # of
physical pages

16

FIFO illustrating belady’s anomaly

Least-Recently-Used (LRU) algorithm

 Throw out page that hasn’t been used in
longest time. Can use FIFO to break ties

1 2 3 4 1 2 5 1 2 3 4 5

1 1

2

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

1

2

5

4

1

2

5

4

1

2

5

4

1

2

5

3

1

2

4

3

5

2

4

3

8 page faults

Advantage: with locality, LRU approximates Optimal

17

Implementing LRU: hardware

 A counter for each page

 Every time page is referenced, save system
clock into the counter of the page

 Page replacement: scan through pages to find
the one with the oldest clock

 Problem: have to search all pages/counters!

18

19

Implementing LRU: software

 A doubly linked list of pages

 Every time page is referenced, move it to the
front of the list

 Page replacement: remove the page from back
of list
 Avoid scanning of all pages

 Problem: too expensive
 Requires 6 pointer updates for each page reference

 High contention on multiprocessor

20

LRU: concept vs. reality

 LRU is considered to be a reasonably good
algorithm

 Problem is in implementing it efficiently
 Hardware implementation: counter per page, copied per

memory reference, have to search pages on page
replacement to find oldest

 Software implementation: no search, but pointer swap on
each memory reference, high contention

 In practice, settle for efficient approximate LRU
 Find an old page, but not necessarily the oldest

 LRU is approximation anyway, so approximate more

Clock (second-chance) algorithm

 Goal: remove a page that has not been
referenced recently
 good LRU-approximate algorithm

 Idea
 A reference bit per page

 Memory reference: hardware sets bit to 1

 Page replacement: OS finds a page with reference
bit cleared

 OS traverses all pages, clearing bits over time

 Combining FIFO with LRU: give the page FIFO
selects to replace a second chance

21

Clock algorithm implementation

 OS circulates through pages, clearing
reference bits and finding a page with
reference bit set to 0

 Keep pages in a circular list = clock

 Pointer to next victim = clock hand

22

23

A single step in Clock algorithm

Clock algorithm example

1 2 3 4 1 2 5 1 2 3 4 5

10 page faults

Advantage: simple to implemet!

1 1 1

2

1

1

1

2

3

1

1

1

1

2

3

4

1

1

1

1

1

2

3

4

1

1

1

1

1

2

3

4

1

1

1

1

5

2

3

4

1

0

0

0

5

1

3

4

1

1

0

0

5

1

2

4

1

1

1

0

5

1

2

3

1

1

1

1

4

1

2

3

1

0

0

0

4

5

2

3

1

1

0

0

24

25

Clock algorithm extension

 Problem of clock algorithm: does not
differentiate dirty v.s. clean pages

 Dirty page: pages that have been modified and
need to be written back to disk
 More expensive to replace dirty pages than clean

pages

 One extra disk write (5 ms)

Clock algorithm extension (cont.)

 Use dirty bit to give preference to dirty pages

 On page reference
 Read: hardware sets reference bit
 Write: hardware sets dirty bit

 Page replacement
 reference = 0, dirty = 0 victim page
 reference = 0, dirty = 1 skip (don’t change)
 reference = 1, dirty = 0 reference = 0, dirty = 0
 reference = 1, dirty = 1 reference = 0, dirty = 1
 advance hand, repeat
 If no victim page found, run swap daemon to flush

unreferenced dirty pages to the disk, repeat

26

27

Summary of page replacement algorithms

 Optimal: throw out page that won’t be used for longest time
in future
 Best algorithm if we can predict future
 Good for comparison, but not practical

 Random: throw out a random page
 Easy to implement
 Works surprisingly well. Why? Avoid worst case

 Random
 FIFO: throw out page that was loaded in first

 Easy to implement

 Fair: all pages receive equal residency
 Ignore access pattern

 LRU: throw out page that hasn’t been used in longest time
 Past predicts future
 With locality: approximates Optimal
 Simple approximate LRU algorithms exist (Clock)

Current trends in memory management

 Less critical now
 Personal computer v.s. time-sharing machines
 Memory is cheap Larger physical memory

 Virtual to physical translation is still useful
 “All problems in computer science can be solved using

another level of indirection” David Wheeler

 Larger page sizes (even multiple page sizes)
 Better TLB coverage
 Smaller page tables, less page to manage
 Internal fragmentation

 Larger virtual address space
 64-bit address space
 Sparse address spaces

 File I/O using the virtual memory system
 Memory mapped I/O: mmap()

28

