WA4118: interrupts and system calls

Junfeng Yang

References: Modern Operating Systems (37 edition), Operating Systems
Concepts (8'h edition), previous W4118, and OS at MIT, Stanford, and UWisc

Outline

0 Dual mode of operation
Q Interrupt

a System call

Need for protection

a Kernel privileged, cannot trust user processes
= User processes may be malicious or buggy

0O Must protect
- User processes from one another
= Kernel from user processes

Hardware mechanisms for protection

O Memory protection
= Segmentation and paging
- E.g., kernel sets segment/page table

a Timer interrupt
« Kernel periodically gets back control

0 Dual mode of operation
« Privileged (+ non-privileged) operations in kernel mode
= Non-privileged operations in user mode

What operations are privileged?

0 Read raw keyboard input

a Call printf()

a Call write()

a Write global descriptor table
a Divide by O

Q Set timer interrupt handler
Q Set segment registers

a Load cr3

x86 protection modes

a Four modes (0-3), but often only O & 3 used

- Kernel mode: O
- User mode: 3
= "Ring 0", "Ring 3"

0 Segment has Descriptor Privilege Level (DPL)
- DPL of kernel code and data segments: O
= DPL of user code and data segments: 3

Q Current Privilege Level (CPL) = current code
segment’'s DPL

« Canonly access data segments when CPL <= DPL

Outline

0 Dual mode of operation
Q Interrupt

a System call

0OS: “"event driven”

a0 Events causing mode switches

= System calls: issued by user processes to request
system services

« Exceptions: illegal instructions (e.qg., division by 0)
» Interrupts: raised by devices to get OS attention

0 Often handled using same hardware
mechanism: interrupt
= Also called trap

Interrupt view of CPU

while (fetch next instruction) {
run instruction;
if (there is an interrupt) {

process interrupt

x86 interrupt view

while (fetch next instruction) {
run instruction;

if (there is an interrupt) {
switch to kernel stack if necessary

save CPU context and error code if any
find OS-provided interrupt handler

jump to handler
restore CPU context when handler returns

}
¥

0 Q1. how does hardware find OS-provided
interrupt handler?

0 Q2: why switch stack?
0 Q3: what CPU context to save and restore?
0 Q4: what does handler do?

10

Q1: how to find interrupt handler?

Q Hardware maps interrupt type to interrupt number

Q OS sets up Interrupt Descriptor Table (IDT) at boot
Also called interrupt vector
- IDT isin memory
« Each entry is an interrupt handler
« OS lets hardware know IDT base
= Defines all kernel entry points

Q Hardware finds handler using interrupt number as
index into IDT

» handler = IDT[intr_number]

1

x86 interrupt hardware (legacy)

Bus
IRQs g'_
: H+ atr 4—___,
" INTR IDT
PIC - CPU 0
Intr #
\ 1, Interrupt
— handler
Mask points

255
12

x86 interrupt numbers

a Total 256 number [0, 255]

QO Intel reserved first 32, OS can use 224

= 0: divide by O

« 1. debug (for single stepping)
= 2: non-maskable interrupt

= 3: breakpoint

- 14: page fault

= 64: system call in xv6

a xvé traps.h

13

x86 interrupt gate descriptor

31 16 15 14 13 12 1t 8 7665 4 o Offset

r v T T T T T F 1T 7 T 77T l T 0 CT T T,
Offset in Target Segment 31...16 PiDPL |0 Typ 10100 |[DWord-Count@® *
R +0

Ofiset in Target Segment 15...0

Target Segment Selector

Figure 3.12: Format of an i386 gate descriptor.,

Q Interrupt gate descriptor

- Code segment selector and offset of handler
« Descriptor Privilege Level (DPL)
= Trap or exception flag

a lidt instruction loads CPU with IDT base

a xXvé

« Handler entry points: vector.S
« Interrupt gate format: SETGATE in mmu.h
= IDT initialization: tvinit() & idtinit() in frap.c

14

Multiple Logical Processors
Multi-CORE CPU

Advanced Programmable Interrupt Controller is needed to
perform ‘routing’ of I/0 requests from peripherals to CPUs
(The legacy PICs are masked when the APICs are enabled)

APIC, TO-APIC, LAPIC

0 Advanced PIC (APIC) for SMP systems

= Used in all modern systems
» Interrupts “routed” to CPU over system bus
- IPT: inter-processor interrupt

0 Local APIC (LAPIC) versus “frontend” IO-APIC
= Devices connect to front-end IO-APIC
» TO-APIC communicates (over bus) with Local APIC

Q Interrupt routing
- Allows broadcast or selective routing of interrupts
= Ability to distribute interrupt handling load
= Routes to lowest priority process
- Special register: Task Priority Register (TPR)
= Arbitrates (round-robin) if equal priority

Q2: why switch stack?

a Cannot trust stack (SS, ESP) of user process!

0 x86 hardware switches stack when interrupt
handling requires user-kernel mode switch

a0 Where to find kernel stack?
« Task gate descriptor has SS and ESP for interrupt
= Itr loads CPU with task gate descriptor

0 xv6 assigns each process a kernel stack, used
in interrupt handling

« switchuvm() in vm.c

17

Q3: what does hardware save?

SS
ESP
EFLAGS
CS
EIP
Err code for some exceptions

} when switch stack

ESP —

a x86 saves SS, ESP, EFLAGS, CS, EIP, Err code
0 Restored by iret
0 OS can save more context

18

Q4: what does interrupt handler do?

Q Typlcal steps
- Assembly to save additional CPU context

» Invoke C handler to process interrupt
» E.g., communicate with I/0 devices

« Invoke kernel scheduler
= Assembly to restore CPU context and return

a xvé
= Interrupt handler entries: vector.S
- Saves & restore additional CPU context: trapasm.S
= C handler: trap.c, struct trapframe in x86.h

19

xv6 kernel stack before calling trap(tf)

—

struct trapframe —

h/w saves —

p—

XV6 saves —

SS i
Ecp } when switch stack
EFLAGS
CS
EIP h/w pushes error code for
Err code or 0 <— some exceptions; xv6 pushes
tr aDDSnO 0 for others (vector.S)
EAX
ESP
argtotrap(tff)e___ Fop

a xvé saves all registers (user-mode CPU context)
Q struct trapframe (x86.h) captures this layout
a "pushl %esp" pushes argument for trap(tf)

20

Issues with interrupts

a Interrupt dispatching has overhead

a Interrupt runs at the “highest priority”
- Increasesresponsiveness, but ...

a So, must be very careful
« Can interrupt handler run for a very long time?
« What if system cannot take more work?
= Should we allow nested interrupts?

a Real-world: interrupt processing very
complex (e.g., Linux)

a In generadl
= Do as little as possible in the interrupt handler
» Defer non-critical actions till later

21

Interrupt v.s. Polling

0 Instead for device to interrupt CPU, CPU can
poll the status of device
« Intr: "I want to see a movie."
= Poll: for(each week) {"Do you want to see a movie?"}

a Good or bad?

- For mostly-idle device?
= For busy device?

- Responsiveness?

» Overhead?

22

Outline

0 Dual mode of operation
Q Interrupt

a System call

23

System call

0 User processes cannot perform privileged
operations themselves

Q Must request OS to do so on their behalf by
issuing system calls

0 OS must validate system call parameters

24

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile ()

SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Examples of Windows and Unix System Calls

Unix

fork()
exit()
wait()

open()
read ()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe O
shmget ()
mmap ()

chmod ()
umask ()
chown()

25

System call dispatch

Kernel assigns system call type a system call number

Kernel initializes system call table, mapping system call
number to function implementing the system call
= Also called system call vector

User process sets up system call number and arguments
User process runs int X

Hardware switches to kernel mode and invokes kernel's
interrupt handler for X (interrupt dispatch)

Kernel looks up syscall table using system call humber
Kernel invokes the corresponding function
Kernel returns by running iret (interrupt return)

26

xv6 system call dispatch

printf(“Hello world!”) calls
write(1, buf, sz)

User
movl $SYS_write, %eax

! program
User mode Int 64
ret // usys.S

syscall() { syscalls
kernel mode IDT syscalls[%eax]() table
/ ¥ // syscall.c Sys_write
64 | syscall

sys_write(...) {
// do real work
} // sysfile.c

27

System call parameter passing

0 Typical methods
« Pass via registers (e.g., Linux)
« Pass via user-mode stack (e.g., xv6)
« Pass via designated memory region

0 xv6 system call parameter passing
= Arguments pushed onto user stack based on gcc
calling convention
- Kernel function uses special routines to fetch these
arguments
» syscall.c

- Why?

28

xv6 system call haming convention

0 Usually the user-mode wrapper foo() (usys.S)
traps into kernel, which calls sys_foo()

= sys_foo() implemented in sys™.c
- Often wrappers to foo() in kernel

a System call number for foo() is SYS_foo
= syscalls.h

0 All system calls begin with sys_

29

Linux system call haming convention

a Usually the user-mode wrapper foo() traps into
kernel, which calls sys_foo()
= sys_foo is defined by DEFINEx(foo, ...)
« Expands to "asmlinkage long sys_foo(void)"
» Where x specifies the number of parameters to syscall
= Often wrappers to foo() in kernel

a System call number for foo() is __NR_foo
« arch/x86/include/asm/unistd_32.h
= Architecture specific

a All system calls begin with sys_

30

System Call from Userspace

Q Generic syscall stub provided in libc

= _syscalln
- Where nis the number of parameters

0 Example
= To implement:

ssize_t write(int fd, const void *buf, size_t count);

« Declare:
#define __NR_write 4 /* Syscall number */

_syscall3(ssize_t, write, int, fd, const void*, buf, size_t
count)

a Usually done in libc for standard
syscalls

Tracing system calls in Linux

0 Use the “strace” command (man strace for info)

Q Linux has a powerful mechanism for tracing
system call execution for a compiled application

Q Output is printed for each system call as it is
executed, including parameters and return codes

a ptrace() system call is used to implement strace
« Also used by debuggers (breakpoint, singlestep, etc)

0 Use the “ltrace” command to trace dynamically
loaded library calls

32

System Call Tracing Demo

Q ssh
a pwd

Q Itrace pwd
« Library calls
= setlocale, getcwd, puts: makes sense

Q strace pwd
= System calls
= execve, open, fstat, mmap, brk: what are these?
= getcwd, write

33

mailto:krj@clic-lab.cs.columbia.edu
mailto:krj@clic-lab.cs.columbia.edu
mailto:krj@clic-lab.cs.columbia.edu

34

x86 interrupt hardware (legacy)

Ethernet ; Slave
1 PIC
SCSI Disk » (8259)

Real-Time Clock

IRQs

|| intr #

| Master

PIC

Keyboard Controller

.\ (8259)

INTR

X86

. CPU

Programmable Interval-Timer

0 I/0 devices raise Interrupt Request lines (IRQ)
0 Programmable Interrupt controller (PIC) maps

IRQ to Interrupt Numbers
Q PIC raises INTR line to interrupt CPU

O Nest PIC for more devices

35

