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xv6 processes 

 How to create the first user process 
 

 fork() 
 

 exit() 
 

 wait() 
 

 kill() 
 

 exec() 
 

 sleep() 
 

 wakeup() 
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Create the first user process 

 Idea: create a fake trap frame, then reuse 
trap return mechanism 

 

 userinit() in proc.c 
 allocproc() in vm.c allocates PCB, sets trap return 

address to trapret in trapasm.S, and sets “saved” 
kernel CPU context  

 inituvm() in vm.c sets up user space 
• Allocates a physical page for the process, sets up 

page table, and copies initcode 

 Set up fake trap frame 

 Set up current working directory 
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Init process’s kernel stack 
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SS=SEG_UDATA 

ESP=PGSIZE 

EFLAGS=FL_IF 

CS=SEG_UDATA 

EIP=0 

Err code=0 

Trapno=0 

DS=SEG_UDATA 

… 

EAX=0 

… 

trapret 

forkret 

struct trapframe 

EBP=0 

EBX=0 

ESI=0 

EDI=0 

struct context 

“return” address 
“saved” EIP 

forkret: // proc.c 
    … 
    ret 

swtch:  // swtch.S 
    … 
    popl %edi 
    popl %esi 
    popl %ebx 
    popl %ebp 
    ret 

trapret: // trapasm.S 
    popal 
    … 
    iret 

proc->context 



initcode.S 

 Assembly code that 
 Sets up system call arguments 
 Moves SYS_exec to EAX 
 Traps into kernel via INT 64 

 Execute init generated from init.c 
 Compiled and linked into kernel 

 Makefile 

// equivalent C code 
char init[] = “/init\0”; 
char *argv = {init, 0}; 
exec(init, argv); 
for(;;) exit(); 

5 



fork() 

 sysproc.c, proc.c 

 

 Allocate new PCB and stack 
 Set up EIP of child to forkret  trapret 

 Copy address space 
 Copy both page tables and physical pages 

 Can you do better? 

 Set parent pointer 

 Copy parent’s trap frame 

 Change EAX in trap frame so that child returns 0 

 Copy open file table 
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Child process’s kernel stack 
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SS 
ESP 

EFLAGS 
CS 
EIP 

Err code or 0 
trapno 

DS 
… 

EAX=0 
… 

trapret 
forkret 

struct trapframe 

EBP 
EBX 
ESI 
EDI 

struct context 

“return” address 
“saved” EIP 

forkret: // proc.c 
    … 
    ret 

swtch:  // swtch.S 
    … 
    popl %edi 
    popl %esi 
    popl %ebx 
    popl %ebp 
    ret 

trapret: // trapasm.S 
    popal 
    … 
    iret 

proc->context 



exit() 

 sysproc.c, proc.c 

 

 Close open files 

 Decrement reference count to current 
working directory 

 Wake up waiting parents 

 Re-parent children to init 

 Set state to zombie 

 Yield to scheduler 
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wait() 

 sysproc.c, proc.c 

 

 Find a zombie child by iterating process table 
 Can you do better? 

 If there is one, 
 Free their PCB and other resources 

 Return child PID 

 If no child or killed, return -1 

 Repeat 
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kill() 

 sysproc.c, proc.c 

 

 Set proc->killed to 1 

 At various places in kernel, check this flag, 
and if process is killed, exit 
 trap() in trap.c 

 sys_sleep() in sysproc.c 

 piperead() & pipewrite() in pipe.c 

 proc.c 
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exec() 
 sysfile.c, exec.c 
 Set up user page table 
 Load segments of the executable file into memory 
 Set up stack and arguments to main(int argc, char* argv[]) 

 Jump to entry point (main) of the executable 

11 

text 

KERNBASE 

data 

inaccessible 

heap (initially not 
used) 

0 

arg N 

… 

arg 0 

addr of argN 

addr of arg0 

… 

addr of addr of arg0 

argc 

0xFFFFFFFF 

Null-terminated 
string 

argv[argc] 0 

argv[0] 

argv to main 

fake ret addr 

argc to main 

stack (1 page) 



sleep() 

 proc.c 

 

 Remember what we wait for (proc->chan) 

 Set process state 

 Yield to scheduler 
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wakeup() 

 proc.c 

 

 Scan through all processes 

 Wake up those waiting on chan 
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Linux processes 

 Relevant source files 

 Linux process control block 

 Process queues 
 Context switching 
 Creating and destroying processes 
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Header Files 

 The major header files used for process 
management are: 
 

include/linux/sched.h – declarations for most task 
data structures 

include/linux/threads.h – some configuration 
constants (unrelated to threads) 

include/linux/times.h – time structures 
include/linux/time.h – time declarations 
include/linux/timex.h – wall clock time declarations 



 The source code for process and thread 
management is in the kernel directory: 
sched.c – task scheduling routines 
signal.c – signal handling routines 
fork.c – process/thread creation routines 
exit.c – process exit routines 
time.c – time management routines 
timer.c – timer management routines 

 The source code for the program initiation 
routines is in fs/exec.c.  
 

Source Code 



Linux processes 

 Relevant source files 

 Linux process control block 

 Process queues 
 Context switching 
 Creating and destroying processes 
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Linux: Processes or Threads? 

 Linux uses a neutral term: tasks 
 Tasks represent both processes and threads 

 Linux view 
 Threads: processes that share address space 
 Linux "threads" (tasks) are really "kernel threads“ 

 Lighter-weight than traditional processes 
 File descriptors, VM mappings need not be copied 
 Implication: file table and VM table not part of 

process descriptor 



Stacks and task-descriptors 

 To manage multitasking, the OS needs to use a data-
structure which can keep track of every task’s progress 
and usage of the computer’s available resources (physical 
memory, open files, pending signals, etc.) 

 Such a data-structure is called a ‘process descriptor’ – 
every active task needs one 

 Every task needs its own ‘private’ stack  
 So every task, in addition to having its own code and data, 

will also have a stack-area that is located in user-space, 
plus another stack-area that is located in kernel-space 

 Each task also has a process-descriptor which is 
accessible only in kernel-space  



Kernel Stacks 

 Why need a special kernel stack? 
 Kernel can’t trust addresses provided by user 

 Address may point to kernel memory 

 Address may not be mapped 

 Memory region may be swapped out from physical RAM 

 Leftover data from kernel ops could be read by process 

 Why a different stack for every process? 
 What to do if a process sleeps while executing kernel 

code? 

 Wasn’t a problem up to Linux 2.4; not pre-emptive 
 Need multiple kernel stacks for pre-emptive kernels 



A task’s virtual-memory layout 

 

 

User space 

Kernel space 

User-mode stack-area 

Task’s code and data 

Privilege-level 0 

Privilege-level 3 

Process 
descriptor and 
kernel-mode 
stack 

Shared runtime-libraries 



Process Descriptor 

 Process – dynamic, program in motion 
 Kernel data structures to maintain "state" 
 Descriptor, PCB (control block), task_struct 
 Larger than you think! (about 1K) 
 160+ fields 
 Complex struct with pointers to others 

 Type of info in task_struct 
 state, id, priorities, locks, files, signals, memory 

maps, locks, queues, list pointers, … 

 Some details 
 Address of first few fields hardcoded in asm 
 Careful attention to cache line layout 



The Linux process descriptor 

 task_struct 
state 
*stack 

flags 

*mm 

exit_code 

*user 

pid 

*files 

*parent 

 mm_struct 

*pgd 

pagedir[] 

 user_struct 

 signal_struct 

*signal 

 files_struct 

 Each process 
   descriptor 
contains many 
      fields 
   
 and some are 
   pointers to 
  other kernel 
    structures 
 
   which may 
  themselves 
 include fields 
  that point to 
   structures  



 The task_struct is used to represent a task. 
 The task_struct has several sub-structures 

that it references: 
tty_struct – TTY associated with the process 
fs_struct – current and root directories associated 

with the process 
files_struct – file descriptors for the process 
mm_struct – memory areas for the process 
signal_struct – signal structures associated with the 

process 
user_struct – per-user information (for example, 

number of current processes) 

The Task Structure 



 Process/Thread Context 

 Linux uses part of a task’s kernel-stack 

 page-frame to store thread information  

 The thread_info includes a pointer to the 
task’s process-descriptor data-structure 

Task’s kernel-stack 

Task’s thread-info 

page-frame aligned 

Task’s 

process-descriptor 

struct task_struct 4-KB 



Finding a task’s ‘thread-info’ 

 During a task’s execution in kernel-mode, it’s very quick to 
find that task’s thread_info object 

 Just use two assembly-language instructions: 
 
  movl  $0xFFFFF000, %eax 
  andl  %esp, %eax 
 
 Ok, now %eax = the thread-info’s base-address 
 Masking off 13 bits of the stack yields thread_info 
 Macro current_thread_info implements this computation 
 thread_info points to task_struct 
 current macro yields the task_struct 
 current is not a static variable, useful for SMP 
 



Finding task-related kernel-data 

 Use a macro ‘task_thread_info( task )’ to get 
a pointer to the ‘thread_info’ structure: 

struct thread_info  *info = task_thread_info( task ); 

 

 Then one more step gets you back to the 
address of the task’s process-descriptor: 

    struct task_struct  *task = info->task; 



 PID: 16-bit process ID 
 task_structs are found by searching for pid 

structures, which point to the task_structs.  The pid 
structures are kept in several hash tables, hashed by 
different IDs: 
 process ID 
 thread group ID // pid of first thread in process 
 process group ID // job control 
 session ID   // login sessions 
 (see include/linux/pid.h) 

 Allocated process IDs are recorded in a bitmap 
representing around four million possible IDs. 

 PIDs dynamically allocated, avoid immediate reuse 

PID Hashes and Task Lookup 



Process Relationships 

 Processes are related 
 Parent/child (fork()), siblings 
 Possible to "re-parent" 

• Parent vs. original parent 

 Parent can "wait" for child to terminate 

 Process groups 
 Possible to send signals to all members 

 Sessions 
 Processes related to login 



 Several pointers exist between 
task_structs: 
parent – pointer to parent process 
children – pointer to linked list of child processes 
sibling – pointer to task of "next younger sibling" of 

current process 

 children and sibling point to the task_struct 
for the first thread created in a process.  

 The task_struct for every thread in a 
process has the same pointer values. 

Task Relationships 



Task States 

From  kernel-header: <linux/sched.h> 
 
 #define TASK_RUNNING    0 
 #define TASK_INTERRUPTIBLE 1 
 #define TASK_UNINTERRUPTIBLE 2 
 #define __TASK_STOPPED  4 
 #define __TASK_TRACED   8 
 #define EXIT_ZOMBIE   16 
 #define EXIT_DEAD   32 
 #define TASK_DEAD                           64 
 #define TASK_WAKEKILL                  128 
 #define TASK_WAKING   256 



 TASK_RUNNING – the thread is running on the CPU or is 
waiting to run 

 TASK_INTERRUPTIBLE – the thread is sleeping and can be 
awoken by a signal (EINTR) 

 TASK_UNINTERRUPTIBLE – the thread is sleeping and 
cannot be awakened by a signal 

 __TASK_STOPPED – the process has been stopped by a 
signal or by a debugger 

 __TASK_TRACED – the process is being traced via the 
ptrace system call 

 TASK_DEAD – the process is being cleaned up and the 
task is being deleted 

 TASK_WAKEKILL – similar to TASK_UNINTERRUPTIBLE 
with the ability to respond to fatal signals 

 TASK_WAKING – someone is already waking the task 

Task States 



135 * We have two separate sets of flags: task->state  
136 * is about runnability, while task->exit_state are  

137 * about the task exiting. Confusing, but this way  

138 * modifying one set can't modify the other one by 

139 * mistake.  
 
 EXIT_ZOMBIE – the process is exiting but has not yet 

been waited for by its parent 
 EXIT_DEAD – the process has exited and has been 

waited for 

Exit States 

http://lxr.linux.no/linux+v2.6.18.8/include/linux/sched.h
http://lxr.linux.no/linux+v2.6.18.8/include/linux/sched.h
http://lxr.linux.no/linux+v2.6.18.8/include/linux/sched.h
http://lxr.linux.no/linux+v2.6.18.8/include/linux/sched.h
http://lxr.linux.no/linux+v2.6.18.8/include/linux/sched.h
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 The list_head is a generic list 
structure with a set of services: 
LIST_HEAD – declare and initialize 

list head 
list_add – add a list_head after item 
list_add_tail – add a list_head before 

item 
list_del – remove list_head from list 
list_del_init – remove and initialize 

list_head 
list_empty – is a list empty? 
list_for_each, list_for_each_entry, 

list_entry 

List Operations 

next 

prev 



The Kernel’s ‘task-list’ 

 Kernel keeps a list of process descriptors 
 A ‘doubly-linked’ circular list is used 
 The ‘init_task’ serves as a fixed header 
 Other tasks inserted/deleted dynamically 
 Tasks have forward & backward pointers, 

implemented as fields in the ‘tasks’ field 
 To go forward:      task = next_task( task ); 
 To go backward:   task = prev_task( task ); 



Doubly-linked Circular List  

init_task 

(pid=0) 

newest 

task 
… 

next 

prev 



Locking during Access 

 When traversing the task list, must protect against 
concurrent accesses 
 read_lock_irq(&tasklist_lock), read_unlock_irq(&tasklist_lock) 

 When modifying a task_struct 
 task_lock(task), task_unlock(task) 

 Don’t sleep when holding a lock on task list or structs! 

init_task 

(pid=0) 

newest 

task 
… 

next 

prev 



‘run’ queues and ‘wait’ queues 

 In order for Linux to efficiently manage the 
scheduling of its various ‘tasks’, separate 
queues are maintained for ‘running’ tasks and 
for tasks that temporarily are ‘blocked’ while 
waiting for a particular event to occur (such as 
the arrival of new data from the keyboard, or 
the exhaustion of prior data sent to the 
printer) 

 



Some tasks are ‘ready-to-run’ 

Those tasks that are ready-to-run comprise a sub-list of all the tasks,  
and they are arranged on a queue known as the ‘run-queue’   
 
Those tasks that are blocked while awaiting a specific event to occur 
are put on alternative sub-lists, called ‘wait queues’, associated with 
the particular event(s) that will allow a blocked task to be unblocked  

run_queue 

init_task list 



Kernel Wait Queues 

waitqueue 

waitqueue 

waitqueue 

waitqueue 

wait_queue_head_t 
can have 0 or more 
wait_queue_t 
chained onto them 
 
However, usually 
just one element 
 
Each wait_queue_t 
contains a list_head 
of tasks 
 
All processes waiting 
for specific "event“ 
 
Used for timing, 
synch, device i/o, 
etc. 

wait_queue_head_t 
wait_queue_t 



Transition between queues 

 Wait on a wait queue 
 add_wait_queue, prepare_to_wait, 

schedule/schedule_timeout, finish_wait 

 Options: TASK_INTERRUPTIBLE, exclusive, 
timeout 

 Other functions available 
 

 Wake up 
 wake_up_process, … 

 

 LKD page 58--60 
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 schedule determines the next task to run, 
calls context_switch (kernel/sched.c) 

 calls switch_mm to change the process 
address space 

 calls switch_to (include/asm/system.h 
and arch/x86/kernel/process_32.c) to 
context switch to the new task. 

Context Switch 



 switch_mm is architecture specific.  It 
generally loads any hardware state 
required to make the process' user 
address space addressible in user mode.  
If the address space is unchanged (task 
switching between threads in one process), 
very little is done. 

Context Switch: switch_mm 



Context Switch: switch_to 

 switch_to is architecture specific.   
 Generally, it saves the old task’s hardware 

state of the CPU (registers) to one of three 
places: 
 The task's kernel stack 
 the thread_struct 
 task_struct->thread 

 It then copies the new task's hardware state 
from the appropriate places 
 Stack is in next->thread.esp 



The Role of the Stack 

 One process must save state where another can 
find it 

 When the new state is loaded, the CPU is running 
another process -- the state is the process! 

 The stack pointer determines most of the state 

 Some of the registers are on the stack 

 The stack pointer determines the location of 
thread_info, which also points to task struct 

 Changing the stack pointer changes the process! 



Linux processes 
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48 



 The fork system call is used to create a 
new process. 
 Identical to parent except … 
 execution state 
 process ID 
 parent process ID. 
 other data is either copied (like process state) 

or made copy on write (like process address 
space). 

 Copy on write allows data to be shared as 
long as it is not modified, but each task 
gets its own copy when one task tries to 
modify the data. 

Creating New Processes 



 The fork system call uses do_fork to 
create a new task.  The flags passed to 
do_fork indicate which task attributes to 
copy and which to create anew. 

 do_fork calls copy_process to create a 
new task_struct and initialize it 
appropriately. 

Creating New Processes (cont.) 



fork() Call Chain 

1 libc fork() 
2     system_call (arch/i386/kernel/entry.S) 
3         sys_clone() (arch/i386/kernel/process.c)  
4             do_fork() (kernel/fork.c) 
5                 copy_process() (kernel/fork.c) 
6                     p = dup_task_struct(current) // shallow copy  
7                     copy_* // copy point-to structures  
8                     copy_thread () // copy stack, regs, and eip 
9                 wake_up_new_task() // set child runnable 

 

 



 do_fork creates a new task and allows the 
new task to share resources with the calling 
task. 

 The following options specify what should be 
shared with the calling task: 
CLONE_VM - share address space 
CLONE_FS - share root and current working 

directories 
CLONE_FILES - share file descriptors 
CLONE_SIGHAND - share signal handlers 
CLONE_PARENT – share parent process ID 
CLONE_THREAD – create thread for process 

do_fork 



 The clone system call also uses do_fork to 
create a new task. 

 The clone system call takes flags which 
are passed to do_fork to indicate which 
task attributes to copy and which to 
create anew. 

 This system call gives applications the 
ability to create new processes, new 
threads, or new tasks that have the 
attributes of both processes and threads. 

 clone is used by threads libraries to 
create new kernel threads. 

Creating New Threads 



vfork System Call  

 What usually happens after a fork()? 
 execve() call to start new executable 
 Replace entire process address space 
 Then why bother duplicating? 

 Enter vfork() 
 Create child with same page tables as as parent 
 Child only allowed to invoke execve() 
 Pause the parent until child invokes execve() 
 Then resume parent/child 
 Faster than fork+exec 

 Implemented through clone() syscall 
 CLONE_VFORK flag needs to be set in the clone call 
 Tells clone to suspend parent until child calls execve or 

exit  

 



 Tasks stop executing when they call the exit system call, are killed by 
the kernel (due to an exception), or are killed by a fatal signal which 
was sent. 

 exit calls do_exit which decrements usage counts on the sub-
structures of the task_struct.  Any substructure with a zero usage 
count has its memory freed. 

 Lastly, the task is changed to the EXIT_ZOMBIE state.  
 task_structs are actually destroyed by release_task, which is called 

when the process' parent calls the wait system call. 
 extremely difficult for a task to delete its own task structure and 

kernel stack. 
 also provides an easy mechanism for parents to determine their 

children's exit status. 
 release_task removes the task from the task list and frees its 

memory. 
 The init process cleans up children. 

Destroying a Task 



exit() Call Chain  

1 libc exit (exit_code) 
2     system_call (arch/i386/kernel/entry.S)  
3         sys_exit() (kernel/exit.c) 
4             do_exit() (kernel/exit.c)  
5                 exit_*() // free data structures  
6                 exit_notify() // tell other processes we exit  
7                      // reparent children to init  
8                      // EXIT_ZOMBIE 
9                      // EXIT_DEAD  



Backup slides 
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Pre-emptive Kernels 
 Pre-emptive kernel different from process pre-emption 

 A non-preemptive kernel may not task switch while executing 
kernel code on behalf of a process 

 Up to Linux 2.4, implemented through BKL (big kernel lock) 
 Each syscall acquires BKL before execution 
 All other syscalls block. So, kernel code must run fast! 
 Inefficient on multicore architectures! 
 Finally removed in 2011 

 Pre-emptive kernel: allow task switch while in kernel 
mode 
 What to do with kernel state? 
 Need per-process kernel stack! 
 What to do with interrupts? 
 Share process kernel stack (previously), or get their own (now) 
 All interrupts share single 4KB or 8KB kernel stack 

 Which stack is being used determines kernel “context” 



How Do I Block? 

 By calling one of the sleep_on functions: 
 sleep_on, interruptible_sleep_on, sleep_on_timeout, 

etc. 
 These functions create a wait_queue and place 

the calling task on it 
 Modify the value of its ‘state’ variable: 

 TASK_UNINTERRUPTIBLE 
 TASK_INTERRUPTIBLE 

 Then call schedule or schedule_timeout 
 The next task to run calls deactivate_task to 

move us out of the run queue 
 Only tasks with ‘state == TASK_RUNNING’ 

are granted time on the CPU by the scheduler
  



How Do I Wake Up? 

 By someone calling one of the wake functions: 
 wake_up, wake_up_all, wake_up_interruptible, etc. 

 These functions call the curr->func function to 
wake up the task 
 Defaults to default_wake_function which is 

try_to_wake_up 

 try_to_wake_up calls activate_task to move 
us out of the wait queue 

 The ‘state’ variable is set to 
TASK_RUNNING 

 Sooner or later the scheduler will run us again 
 We then return from schedule or 

schedule_timeout 



What are all these options? 

 INTERUPTIBLE vs. NON-INTERUPTIBLE: 
 Can the task be woken up by a signal? 

 TIMEOUT vs no timeout: 
 Wake up the task after some timeout interval 

 EXCLUSIVE vs. NON-EXCLUSIVE: 
 Should only one task be woken up? 
 Only one EXCLUSIVE task is woken up 

• Kept at end of the list 

 All NON-EXCLUSIVE tasks are woken up 
• Kept at head of the list 

 Functions with _nr option wake up number of tasks 



Other Wait Queue Notes 

 Process can wakeup with event not true 
 If multiple waiters, another may have resource 

 Always check availability after wakeup 

 Maybe wakeup was in response to signal 

 ‘Interruptible’ functions are preferred 

 sleep_on functions are deprecated 

 sleep_on functions suffer from race conditions 

 Want to atomically test and sleep 

 prepare_to_wait functions preferred 



Context Switch: switch_to 

 switch_to is architecture specific.   
 Generally, it saves the old task’s hardware 

state of the CPU (registers) to one of three 
places: 
 The task's kernel stack 
 the thread_struct 
 task_struct->thread 

 It then copies the new task's hardware state 
from the appropriate places 
 Stack is in next->thread.esp 



The Role of the Stack 

 One process must save state where another can 
find it 

 When the new state is loaded, the CPU is running 
another process -- the state is the process! 

 The stack pointer determines most of the state 

 Some of the registers are on the stack 

 The stack pointer determines the location of 
thread_info, which also points to task struct 

 Changing the stack pointer changes the process! 



Stack Switching 

 switch_to: A -> B 

CPU 

Stack (A) 

current 

next 
prev 

esp 

A   B C 

Stack (B) 

current 

next 
prev 

eax 



 Many CPU architectures support lazy 
saving of floating point state (registers) 
by allowing floating point capability to be 
disabled, resulting in an exception when a 
floating point operation is performed. 

 With this capability, state save can detect 
when a thread first uses floating point and 
only save floating point state from then 
on.  It can also only load floating point 
state after a floating point operation 
following a context switch. 

Context Switch: FP Registers 



Context Switch: FP Registers 

 On context switch: 
 Hardware flag set: TS in cr0 
 Software flag TS_USEDFPU is cleared in task_struct  

 If task uses floating point instruction and hardware flag is set: 
 Hardware raises “device not available” exception (trap) 
 Kernel restores floating point registers 
 TS is cleared 
 TS_USEDFPU is set in the task_struct for this process 

 Any time it’s set, floating point registers are saved for that 
process at switch time (but not restored for the next) 

 Bottom line: only done if needed; if only one process uses 
floating point, no save/restore needed 
 

 Not needed on modern processors! More efficient FPU. 



 Threads in a process are represented by creating 
a task_struct for each thread in the process and 
keeping most of the data the same for each 
task_struct. 

 ultimately done by using do_fork 
 simplifies some algorithms because there is only 

one structure for both processes and threads. 
 can improve performance for single threaded 

processes. 
 Process data is generally in task sub-structures 

which can be shared by all tasks in the process. 

Threads 



 The thread state is represented by the thread_info 
structure. 

 The thread_info structure has a reference to the 
task_struct for the thread as well as the execution 
domain for the program the thread is executing within. 

 The thread_info structure and the thread's kernel 
stack are located together within a thread_union 
structure.  size varies by architecture  

 thread’s stack thus also varies by architecture  
 just less than 4K in size on 32-bit architectures 
 just less than 8K in size on 64-bit architectures. 

Thread Structures 



Kernel Threads 
 Linux has a small number of kernel threads that run 

continuously in the kernel (daemons) 
• No user address space 
• Only execute code and access data in kernel address space 

 How to create: kernel_thread 
 Scheduled in the same way as other threads/tasks 
 Process 0: idle process 
 Process 1: init process 

• Spawns several kernel threads before transitioning to user 
mode as /sbin/init 

• kflushd (bdflush) – Flush dirty buffers to disk under "memory 
pressure" 

• kupdate – Periodically flushes old buffers to disk 
• kswapd – Swapping daemon 

 



 The task with process ID zero is called the swapper or the idle 
task 

 Its task structure is in init_thread_union, which also includes 
its kernel stack. 

 The kernel builds this task piece by piece to use to boot the 
system.  (All other tasks are copied from an existing task by 
do_fork.) 

 All other tasks are maintained in a linked list off of this task. 
 This task becomes the idle task that runs when no other task is 

runnable. 
 This task forks the init task (task 1) and is the ancestor of all 

other tasks. 

Task Zero 



On SMP systems, this task uses clone to 
create duplicate tasks which run as the idle 
task on each of the other processors.  
 

All of these tasks have process ID zero. 
 

 Each of these tasks is used only by its 
associated processor. 

Task Zero 


