
W4118: advanced scheduling 

Instructor: Junfeng Yang 

•References: Modern Operating Systems (3rd edition), Operating Systems 
Concepts (8th edition),  previous W4118, and OS at MIT, Stanford, and UWisc 
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Motivation 

 No one-size-fits-all scheduler 
 Different workloads  

 Different environment 
 

 Building a general scheduler that works well 
for all is difficult! 

 

 Real scheduling algorithms are often more 
complex than the simple scheduling algorithms 
we’ve seen 



Combining scheduling algorithms 

 Multilevel queue scheduling: ready queue is 
partitioned into multiple queues 

 

 Each queue has its own scheduling algorithm 
 Foreground processes: RR 

 Background processes: FCFS 
 

 Must choose scheduling algorithm to schedule 
between queues.  Possible algorithms 
 RR between queues 

 Fixed priority for each queue 
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Multiprocessor scheduling issues 

 Shared-memory Multiprocessor 

 

 

 

 

 

 

 

 How to allocate processes to CPU? 

CPU0 CPU1 CPU2 CPU3 

processes 
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Symmetric multiprocessor 

 Architecture 

 

 

 

 

 

 

 

 Small number of CPUs 

 Same access time to main memory 

 Private cache 

CPU0 CPU1 CPU2 CPU3 

Shared Memory 

$ $ $ $ 
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Global queue of processes 

 One ready queue shared across all CPUs 
 
 
 
 
 
 

 Advantages 
 Good CPU utilization 
 Fair to all processes 

 Disadvantages 
 Not scalable (contention for global queue lock) 
 Poor cache locality 

 Linux 2.4 uses global queue 

CPU0 CPU1 CPU2 CPU3 

7 



Per-CPU queue of processes 

 Static partition of processes to CPUs 
 
 
 
 
 

 Advantages 
 Easy to implement 
 Scalable (no contention on ready queue) 
 Better cache locality 

 Disadvantages 
 Load-imbalance (some CPUs have more processes) 

• Unfair to processes and lower CPU utilization 

CPU0 CPU1 CPU2 CPU3 
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Hybrid approach 

 Use both global and per-CPU queues 

 Balance jobs across queues 

 

 

 

 

 

 

 Processor Affinity 
 Add process to a CPU’s queue if recently run on the CPU 

• Cache state may still present 

 Linux 2.6 uses a very similar approach 

CPU0 CPU1 CPU2 CPU3 
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SMP: “gang” scheduling 

 Multiple processes need coordination 
 Should be scheduled simultaneously 

 
 
 
 
 
 
 
 

 Scheduler on each CPU does not act independently 
 Coscheduling (gang scheduling): run a set of processes 

simultaneously 
 Global context-switch across all CPUs 

CPU0 CPU1 CPU2 CPU3 
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Real-time scheduling 

 Real-time processes have timing constraints 
 Expressed as deadlines or rate requirements 

 E.g. gaming, video/music player, autopilot… 
 

 Hard real-time systems – required to complete a 
critical task within a guaranteed amount of time 

 Soft real-time computing – requires that critical 
processes receive priority over less fortunate 
ones 

 

 Linux supports soft real-time 
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xv6 scheduling 

 One global queue across all CPUs 

 

 Local scheduling algorithm: RR 

 

 scheduler() in proc.c 

13 



Linux scheduling overview 

 Multilevel Queue Scheduler 
 Each queue associated with a priority 

 A process’s priority may be adjusted dynamically 
 

 Two classes of processes 
 Soft real-time processes: always schedule highest 

priority processes 

• FCFS (SCHED_FIFO) or RR (SCHED_RR) for processes 
with same priority 

 Normal processes: priority with aging 

• RR for processes with same priority (SCHED_NORMAL) 
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Linux scheduling 
policies and priorities 

 Soft real-time scheduling policies 
 SCHED_FIFO (FCFS) 
 SCHED_RR (round robin) 
 Always get priority over non real time tasks 
 100 static priority levels (1..99) 

 Normal scheduling policies 
 SCHED_NORMAL: standard 

• SCHED_OTHER in POSIX 

 SCHED_BATCH: CPU bound 
 SCHED_IDLE: lower priority 
 Static priority is 0 
 40 dynamic priority levels (-20..0..19) 

 sched_setscheduler(), nice() 

Normal 0 

Real Time 3  

Real Time 99 

Real Time 2  

Real Time 1  

…
 

Normal 19 

Normal -20 

…
 

…
 



Linux scheduler implementations 

 Linux 2.4: global queue, O(N) 
 Simple 
 Poor performance on multiprocessor/core 
 Poor performance when n is large 

 

 Linux 2.5: O(1) scheduler, per-CPU run queue 
 Solves performance problems in the old scheduler 
 Complex, error prone logic to boost interactivity 
 No guarantee of fairness 

 

 Linux 2.6: completely fair scheduler (CFS) 
 Fair 
 Naturally boosts interactivity 
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Problems with O(1) scheduler 

 Priorities for interactive processes? 
 Higher priorities than CPU-bound processes 

 How to detect interactive processes? 

 Heuristics: more sleep/wait time  more 
interactive  higher priorities 

 Ad hoc, can be unfair 
 

 Fairness for processes with diff. priorities? 
 Convert priority to time slice 

 Higher priorities get bigger time slices 

 Ad hoc, can be unfair 
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Ideal fair scheduling 

 Infinitesimally small time slice 

 n processes: each runs uniformly at 1/nth rate 

 

 

 

 

 
 “Ideal multitasking CPU” 

 Weighted fair scheduling 

 Fair queuing [John Nagle 1985], stride scheduling 
[Carl A. Waldspurger, 1995] 

 

 

•1 Process 

•3 Processes 
1/3rd progress 



Pros and cons 

 Pros 
 Fair 

 Naturally boosts interactivity 
 

 Cons 
 Too many context switches! 

 Scanning all processes to find the next is O(N) 
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 Approximate fair scheduling 
 Run each process once per schedule latency period 

• sysctl_sched_latency 

 Time slice for process Pi: T * Wi/(Sum of all Wi) 
• sched_slice() 

 Too many processes? 
 Lower bound on smallest time slice 
 Schedule latency = lower bound * number of procs 

 

 Introduced in Linux 2.6.23 

Completely Fair Scheduler (CFS) 



Picking the next process 

 Pick proc with weighted minimum runtime so far 
 Virtual runtime: task->vruntime += executed time / Wi 

 Example 
 P1: 1 ms burst per 10 ms (schedule latency) 

 P2 and P3 are CPU-bound 

 All processes have the same weight (1) 

Ready P1 

P2 

P3 

Slice 3ms 5ms 

P2 

P3 P2 

P3 P1 

P2 

P3 

1 
5 
5 

5 
0 

3ms 



Finding proc with minimum runtime fast 

 Red-black tree 
 Balanced binary search tree 

 Ordered by vruntime as key 

 O(lgN) insertion, deletion, update,  O(1): find min 

cfs_rq->min_vruntime 

300 

150 

100 

400 

410 30 

 Tasks move from left of tree to the right 
 min_vruntime caches smallest value 
 Update vruntime and min_vruntime 

 When task is added or removed 
 On every timer tick, context switch 

 



Converting nice level to weight 

 Table of nice level to weight 
 static const int prio_to_weight[40] (sched.h) 

 Nice level changes by 1  10% weight 

 

 Pre-computed to avoid 
 Floating point operations 

 Runtime overhead 
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Hierarchical, modular scheduler 

        class = sched_class_highest; 

        for ( ; ; ) { 

                p = class->pick_next_task(rq); 

                if (p) 

                        return p; 

                /* 

                 * Will never be NULL as the idle class always 

                 * returns a non-NULL p: 

                 */ 

                class = class->next; 

        } 

•Code from kernel/sched/core.c: 



sched_class Structure 
static const struct sched_class fair_sched_class = { 

        .next                   = &idle_sched_class, 

        .enqueue_task           = enqueue_task_fair, 

        .dequeue_task           = dequeue_task_fair, 

        .yield_task             = yield_task_fair, 

        .check_preempt_curr     = check_preempt_wakeup, 

        .pick_next_task         = pick_next_task_fair, 

        .put_prev_task          = put_prev_task_fair, 

        .select_task_rq         = select_task_rq_fair, 

        .load_balance           = load_balance_fair, 

        .move_one_task          = move_one_task_fair, 

        .set_curr_task          = set_curr_task_fair, 

        .task_tick              = task_tick_fair, 

        .task_fork              = task_fork_fair, 

        .prio_changed           = prio_changed_fair, 

        .switched_to            = switched_to_fair, 

} 



The runqueue 

 All run queues available in array runqueues, one per CPU 
 struct rq (kernel/sched/sched.h) 

 Contains per-class run queues (RT, CFS) and params 
• E.g., CFS: a red-black tree of task_struct (struct rb_root 

tasks_timeline) 
• E.g., RT: array of active priorities 
• Data structure rt_rq, cfs_rq, 

 struct sched_entity (include/linux/sched.h) 
 Member of task_struct, one per scheduler class 
 Maintains struct rb_node run_node, other per-task params 

 Current scheduler for task is specified by 
task_struct.sched_class 
 Pointer to struct sched_class 
 Contains functions pertaining to class (object-oriented code) 



Adding a new Scheduler Class 

 The Scheduler is modular and extensible 
 New scheduler classes can be installed 

 Each scheduler class has priority within hierarchical scheduling 
hierarchy 

 Linked list of sched_class sched_class.next reflects priority 

 Core functions: kernel/sched/core.c, kernel/sched/sched.h, 
include/linux/sched.h 

 Additional classes: kernel/sched/fair.c, rt.c 

 Process changes class via sched_setscheduler syscall 

 Each class needs 
 New runqueue structure in main struct rq 

 New sched_class structure implementing scheduling functions 

 New sched_entity in the task_struct 

 



Backup slides 

 



Linux O(1) scheduler goals 

 Avoid starvation 
 

 Boost interactivity 
 Fast response to user despite high load 
 Achieved by inferring interactive processes and dynamically 

increasing their priorities 
 

 Scale well with number of processes 
 O(1) scheduling overhead 

 

 SMP goals 
 Scale well with number of processors 
 Load balance: no CPU should be idle if there is work 
 CPU affinity: no random bouncing of processes 

 

 Reference: Linux/Documentation/sched-design.txt 
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Algorithm overview 

 Multilevel Queue Scheduler 
 Each queue associated with a priority 

 A process’s priority may be adjusted dynamically 
 

 Two classes of processes 
 Real-time processes: always schedule highest priority 

processes 

• FCFS (SCHED_FIFO) or RR (SCHED_RR) for processes 
with same priority 

 Normal processes: priority with aging 

• RR for processes with same priority (SCHED_NORMAL) 

• Aging is implemented efficiently 
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runqueue data structure 

 Two arrays of priority queues 
 active and expired 

 Total 140 priorities [0, 140)  

 Smaller integer = higher priority 
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Scheduling algorithm for normal processes 

1. Find highest priority non-empty queue in rq-
>active; if none, simulate aging by swapping 
active and expired 

2. next = first process on that queue 

3. Adjust next’s priority 

4. Context switch to next 

5. When next used up its time slice, insert next 
to the right queue the expired array and call 
schedule() again 
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Aging: the traditional algorithm 

for(pp = proc; pp < proc+NPROC; pp++) { 

  if (pp->prio != MAX) 

    pp->prio++; 

  if (pp->prio > curproc->prio) 

    reschedule(); 

} 

Problem: O(N).  Every process is examined on 
each schedule() call! 

This code is taken almost verbatim from 6th 
Edition Unix, circa 1976. 



Simulate aging 

 Swapping active and expired gives low 
priority processes a chance to run 

 

 Advantage: O(1) 

 Processes are touched only when they 
start or stop running 
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Find highest priority non-empty queue 

 Time complexity: O(1) 
 Depends on the number of priority levels, not 

the number of processes 
 

 Implementation: a bitmap for fast look up 
 140 queues  5 integers 
 A few compares to find the first non-zero bit 
 Hardware instruction to find the first 1-bit 

• bsfl on Intel 
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Real-time scheduling 

 Linux has soft real-time scheduling 
 No hard real-time guarantees 

 All real-time processes are higher priority 
than any conventional processes 

 Processes with priorities [0, 99] are real-time 

 Process can be converted to real-time via 
sched_setscheduler system call 
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Real-time policies 

 First-in, first-out: SCHED_FIFO 

 Static priority 

 Process is only preempted for a higher-priority 
process  

 No time quanta; it runs until it blocks or yields 
voluntarily 

 RR within same priority level 

 Round-robin: SCHED_RR 

 As above but with a time quanta 

 Normal processes have SCHED_NORMAL 
scheduling policy 
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Multiprocessor scheduling 

 Per-CPU runqueue 
 

 Possible for one processor to be idle while 
others have jobs waiting in their run queues 

 

 Periodically, rebalance runqueues 
 Migration threads move processes from one runque 

to another 
 

 The kernel always locks runqueues in the same 
order for deadlock prevention 
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Adjusting priority 

 Goal: dynamically increase priority of interactive 
process 

 

 How to determine interactive? 
 Sleep ratio 
 Mostly sleeping: I/O bound 
 Mostly running: CPU bound 

 

 Implementation: per process sleep_avg 
 Before switching out a process, subtract from sleep_avg 

how many ticks a task ran 
 Before switching in a process, add to sleep_avg how many 

ticks it was blocked up to MAX_SLEEP_AVG  (10 ms) 
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Calculating time slices 

 Stored in field time_slice in struct task_struct 
 

 Higher priority processes also get bigger time-slice 
 

 task_timeslice() in sched.c 
 If (static_priority < 120) time_slice = (140-static_priority) * 

20 

 If (static_priority >= 120) time_slice = (140-static_priority) 
* 5 
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Example time slices 

Priority: Static Pri Niceness Quantum 

Highest 100 -20 800 ms 

High 110 -10 600 ms 

Normal 120 0 100 ms 

Low 130 10 50 ms 

Lowest 139 20 5 ms 
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Priority partition 

 Total 140 priorities [0, 140)  
 Smaller integer = higher priority 

 Real-time:  [0,100) 

 Normal: [100, 140) 
 

 MAX_PRIO and MAX_RT_PRIO 

 include/linux/sched.h 
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Priority related fields in struct task_struct 

 static_prio: static priority set by 
administrator/users 
 Default: 120 (even for realtime processes) 
 Set use sys_nice() or sys_setpriority() 

• Both call set_user_nice() 
 

 prio: dynamic priority 
 Index to prio_array 

 

 rt_priority: real time priority 
 prio = 99 – rt_priority 

 

 include/linux/sched.h 
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Bookkeeping on each timer interrupt 

 scheduler_tick() 
 Called on each tick 

• timer_interrupt  do_timer_interrupt  do_timer_interrupt_hook 
 update_process_times 

 

 If realtime and SCHED_FIFO, do nothing 
 SCHED_FIFO is non-preemptive 

 If realtime and SCHED_RR and used up time slice, move to 
end of rq->active[prio] 

 If SCHED_NORMAL and used up time slice 
 If not interactive or starving expired queue, move to end of rq-

>expired[prio] 

 Otherwise, move to end of rq->active[prio] 

• Boost interactive 

 Else // SCHED_NORMAL, and not used up time slice 
 Break large time slice into pieces 

TIMESLICE_GRANULARITY 

 



Processor affinity 

 Each process has a bitmask saying what CPUs 
it can run on 
 By default, all CPUs 

 Processes can change the mask 

 Inherited by child processes (and threads), thus 
tending to keep them on the same CPU 

 

 Rebalancing does not override affinity 
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 To keep all CPUs busy, load balancing pulls 
tasks from busy runqueues to idle runqueues. 

 If schedule finds that a runqueue has no 
runnable tasks (other than the idle task), it 
calls load_balance 

 load_balance also called via timer 
 schedule_tick calls rebalance_tick 

 Every tick when system is idle 

 Every 100 ms otherwise 
 

Load balancing 
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 load_balance looks for the busiest runqueue 
(most runnable tasks) and takes a task that 
is (in order of preference): 
 inactive (likely to be cache cold) 
 high priority 

 load_balance skips tasks that are: 
 likely to be cache warm (hasn't run for 

cache_decay_ticks time) 
 currently running on a CPU 
 not allowed to run on the current CPU (as 

indicated by the cpus_allowed bitmask in 
the task_struct) 

Load balancing (cont.) 
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Optimizations 

 If next is a kernel thread, borrow the MM 
mappings from prev 
 User-level MMs are unused. 

 Kernel-level MMs are the same for all kernel 
threads 

 If prev == next 
 Don’t context switch 
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CFS: Scheduling Latency 

 Equivalent to time slice across all processes 
 Approximation of infinitesimally small 
 To set/get type: $ sysctl kernel.sched_latency_ns 

 Each process gets equal proportion of slice 
 Timeslice(task) = latency/nr_tasks 
 Lower bound on smallest slice 
 To set/get: $ sysctl kernel.sched_min_granularity_ns 
 Too many tasks? sched_latency = nr_tasks*min_granularity 

 Priority through proportional sharing 
 Task gets share of CPU proportional to relative priority 
 Timeslice(task) = Timeslice(t) * prio(t) / 

Sum_all_t’(prio(t’)) 

 Maximum wait time bounded by scheduling latency 
 



CFS: Picking the Next Process 

 Pick task with minimum runtime so far 
 Tracked by vruntime member variable 
 Every time process runs for t ns, vruntime +=t (weighed 

by process priority) 

 How does this impact I/O vs CPU bound tasks 
 Task A: needs 1 msec every 100 sec (I/O bound) 
 Task B, C: 80 msec every 100 msec (CPU bound) 
 After 10 times that A, B, and C have been scheduled 

• vruntime(A) = 10, vruntime(B, C) = 800 
• A gets priority, B and C get large time slices (10msec each) 

 Problem: how to efficiently track min runtime? 
 Scheduler needs to be efficient 
 Finding min every time is an O(N) operation 


