
W4118: interrupts and system calls

Junfeng Yang

Outline

 Dual mode of operation

 Interrupt

 System call

2

Need for protection

 Kernel privileged, cannot trust user processes
 User processes may be malicious or buggy

 Must protect
 User processes from one another

 Kernel from user processes

3

Hardware mechanisms for protection

 Memory protection
 Segmentation and paging

• E.g., kernel sets segment/page table

 Timer interrupt
 Kernel periodically gets back control

 Dual mode of operation
 Privileged (+ non-privileged) operations in kernel mode

 Non-privileged operations in user mode

4

What operations are privileged?

 Read raw keyboard input

 Call printf()

 Call write()

 Write global descriptor table

 Divide by 0

 Set timer interrupt handler

 Set segment registers

 Load cr3

5

x86 protection modes

 Four modes (0-3), but often only 0 & 3 used
 Kernel mode: 0
 User mode: 3
 “Ring 0”, “Ring 3”

 Segment has Descriptor Privilege Level (DPL)
 DPL of kernel code and data segments: 0
 DPL of user code and data segments: 3

 Current Privilege Level (CPL) = current code
segment’s DPL
 Can only access data segments when CPL <= DPL

6

Outline

 Dual mode of operation

 Interrupt

 System call

7

OS: “event driven”

 Events causing mode switches
 System calls: issued by user processes to request

system services

 Exceptions: illegal instructions (e.g., division by 0)

 Interrupts: raised by devices to get OS attention

 Often handled using same hardware
mechanism: interrupt
 Also called trap

8

Interrupt view of CPU
while (fetch next instruction) {
 run instruction;
 if (there is an interrupt) {

 process interrupt

 }
}

9

x86 interrupt view

 Q1: how does hardware find OS-provided
interrupt handler?

 Q2: why switch stack?
 Q3: what CPU context to save and restore?
 Q4: what does handler do?

while (fetch next instruction) {
 run instruction;
 if (there is an interrupt) {
 switch to kernel stack if necessary
 save CPU context and error code if any
 find OS-provided interrupt handler
 jump to handler
 restore CPU context when handler returns
 }
}

10

Q1: how to find interrupt handler?

 Hardware maps interrupt type to interrupt number

 OS sets up Interrupt Descriptor Table (IDT) at boot
 Also called interrupt vector
 IDT is in memory
 Each entry is an interrupt handler
 OS lets hardware know IDT base
 Defines all kernel entry points

 Hardware finds handler using interrupt number as

index into IDT
 handler = IDT[intr_number]

11

x86 interrupt hardware (legacy)

PIC CPU

Bus

INTR

IRQs

IDT
0

255

Interrupt

handler

idtr

intr #

Mask points

intr #

12

x86 interrupt numbers

 Total 256 number [0, 255]

 Intel reserved first 32, OS can use 224

 0: divide by 0
 1: debug (for single stepping)
 2: non-maskable interrupt
 3: breakpoint
 14: page fault

 64: system call in xv6

 xv6 traps.h

13

x86 interrupt gate descriptor

 Interrupt gate descriptor
 Code segment selector and offset of handler
 Descriptor Privilege Level (DPL)
 Trap or exception flag

 lidt instruction loads CPU with IDT base

 xv6
 Handler entry points: vector.S
 Interrupt gate format: SETGATE in mmu.h
 IDT initialization: tvinit() & idtinit() in trap.c

14

Multi-CORE CPU

Multiple Logical Processors

CPU

0

CPU

1
I/O

APIC LOCAL

APIC

LOCAL

APIC

 Advanced Programmable Interrupt Controller is needed to

perform ‘routing’ of I/O requests from peripherals to CPUs

(The legacy PICs are masked when the APICs are enabled)

APIC, IO-APIC, LAPIC
 Advanced PIC (APIC) for SMP systems

 Used in all modern systems
 Interrupts “routed” to CPU over system bus
 IPI: inter-processor interrupt

 Local APIC (LAPIC) versus “frontend” IO-APIC
 Devices connect to front-end IO-APIC
 IO-APIC communicates (over bus) with Local APIC

 Interrupt routing
 Allows broadcast or selective routing of interrupts
 Ability to distribute interrupt handling load
 Routes to lowest priority process

• Special register: Task Priority Register (TPR)
 Arbitrates (round-robin) if equal priority

Q2: why switch stack?

 Cannot trust stack (SS, ESP) of user process!

 x86 hardware switches stack when interrupt
handling requires user-kernel mode switch

 Where to find kernel stack?
 Task gate descriptor has SS and ESP for interrupt
 ltr loads CPU with task gate descriptor

 xv6 assigns each process a kernel stack, used
in interrupt handling
 switchuvm() in vm.c

17

Q3: what does hardware save?

 x86 saves SS, ESP, EFLAGS, CS, EIP, Err code
 Restored by iret

 OS can save more context

18

SS

ESP

EFLAGS

CS

EIP

Err code
ESP

when switch stack

for some exceptions

Q4: what does interrupt handler do?

 Typical steps
 Assembly to save additional CPU context

 Invoke C handler to process interrupt
• E.g., communicate with I/O devices

 Invoke kernel scheduler

 Assembly to restore CPU context and return

 xv6
 Interrupt handler entries: vector.S

 Saves & restore additional CPU context: trapasm.S

 C handler: trap.c, struct trapframe in x86.h

19

xv6 kernel stack before calling trap(tf)

 xv6 saves all registers (user-mode CPU context)
 struct trapframe (x86.h) captures this layout
 “pushl %esp” pushes argument for trap(tf)

20

SS
ESP

EFLAGS
CS
EIP

Err code or 0

ESP

when switch stack

h/w pushes error code for
some exceptions; xv6 pushes
0 for others (vector.S) trapno

DS
…

EAX
…

h/w saves

xv6 saves

struct trapframe

arg to trap(tf)
ESP

Issues with interrupts

 Interrupt dispatching has overhead
 Interrupt runs at the “highest priority”

 Increases responsiveness, but …

 So, must be very careful
 Can interrupt handler run for a very long time?
 What if system cannot take more work?
 Should we allow nested interrupts?

 Real-world: interrupt processing very
complex (e.g., Linux)

 In general
 Do as little as possible in the interrupt handler
 Defer non-critical actions till later

21

Interrupt v.s. Polling

 Instead for device to interrupt CPU, CPU can
poll the status of device
 Intr: “I want to see a movie.”

 Poll: for(each week) {“Do you want to see a movie?”}

 Good or bad?
 For mostly-idle device?

 For busy device?

 Responsiveness?

 Overhead?

22

Outline

 Dual mode of operation

 Interrupt

 System call

23

System call

 User processes cannot perform privileged
operations themselves

 Must request OS to do so on their behalf by
issuing system calls

 OS must validate system call parameters

24

Examples of Windows and Unix System Calls

25

System call dispatch

1. Kernel assigns system call type a system call number
2. Kernel initializes system call table, mapping system call

number to function implementing the system call
 Also called system call vector

3. User process sets up system call number and arguments
4. User process runs int X

5. Hardware switches to kernel mode and invokes kernel’s
interrupt handler for X (interrupt dispatch)

6. Kernel looks up syscall table using system call number
7. Kernel invokes the corresponding function
8. Kernel returns by running iret (interrupt return)

26

syscall() {
 syscalls[%eax]()

} // syscall.c

sys_write(…) {
 // do real work
} // sysfile.c

xv6 system call dispatch

27

 movl $SYS_write, %eax
 int 64
 ret // usys.S

User mode

kernel mode

64

printf(“Hello world!”) calls

 write(1, buf, sz)

User
program

IDT

syscall

syscalls
table

sys_write

System call parameter passing

 Typical methods
 Pass via registers (e.g., Linux)

 Pass via user-mode stack (e.g., xv6)

 Pass via designated memory region

 xv6 system call parameter passing
 Arguments pushed onto user stack based on gcc

calling convention

 Kernel function uses special routines to fetch these
arguments

• syscall.c

• Why?

28

xv6 system call naming convention

 Usually the user-mode wrapper foo() (usys.S)
traps into kernel, which calls sys_foo()
 sys_foo() implemented in sys*.c

 Often wrappers to foo() in kernel

 System call number for foo() is SYS_foo

 syscalls.h

 All system calls begin with sys_

29

Linux system call naming convention

 Usually the user-mode wrapper foo() traps into
kernel, which calls sys_foo()
 sys_foo is defined by DEFINEx(foo, …)
 Expands to “asmlinkage long sys_foo(void)”
 Where x specifies the number of parameters to syscall
 Often wrappers to foo() in kernel

 System call number for foo() is __NR_foo

 arch/x86/include/asm/unistd_32.h
 Architecture specific

 All system calls begin with sys_

30

System Call from Userspace

 Generic syscall stub provided in libc
 _syscalln
 Where n is the number of parameters

 Example
 To implement:

 ssize_t write(int fd, const void *buf, size_t count);

 Declare:
 #define __NR_write 4 /* Syscall number */

 _syscall3(ssize_t, write, int, fd, const void*, buf, size_t
count)

 Usually done in libc for standard
syscalls

Tracing system calls in Linux

 Use the “strace” command (man strace for info)

 Linux has a powerful mechanism for tracing
system call execution for a compiled application

 Output is printed for each system call as it is
executed, including parameters and return codes

 ptrace() system call is used to implement strace
 Also used by debuggers (breakpoint, singlestep, etc)

 Use the “ltrace” command to trace dynamically
loaded library calls

32

System Call Tracing Demo

 ssh clic-lab.cs.columbia.edu

 pwd

 ltrace pwd
 Library calls
 setlocale, getcwd, puts: makes sense

 strace pwd

 System calls
 execve, open, fstat, mmap, brk: what are these?
 getcwd, write

33

mailto:krj@clic-lab.cs.columbia.edu
mailto:krj@clic-lab.cs.columbia.edu
mailto:krj@clic-lab.cs.columbia.edu

34

x86 interrupt hardware (legacy)

 I/O devices raise Interrupt Request lines (IRQ)

 Programmable Interrupt controller (PIC) maps
IRQ to Interrupt Numbers

 PIC raises INTR line to interrupt CPU

 Nest PIC for more devices

 x86

CPU

Master

PIC

(8259)

Slave

PIC

(8259)
INTR

Programmable Interval-Timer Keyboard Controller

Real-Time Clock

SCSI Disk

Ethernet

IRQs
intr #

35

