
W4118: interrupts and system calls

Junfeng Yang

Outline

 Dual mode of operation

 Interrupt

 System call

2

Need for protection

 Kernel privileged, cannot trust user processes
 User processes may be malicious or buggy

 Must protect
 User processes from one another

 Kernel from user processes

3

Hardware mechanisms for protection

 Memory protection
 Segmentation and paging

• E.g., kernel sets segment/page table

 Timer interrupt
 Kernel periodically gets back control

 Dual mode of operation
 Privileged (+ non-privileged) operations in kernel mode

 Non-privileged operations in user mode

4

What operations are privileged?

 Read raw keyboard input

 Call printf()

 Call write()

 Write global descriptor table

 Divide by 0

 Set timer interrupt handler

 Set segment registers

 Load cr3

5

x86 protection modes

 Four modes (0-3), but often only 0 & 3 used
 Kernel mode: 0
 User mode: 3
 “Ring 0”, “Ring 3”

 Segment has Descriptor Privilege Level (DPL)
 DPL of kernel code and data segments: 0
 DPL of user code and data segments: 3

 Current Privilege Level (CPL) = current code
segment’s DPL
 Can only access data segments when CPL <= DPL

6

Outline

 Dual mode of operation

 Interrupt

 System call

7

OS: “event driven”

 Events causing mode switches
 System calls: issued by user processes to request

system services

 Exceptions: illegal instructions (e.g., division by 0)

 Interrupts: raised by devices to get OS attention

 Often handled using same hardware
mechanism: interrupt
 Also called trap

8

Interrupt view of CPU
while (fetch next instruction) {
 run instruction;
 if (there is an interrupt) {

 process interrupt

 }
}

9

x86 interrupt view

 Q1: how does hardware find OS-provided
interrupt handler?

 Q2: why switch stack?
 Q3: what CPU context to save and restore?
 Q4: what does handler do?

while (fetch next instruction) {
 run instruction;
 if (there is an interrupt) {
 switch to kernel stack if necessary
 save CPU context and error code if any
 find OS-provided interrupt handler
 jump to handler
 restore CPU context when handler returns
 }
}

10

Q1: how to find interrupt handler?

 Hardware maps interrupt type to interrupt number

 OS sets up Interrupt Descriptor Table (IDT) at boot
 Also called interrupt vector
 IDT is in memory
 Each entry is an interrupt handler
 OS lets hardware know IDT base
 Defines all kernel entry points

 Hardware finds handler using interrupt number as

index into IDT
 handler = IDT[intr_number]

11

x86 interrupt hardware (legacy)

PIC CPU

Bus

INTR

IRQs

IDT
0

255

Interrupt

handler

idtr

intr #

Mask points

intr #

12

x86 interrupt numbers

 Total 256 number [0, 255]

 Intel reserved first 32, OS can use 224

 0: divide by 0
 1: debug (for single stepping)
 2: non-maskable interrupt
 3: breakpoint
 14: page fault

 64: system call in xv6

 xv6 traps.h

13

x86 interrupt gate descriptor

 Interrupt gate descriptor
 Code segment selector and offset of handler
 Descriptor Privilege Level (DPL)
 Trap or exception flag

 lidt instruction loads CPU with IDT base

 xv6
 Handler entry points: vector.S
 Interrupt gate format: SETGATE in mmu.h
 IDT initialization: tvinit() & idtinit() in trap.c

14

Multi-CORE CPU

Multiple Logical Processors

CPU

0

CPU

1
I/O

APIC LOCAL

APIC

LOCAL

APIC

 Advanced Programmable Interrupt Controller is needed to

perform ‘routing’ of I/O requests from peripherals to CPUs

(The legacy PICs are masked when the APICs are enabled)

APIC, IO-APIC, LAPIC
 Advanced PIC (APIC) for SMP systems

 Used in all modern systems
 Interrupts “routed” to CPU over system bus
 IPI: inter-processor interrupt

 Local APIC (LAPIC) versus “frontend” IO-APIC
 Devices connect to front-end IO-APIC
 IO-APIC communicates (over bus) with Local APIC

 Interrupt routing
 Allows broadcast or selective routing of interrupts
 Ability to distribute interrupt handling load
 Routes to lowest priority process

• Special register: Task Priority Register (TPR)
 Arbitrates (round-robin) if equal priority

Q2: why switch stack?

 Cannot trust stack (SS, ESP) of user process!

 x86 hardware switches stack when interrupt
handling requires user-kernel mode switch

 Where to find kernel stack?
 Task gate descriptor has SS and ESP for interrupt
 ltr loads CPU with task gate descriptor

 xv6 assigns each process a kernel stack, used
in interrupt handling
 switchuvm() in vm.c

17

Q3: what does hardware save?

 x86 saves SS, ESP, EFLAGS, CS, EIP, Err code
 Restored by iret

 OS can save more context

18

SS

ESP

EFLAGS

CS

EIP

Err code
ESP

when switch stack

for some exceptions

Q4: what does interrupt handler do?

 Typical steps
 Assembly to save additional CPU context

 Invoke C handler to process interrupt
• E.g., communicate with I/O devices

 Invoke kernel scheduler

 Assembly to restore CPU context and return

 xv6
 Interrupt handler entries: vector.S

 Saves & restore additional CPU context: trapasm.S

 C handler: trap.c, struct trapframe in x86.h

19

xv6 kernel stack before calling trap(tf)

 xv6 saves all registers (user-mode CPU context)
 struct trapframe (x86.h) captures this layout
 “pushl %esp” pushes argument for trap(tf)

20

SS
ESP

EFLAGS
CS
EIP

Err code or 0

ESP

when switch stack

h/w pushes error code for
some exceptions; xv6 pushes
0 for others (vector.S) trapno

DS
…

EAX
…

h/w saves

xv6 saves

struct trapframe

arg to trap(tf)
ESP

Issues with interrupts

 Interrupt dispatching has overhead
 Interrupt runs at the “highest priority”

 Increases responsiveness, but …

 So, must be very careful
 Can interrupt handler run for a very long time?
 What if system cannot take more work?
 Should we allow nested interrupts?

 Real-world: interrupt processing very
complex (e.g., Linux)

 In general
 Do as little as possible in the interrupt handler
 Defer non-critical actions till later

21

Interrupt v.s. Polling

 Instead for device to interrupt CPU, CPU can
poll the status of device
 Intr: “I want to see a movie.”

 Poll: for(each week) {“Do you want to see a movie?”}

 Good or bad?
 For mostly-idle device?

 For busy device?

 Responsiveness?

 Overhead?

22

Outline

 Dual mode of operation

 Interrupt

 System call

23

System call

 User processes cannot perform privileged
operations themselves

 Must request OS to do so on their behalf by
issuing system calls

 OS must validate system call parameters

24

Examples of Windows and Unix System Calls

25

System call dispatch

1. Kernel assigns system call type a system call number
2. Kernel initializes system call table, mapping system call

number to function implementing the system call
 Also called system call vector

3. User process sets up system call number and arguments
4. User process runs int X

5. Hardware switches to kernel mode and invokes kernel’s
interrupt handler for X (interrupt dispatch)

6. Kernel looks up syscall table using system call number
7. Kernel invokes the corresponding function
8. Kernel returns by running iret (interrupt return)

26

syscall() {
 syscalls[%eax]()

} // syscall.c

sys_write(…) {
 // do real work
} // sysfile.c

xv6 system call dispatch

27

 movl $SYS_write, %eax
 int 64
 ret // usys.S

User mode

kernel mode

64

printf(“Hello world!”) calls

 write(1, buf, sz)

User
program

IDT

syscall

syscalls
table

sys_write

System call parameter passing

 Typical methods
 Pass via registers (e.g., Linux)

 Pass via user-mode stack (e.g., xv6)

 Pass via designated memory region

 xv6 system call parameter passing
 Arguments pushed onto user stack based on gcc

calling convention

 Kernel function uses special routines to fetch these
arguments

• syscall.c

• Why?

28

xv6 system call naming convention

 Usually the user-mode wrapper foo() (usys.S)
traps into kernel, which calls sys_foo()
 sys_foo() implemented in sys*.c

 Often wrappers to foo() in kernel

 System call number for foo() is SYS_foo

 syscalls.h

 All system calls begin with sys_

29

Linux system call naming convention

 Usually the user-mode wrapper foo() traps into
kernel, which calls sys_foo()
 sys_foo is defined by DEFINEx(foo, …)
 Expands to “asmlinkage long sys_foo(void)”
 Where x specifies the number of parameters to syscall
 Often wrappers to foo() in kernel

 System call number for foo() is __NR_foo

 arch/x86/include/asm/unistd_32.h
 Architecture specific

 All system calls begin with sys_

30

System Call from Userspace

 Generic syscall stub provided in libc
 _syscalln
 Where n is the number of parameters

 Example
 To implement:

 ssize_t write(int fd, const void *buf, size_t count);

 Declare:
 #define __NR_write 4 /* Syscall number */

 _syscall3(ssize_t, write, int, fd, const void*, buf, size_t
count)

 Usually done in libc for standard
syscalls

Tracing system calls in Linux

 Use the “strace” command (man strace for info)

 Linux has a powerful mechanism for tracing
system call execution for a compiled application

 Output is printed for each system call as it is
executed, including parameters and return codes

 ptrace() system call is used to implement strace
 Also used by debuggers (breakpoint, singlestep, etc)

 Use the “ltrace” command to trace dynamically
loaded library calls

32

System Call Tracing Demo

 ssh clic-lab.cs.columbia.edu

 pwd

 ltrace pwd
 Library calls
 setlocale, getcwd, puts: makes sense

 strace pwd

 System calls
 execve, open, fstat, mmap, brk: what are these?
 getcwd, write

33

mailto:krj@clic-lab.cs.columbia.edu
mailto:krj@clic-lab.cs.columbia.edu
mailto:krj@clic-lab.cs.columbia.edu

34

x86 interrupt hardware (legacy)

 I/O devices raise Interrupt Request lines (IRQ)

 Programmable Interrupt controller (PIC) maps
IRQ to Interrupt Numbers

 PIC raises INTR line to interrupt CPU

 Nest PIC for more devices

 x86

CPU

Master

PIC

(8259)

Slave

PIC

(8259)
INTR

Programmable Interval-Timer Keyboard Controller

Real-Time Clock

SCSI Disk

Ethernet

IRQs
intr #

35

