
W4118: xv6 and Linux processes

Instructor: Junfeng Yang

xv6 processes

 How to create the first user process

 fork()

 exit()

 wait()

 kill()

 exec()

 sleep()

 wakeup()

2

Create the first user process

 Idea: create a fake trap frame, then reuse
trap return mechanism

 userinit() in proc.c
 allocproc() in vm.c allocates PCB, sets trap return

address to trapret in trapasm.S, and sets “saved”
kernel CPU context

 inituvm() in vm.c sets up user space
• Allocates a physical page for the process, sets up

page table, and copies initcode

 Set up fake trap frame

 Set up current working directory

3

Init process’s kernel stack

4

SS=SEG_UDATA

ESP=PGSIZE

EFLAGS=FL_IF

CS=SEG_UDATA

EIP=0

Err code=0

Trapno=0

DS=SEG_UDATA

…

EAX=0

…

trapret

forkret

struct trapframe

EBP=0

EBX=0

ESI=0

EDI=0

struct context

“return” address
“saved” EIP

forkret: // proc.c
 …
 ret

swtch: // swtch.S
 …
 popl %edi
 popl %esi
 popl %ebx
 popl %ebp
 ret

trapret: // trapasm.S
 popal
 …
 iret

proc->context

initcode.S

 Assembly code that
 Sets up system call arguments
 Moves SYS_exec to EAX
 Traps into kernel via INT 64

 Execute init generated from init.c
 Compiled and linked into kernel

 Makefile

// equivalent C code
char init[] = “/init\0”;
char *argv = {init, 0};
exec(init, argv);
for(;;) exit();

5

fork()

 sysproc.c, proc.c

 Allocate new PCB and stack
 Set up EIP of child to forkret trapret

 Copy address space
 Copy both page tables and physical pages

 Can you do better?

 Set parent pointer

 Copy parent’s trap frame

 Change EAX in trap frame so that child returns 0

 Copy open file table

6

Child process’s kernel stack

7

SS
ESP

EFLAGS
CS
EIP

Err code or 0
trapno

DS
…

EAX=0
…

trapret
forkret

struct trapframe

EBP
EBX
ESI
EDI

struct context

“return” address
“saved” EIP

forkret: // proc.c
 …
 ret

swtch: // swtch.S
 …
 popl %edi
 popl %esi
 popl %ebx
 popl %ebp
 ret

trapret: // trapasm.S
 popal
 …
 iret

proc->context

exit()

 sysproc.c, proc.c

 Close open files

 Decrement reference count to current
working directory

 Wake up waiting parents

 Re-parent children to init

 Set state to zombie

 Yield to scheduler

8

wait()

 sysproc.c, proc.c

 Find a zombie child by iterating process table
 Can you do better?

 If there is one,
 Free their PCB and other resources

 Return child PID

 If no child or killed, return -1

 Repeat

9

kill()

 sysproc.c, proc.c

 Set proc->killed to 1

 At various places in kernel, check this flag,
and if process is killed, exit
 trap() in trap.c

 sys_sleep() in sysproc.c

 piperead() & pipewrite() in pipe.c

 proc.c

10

exec()
 sysfile.c, exec.c
 Set up user page table
 Load segments of the executable file into memory
 Set up stack and arguments to main(int argc, char* argv[])

 Jump to entry point (main) of the executable

11

text

KERNBASE

data

inaccessible

heap (initially not
used)

0

arg N

…

arg 0

addr of argN

addr of arg0

…

addr of addr of arg0

argc

0xFFFFFFFF

Null-terminated
string

argv[argc] 0

argv[0]

argv to main

fake ret addr

argc to main

stack (1 page)

sleep()

 proc.c

 Remember what we wait for (proc->chan)

 Set process state

 Yield to scheduler

12

wakeup()

 proc.c

 Scan through all processes

 Wake up those waiting on chan

13

Linux processes

 Relevant source files

 Linux process control block

 Process queues
 Context switching
 Creating and destroying processes

14

Header Files

 The major header files used for process
management are:

include/linux/sched.h – declarations for most task
data structures

include/linux/threads.h – some configuration
constants (unrelated to threads)

include/linux/times.h – time structures
include/linux/time.h – time declarations
include/linux/timex.h – wall clock time declarations

 The source code for process and thread
management is in the kernel directory:
sched.c – task scheduling routines
signal.c – signal handling routines
fork.c – process/thread creation routines
exit.c – process exit routines
time.c – time management routines
timer.c – timer management routines

 The source code for the program initiation
routines is in fs/exec.c.

Source Code

Linux processes

 Relevant source files

 Linux process control block

 Process queues
 Context switching
 Creating and destroying processes

17

Linux: Processes or Threads?

 Linux uses a neutral term: tasks
 Tasks represent both processes and threads

 Linux view
 Threads: processes that share address space
 Linux "threads" (tasks) are really "kernel threads“

 Lighter-weight than traditional processes
 File descriptors, VM mappings need not be copied
 Implication: file table and VM table not part of

process descriptor

Stacks and task-descriptors

 To manage multitasking, the OS needs to use a data-
structure which can keep track of every task’s progress
and usage of the computer’s available resources (physical
memory, open files, pending signals, etc.)

 Such a data-structure is called a ‘process descriptor’ –
every active task needs one

 Every task needs its own ‘private’ stack
 So every task, in addition to having its own code and data,

will also have a stack-area that is located in user-space,
plus another stack-area that is located in kernel-space

 Each task also has a process-descriptor which is
accessible only in kernel-space

Kernel Stacks

 Why need a special kernel stack?
 Kernel can’t trust addresses provided by user

 Address may point to kernel memory

 Address may not be mapped

 Memory region may be swapped out from physical RAM

 Leftover data from kernel ops could be read by process

 Why a different stack for every process?
 What to do if a process sleeps while executing kernel

code?

 Wasn’t a problem up to Linux 2.4; not pre-emptive
 Need multiple kernel stacks for pre-emptive kernels

A task’s virtual-memory layout

User space

Kernel space

User-mode stack-area

Task’s code and data

Privilege-level 0

Privilege-level 3

Process
descriptor and
kernel-mode
stack

Shared runtime-libraries

Process Descriptor

 Process – dynamic, program in motion
 Kernel data structures to maintain "state"
 Descriptor, PCB (control block), task_struct
 Larger than you think! (about 1K)
 160+ fields
 Complex struct with pointers to others

 Type of info in task_struct
 state, id, priorities, locks, files, signals, memory

maps, locks, queues, list pointers, …

 Some details
 Address of first few fields hardcoded in asm
 Careful attention to cache line layout

The Linux process descriptor

 task_struct
state
*stack

flags

*mm

exit_code

*user

pid

*files

*parent

 mm_struct

*pgd

pagedir[]

 user_struct

 signal_struct

*signal

 files_struct

 Each process
 descriptor
contains many
 fields

 and some are
 pointers to
 other kernel
 structures

 which may
 themselves
 include fields
 that point to
 structures

 The task_struct is used to represent a task.
 The task_struct has several sub-structures

that it references:
tty_struct – TTY associated with the process
fs_struct – current and root directories associated

with the process
files_struct – file descriptors for the process
mm_struct – memory areas for the process
signal_struct – signal structures associated with the

process
user_struct – per-user information (for example,

number of current processes)

The Task Structure

 Process/Thread Context

 Linux uses part of a task’s kernel-stack

 page-frame to store thread information

 The thread_info includes a pointer to the
task’s process-descriptor data-structure

Task’s kernel-stack

Task’s thread-info

page-frame aligned

Task’s

process-descriptor

struct task_struct 4-KB

Finding a task’s ‘thread-info’

 During a task’s execution in kernel-mode, it’s very quick to
find that task’s thread_info object

 Just use two assembly-language instructions:

 movl $0xFFFFF000, %eax
 andl %esp, %eax

 Ok, now %eax = the thread-info’s base-address
 Masking off 13 bits of the stack yields thread_info
 Macro current_thread_info implements this computation
 thread_info points to task_struct
 current macro yields the task_struct
 current is not a static variable, useful for SMP

Finding task-related kernel-data

 Use a macro ‘task_thread_info(task)’ to get
a pointer to the ‘thread_info’ structure:

struct thread_info *info = task_thread_info(task);

 Then one more step gets you back to the
address of the task’s process-descriptor:

 struct task_struct *task = info->task;

 PID: 16-bit process ID
 task_structs are found by searching for pid

structures, which point to the task_structs. The pid
structures are kept in several hash tables, hashed by
different IDs:
 process ID
 thread group ID // pid of first thread in process
 process group ID // job control
 session ID // login sessions
 (see include/linux/pid.h)

 Allocated process IDs are recorded in a bitmap
representing around four million possible IDs.

 PIDs dynamically allocated, avoid immediate reuse

PID Hashes and Task Lookup

Process Relationships

 Processes are related
 Parent/child (fork()), siblings
 Possible to "re-parent"

• Parent vs. original parent

 Parent can "wait" for child to terminate

 Process groups
 Possible to send signals to all members

 Sessions
 Processes related to login

 Several pointers exist between
task_structs:
parent – pointer to parent process
children – pointer to linked list of child processes
sibling – pointer to task of "next younger sibling" of

current process

 children and sibling point to the task_struct
for the first thread created in a process.

 The task_struct for every thread in a
process has the same pointer values.

Task Relationships

Task States

From kernel-header: <linux/sched.h>

 #define TASK_RUNNING 0
 #define TASK_INTERRUPTIBLE 1
 #define TASK_UNINTERRUPTIBLE 2
 #define __TASK_STOPPED 4
 #define __TASK_TRACED 8
 #define EXIT_ZOMBIE 16
 #define EXIT_DEAD 32
 #define TASK_DEAD 64
 #define TASK_WAKEKILL 128
 #define TASK_WAKING 256

 TASK_RUNNING – the thread is running on the CPU or is
waiting to run

 TASK_INTERRUPTIBLE – the thread is sleeping and can be
awoken by a signal (EINTR)

 TASK_UNINTERRUPTIBLE – the thread is sleeping and
cannot be awakened by a signal

 __TASK_STOPPED – the process has been stopped by a
signal or by a debugger

 __TASK_TRACED – the process is being traced via the
ptrace system call

 TASK_DEAD – the process is being cleaned up and the
task is being deleted

 TASK_WAKEKILL – similar to TASK_UNINTERRUPTIBLE
with the ability to respond to fatal signals

 TASK_WAKING – someone is already waking the task

Task States

135 * We have two separate sets of flags: task->state
136 * is about runnability, while task->exit_state are

137 * about the task exiting. Confusing, but this way

138 * modifying one set can't modify the other one by

139 * mistake.

 EXIT_ZOMBIE – the process is exiting but has not yet

been waited for by its parent
 EXIT_DEAD – the process has exited and has been

waited for

Exit States

http://lxr.linux.no/linux+v2.6.18.8/include/linux/sched.h
http://lxr.linux.no/linux+v2.6.18.8/include/linux/sched.h
http://lxr.linux.no/linux+v2.6.18.8/include/linux/sched.h
http://lxr.linux.no/linux+v2.6.18.8/include/linux/sched.h
http://lxr.linux.no/linux+v2.6.18.8/include/linux/sched.h

Linux processes

 Relevant source files

 Linux process control block

 Process queues
 Context switching
 Creating and destroying processes

34

 The list_head is a generic list
structure with a set of services:
LIST_HEAD – declare and initialize

list head
list_add – add a list_head after item
list_add_tail – add a list_head before

item
list_del – remove list_head from list
list_del_init – remove and initialize

list_head
list_empty – is a list empty?
list_for_each, list_for_each_entry,

list_entry

List Operations

next

prev

The Kernel’s ‘task-list’

 Kernel keeps a list of process descriptors
 A ‘doubly-linked’ circular list is used
 The ‘init_task’ serves as a fixed header
 Other tasks inserted/deleted dynamically
 Tasks have forward & backward pointers,

implemented as fields in the ‘tasks’ field
 To go forward: task = next_task(task);
 To go backward: task = prev_task(task);

Doubly-linked Circular List

init_task

(pid=0)

newest

task
…

next

prev

Locking during Access

 When traversing the task list, must protect against
concurrent accesses
 read_lock_irq(&tasklist_lock), read_unlock_irq(&tasklist_lock)

 When modifying a task_struct
 task_lock(task), task_unlock(task)

 Don’t sleep when holding a lock on task list or structs!

init_task

(pid=0)

newest

task
…

next

prev

‘run’ queues and ‘wait’ queues

 In order for Linux to efficiently manage the
scheduling of its various ‘tasks’, separate
queues are maintained for ‘running’ tasks and
for tasks that temporarily are ‘blocked’ while
waiting for a particular event to occur (such as
the arrival of new data from the keyboard, or
the exhaustion of prior data sent to the
printer)

Some tasks are ‘ready-to-run’

Those tasks that are ready-to-run comprise a sub-list of all the tasks,
and they are arranged on a queue known as the ‘run-queue’

Those tasks that are blocked while awaiting a specific event to occur
are put on alternative sub-lists, called ‘wait queues’, associated with
the particular event(s) that will allow a blocked task to be unblocked

run_queue

init_task list

Kernel Wait Queues

waitqueue

waitqueue

waitqueue

waitqueue

wait_queue_head_t
can have 0 or more
wait_queue_t
chained onto them

However, usually
just one element

Each wait_queue_t
contains a list_head
of tasks

All processes waiting
for specific "event“

Used for timing,
synch, device i/o,
etc.

wait_queue_head_t
wait_queue_t

Transition between queues

 Wait on a wait queue
 add_wait_queue, prepare_to_wait,

schedule/schedule_timeout, finish_wait

 Options: TASK_INTERRUPTIBLE, exclusive,
timeout

 Other functions available

 Wake up
 wake_up_process, …

 LKD page 58--60

42

Linux processes

 Relevant source files

 Linux process control block

 Process queues
 Context switching
 Creating and destroying processes

43

 schedule determines the next task to run,
calls context_switch (kernel/sched.c)

 calls switch_mm to change the process
address space

 calls switch_to (include/asm/system.h
and arch/x86/kernel/process_32.c) to
context switch to the new task.

Context Switch

 switch_mm is architecture specific. It
generally loads any hardware state
required to make the process' user
address space addressible in user mode.
If the address space is unchanged (task
switching between threads in one process),
very little is done.

Context Switch: switch_mm

Context Switch: switch_to

 switch_to is architecture specific.
 Generally, it saves the old task’s hardware

state of the CPU (registers) to one of three
places:
 The task's kernel stack
 the thread_struct
 task_struct->thread

 It then copies the new task's hardware state
from the appropriate places
 Stack is in next->thread.esp

The Role of the Stack

 One process must save state where another can
find it

 When the new state is loaded, the CPU is running
another process -- the state is the process!

 The stack pointer determines most of the state

 Some of the registers are on the stack

 The stack pointer determines the location of
thread_info, which also points to task struct

 Changing the stack pointer changes the process!

Linux processes

 Relevant source files

 Linux process control block

 Process queues
 Context switching
 Creating and destroying processes

48

 The fork system call is used to create a
new process.
 Identical to parent except …
 execution state
 process ID
 parent process ID.
 other data is either copied (like process state)

or made copy on write (like process address
space).

 Copy on write allows data to be shared as
long as it is not modified, but each task
gets its own copy when one task tries to
modify the data.

Creating New Processes

 The fork system call uses do_fork to
create a new task. The flags passed to
do_fork indicate which task attributes to
copy and which to create anew.

 do_fork calls copy_process to create a
new task_struct and initialize it
appropriately.

Creating New Processes (cont.)

fork() Call Chain

1 libc fork()
2 system_call (arch/i386/kernel/entry.S)
3 sys_clone() (arch/i386/kernel/process.c)
4 do_fork() (kernel/fork.c)
5 copy_process() (kernel/fork.c)
6 p = dup_task_struct(current) // shallow copy
7 copy_* // copy point-to structures
8 copy_thread () // copy stack, regs, and eip
9 wake_up_new_task() // set child runnable

 do_fork creates a new task and allows the
new task to share resources with the calling
task.

 The following options specify what should be
shared with the calling task:
CLONE_VM - share address space
CLONE_FS - share root and current working

directories
CLONE_FILES - share file descriptors
CLONE_SIGHAND - share signal handlers
CLONE_PARENT – share parent process ID
CLONE_THREAD – create thread for process

do_fork

 The clone system call also uses do_fork to
create a new task.

 The clone system call takes flags which
are passed to do_fork to indicate which
task attributes to copy and which to
create anew.

 This system call gives applications the
ability to create new processes, new
threads, or new tasks that have the
attributes of both processes and threads.

 clone is used by threads libraries to
create new kernel threads.

Creating New Threads

vfork System Call

 What usually happens after a fork()?
 execve() call to start new executable
 Replace entire process address space
 Then why bother duplicating?

 Enter vfork()
 Create child with same page tables as as parent
 Child only allowed to invoke execve()
 Pause the parent until child invokes execve()
 Then resume parent/child
 Faster than fork+exec

 Implemented through clone() syscall
 CLONE_VFORK flag needs to be set in the clone call
 Tells clone to suspend parent until child calls execve or

exit

 Tasks stop executing when they call the exit system call, are killed by
the kernel (due to an exception), or are killed by a fatal signal which
was sent.

 exit calls do_exit which decrements usage counts on the sub-
structures of the task_struct. Any substructure with a zero usage
count has its memory freed.

 Lastly, the task is changed to the EXIT_ZOMBIE state.
 task_structs are actually destroyed by release_task, which is called

when the process' parent calls the wait system call.
 extremely difficult for a task to delete its own task structure and

kernel stack.
 also provides an easy mechanism for parents to determine their

children's exit status.
 release_task removes the task from the task list and frees its

memory.
 The init process cleans up children.

Destroying a Task

exit() Call Chain

1 libc exit (exit_code)
2 system_call (arch/i386/kernel/entry.S)
3 sys_exit() (kernel/exit.c)
4 do_exit() (kernel/exit.c)
5 exit_*() // free data structures
6 exit_notify() // tell other processes we exit
7 // reparent children to init
8 // EXIT_ZOMBIE
9 // EXIT_DEAD

Backup slides

57

Pre-emptive Kernels
 Pre-emptive kernel different from process pre-emption

 A non-preemptive kernel may not task switch while executing
kernel code on behalf of a process

 Up to Linux 2.4, implemented through BKL (big kernel lock)
 Each syscall acquires BKL before execution
 All other syscalls block. So, kernel code must run fast!
 Inefficient on multicore architectures!
 Finally removed in 2011

 Pre-emptive kernel: allow task switch while in kernel
mode
 What to do with kernel state?
 Need per-process kernel stack!
 What to do with interrupts?
 Share process kernel stack (previously), or get their own (now)
 All interrupts share single 4KB or 8KB kernel stack

 Which stack is being used determines kernel “context”

How Do I Block?

 By calling one of the sleep_on functions:
 sleep_on, interruptible_sleep_on, sleep_on_timeout,

etc.
 These functions create a wait_queue and place

the calling task on it
 Modify the value of its ‘state’ variable:

 TASK_UNINTERRUPTIBLE
 TASK_INTERRUPTIBLE

 Then call schedule or schedule_timeout
 The next task to run calls deactivate_task to

move us out of the run queue
 Only tasks with ‘state == TASK_RUNNING’

are granted time on the CPU by the scheduler

How Do I Wake Up?

 By someone calling one of the wake functions:
 wake_up, wake_up_all, wake_up_interruptible, etc.

 These functions call the curr->func function to
wake up the task
 Defaults to default_wake_function which is

try_to_wake_up

 try_to_wake_up calls activate_task to move
us out of the wait queue

 The ‘state’ variable is set to
TASK_RUNNING

 Sooner or later the scheduler will run us again
 We then return from schedule or

schedule_timeout

What are all these options?

 INTERUPTIBLE vs. NON-INTERUPTIBLE:
 Can the task be woken up by a signal?

 TIMEOUT vs no timeout:
 Wake up the task after some timeout interval

 EXCLUSIVE vs. NON-EXCLUSIVE:
 Should only one task be woken up?
 Only one EXCLUSIVE task is woken up

• Kept at end of the list

 All NON-EXCLUSIVE tasks are woken up
• Kept at head of the list

 Functions with _nr option wake up number of tasks

Other Wait Queue Notes

 Process can wakeup with event not true
 If multiple waiters, another may have resource

 Always check availability after wakeup

 Maybe wakeup was in response to signal

 ‘Interruptible’ functions are preferred

 sleep_on functions are deprecated

 sleep_on functions suffer from race conditions

 Want to atomically test and sleep

 prepare_to_wait functions preferred

Context Switch: switch_to

 switch_to is architecture specific.
 Generally, it saves the old task’s hardware

state of the CPU (registers) to one of three
places:
 The task's kernel stack
 the thread_struct
 task_struct->thread

 It then copies the new task's hardware state
from the appropriate places
 Stack is in next->thread.esp

The Role of the Stack

 One process must save state where another can
find it

 When the new state is loaded, the CPU is running
another process -- the state is the process!

 The stack pointer determines most of the state

 Some of the registers are on the stack

 The stack pointer determines the location of
thread_info, which also points to task struct

 Changing the stack pointer changes the process!

Stack Switching

 switch_to: A -> B

CPU

Stack (A)

current

next
prev

esp

A B C

Stack (B)

current

next
prev

eax

 Many CPU architectures support lazy
saving of floating point state (registers)
by allowing floating point capability to be
disabled, resulting in an exception when a
floating point operation is performed.

 With this capability, state save can detect
when a thread first uses floating point and
only save floating point state from then
on. It can also only load floating point
state after a floating point operation
following a context switch.

Context Switch: FP Registers

Context Switch: FP Registers

 On context switch:
 Hardware flag set: TS in cr0
 Software flag TS_USEDFPU is cleared in task_struct

 If task uses floating point instruction and hardware flag is set:
 Hardware raises “device not available” exception (trap)
 Kernel restores floating point registers
 TS is cleared
 TS_USEDFPU is set in the task_struct for this process

 Any time it’s set, floating point registers are saved for that
process at switch time (but not restored for the next)

 Bottom line: only done if needed; if only one process uses
floating point, no save/restore needed

 Not needed on modern processors! More efficient FPU.

 Threads in a process are represented by creating
a task_struct for each thread in the process and
keeping most of the data the same for each
task_struct.

 ultimately done by using do_fork
 simplifies some algorithms because there is only

one structure for both processes and threads.
 can improve performance for single threaded

processes.
 Process data is generally in task sub-structures

which can be shared by all tasks in the process.

Threads

 The thread state is represented by the thread_info
structure.

 The thread_info structure has a reference to the
task_struct for the thread as well as the execution
domain for the program the thread is executing within.

 The thread_info structure and the thread's kernel
stack are located together within a thread_union
structure. size varies by architecture

 thread’s stack thus also varies by architecture
 just less than 4K in size on 32-bit architectures
 just less than 8K in size on 64-bit architectures.

Thread Structures

Kernel Threads
 Linux has a small number of kernel threads that run

continuously in the kernel (daemons)
• No user address space
• Only execute code and access data in kernel address space

 How to create: kernel_thread
 Scheduled in the same way as other threads/tasks
 Process 0: idle process
 Process 1: init process

• Spawns several kernel threads before transitioning to user
mode as /sbin/init

• kflushd (bdflush) – Flush dirty buffers to disk under "memory
pressure"

• kupdate – Periodically flushes old buffers to disk
• kswapd – Swapping daemon

 The task with process ID zero is called the swapper or the idle
task

 Its task structure is in init_thread_union, which also includes
its kernel stack.

 The kernel builds this task piece by piece to use to boot the
system. (All other tasks are copied from an existing task by
do_fork.)

 All other tasks are maintained in a linked list off of this task.
 This task becomes the idle task that runs when no other task is

runnable.
 This task forks the init task (task 1) and is the ancestor of all

other tasks.

Task Zero

On SMP systems, this task uses clone to
create duplicate tasks which run as the idle
task on each of the other processors.

All of these tasks have process ID zero.

 Each of these tasks is used only by its
associated processor.

Task Zero

