W4118: segmentation and paging

Instructor: Junfeng Yang

References: Modern Operating Systems (37 edition), Operating Systems
Concepts (8'h edition), previous W4118, and OS at MIT, Stanford, and UWisc

Outline

a Memory management goals
Q Segmentation
a Paging

o TLB

Uni- v.s. multi-programming

a Simple uniprogramming with a single segment
per process

: : : 0S
a Uniprogramming disadvantages
= Only one process can run a time
» Process can destroy OS
User
a Want multiprogramming! Process

Multiple address spaces co-exist

max PHYSTOP
AS1
0
max
[
max
AS3
0 0

Logical view Physical view

Memory management wish-list

a Sharing

- multiple processes coexist in main memory

Q Transparency
= Processes are not aware that memory is shared
= Run regardless of number/locations of other processes

Q Protection
= Cannot access data of OS or other processes

a Efficiency: should have reasonable performance
- Purpose of sharing is to increase efficiency
= Do not waste CPU or memory resources (fragmentation)

Outline

0 Memory management goals
O Segmentation
a Paging

o TLB

Memory Management Unit (MMU)

Virtual Addresses

Physical Addresses

a Map program-generated address (virtual
address) to hardware address (physical
address) dynamically at every reference

0 Check range and permissions
a Programmed by OS

x86 address translation

a CPU generates virtual address (seg, offset)

= Given to segmentation unit
* Which produces linear addresses
« Linear address given to paging unit
* Which generates physical address in main memory

logical linear physical

address .| segmentation address J| paging address .| physical

GRL : :
unit unit memory

Segmentation

a Divide virtual address space into separate
logical segments; each is part of physical mem

stack

heap

code

Segmentation translation

a Virtual address: <segment-number, of fset>

0O Segment table maps segment number to
segment information

» Base: starting address of the segment in physical
memory

= Limit: length of the segment
» Addition metadata includes protection bits

a Limit & protection checked on each access

x86 segmentation hardware

1
Logical address

5

selector

31

offset

Global descriptor table

\ 4

base limit
base limit
base limit

perm
perm
perm

—

31

Compute: base + offset

Check: offset <= limit

y

pd

Check: permissions

\ 2 0
Linear address

10

L

(I i N

xv6 segments

vm.c, seginit()

Kernel code: readable + executable in kernel mode
Kernel data: writable in kernel mode

User code: readable + executable in user mode
User data: writable in user mode

These are all null mappings
= Map to [0, OXFFFFFFFF)
= Linear address = Offset

Kernel CPU: shortcuts to per-CPU data
= Base: &c->cpu
- Limit: 8 bytes

1

Pros and cons of segmentation

a Advantages
= Segment sharing
 Easier to relocate segment than entire program
= Avoids allocating unused memory
= Flexible protection

- Efficient translation
+ Segment table small =& fit in MMU

a Disadvantages
= Segments have variable lengths & how to fit?
= Segments can be large =& fragmentation

12

Outline

0 Memory management goals
Q Segmentation
a Paging

o TLB

13

Paging overview

a Goal
» Eliminate fragmentation due to large segments
« Don't allocate memory that will not be used
= Enable fine-grained sharing

0 Paging: divide memory into fixed-sized pages
= For both virtual and physical memory

a Another terminology
« A virtual page: page
» A physical page: frame

14

Page translation

Q Address bits = page number + page of fset

Q Translate virtual page number (vpn) to physical
page number (ppn) using page table

pa = page_table[va/pg_sz] + va%pg_sz

-—>vpn of f ppn | of f i

vpn\ ppn /

Page table Memory

15

Page translation example

N[(w|h]|+—

0
1
2
3

Page table | |

Physical
Memory

Virtual
Memory

16

Page translation exercise

a 8-bit virtual address, 10-bit physical address,
and each page is 64 bytes
= How many virtual pages?
« How many physical pages?
= How many entries in page table?

= Given page table = [2, 5, 1, 8], what's the physical
address for virtual address 241?

a m-bit virtual address, n-bit physical address,
k-bit page size
» What are the answers to the above questions?

17

Page protection

a0 Implemented by associating protection bits
with each virtual page in page table

Q Protection bits
- present bit: map to a valid physical page?
- read/write/execute bits: can read/write/execute?

= user bit: can access in user mode?
- x86: PTE_P,PTE W, PTE U

Q Checked by MMU on each memory access

18

Page protection example

pwu
101
110
000
111

Page table | |

Physical
Memory

N w| D[-

0
1
2
3

Virtual
Memory

19

Page allocation

Q Free page management
« E.g., can put page on a free list

a Allocation policy

- E.g., one page at a time, from
head of free list

0 xv6: kalloc.c

free_page_list

2,3,6,5,0

20

Implementation of page table

0 Page table is stored in memory

= Page table base register (PTBR) points to the base
of page table

- x86: cr3
= OS stores base in process control block (PCB)
« OS switches PTBR on each context switch

a Problem: each data/instruction access requires
Two memory accesses
= Extra memory access for page table

21

Page table size issues

a Given:
= A 32 bit address space (4 GB)
- 4 KB pages
= A page table entry of 4 bytes

a Implication: page table is 4 MB per process!

0 Observation: address space are often sparse
= Few programs use all of 2732 bytes

a Change page table structures to save memory
« Trade translation time for page table space

22

Hierarchical page table

Q Break up virtual address space into multiple
page tables at different levels

i 1

/ 100
<

™= 100

500

708

outer page B
table . \ 909
900 /><
page of 929

page table

page table

memory

Address translation with hierarchical
page table

logical address
2 '@ d

.

> >

=

outer page d
table {

page of
page table

24

x86 page translation with 4KB pages

0 32-bit address space, 4 KB page
- 4KB page = 12 bits for page offset

a How many bits for 2nd-level page table?

« Desirable to fit a 2¢-|level page table in one page
- 4KB/4B = 1024 = 10 bits for 2"-|level page table

Q Address bits for top-level page table: 32 - 10
-12=10

page number ‘ page offset

Pi ‘ P ‘ d
10 10 12

25

x86 paging architecture

(logical address)
_ Ppage directory | page table | offset |
31 22 21 12 11 0
Y Y
page 4-KB
h J table > page
page B
directory

CR3 —> ¥ 4-MB

register page
3
_Ppage directory | offset |
31 22 21 0

26

x86 PC Physical Memory Layout

OXFFFFFFFF

OxFFFFF

High BIOS
(2 MB)

~1 GB for PCI space,
APIC space, DMI
interface, etc.

Accessible RAM
Memory (nearly 3GB,
not to scale)

Systemn BIOS

Extended System BIOS

Expansion Area (maps
ROMs for old
peripheral cards)

Legacy Video Card
Memory Access

Accessible RAM
Memaory (B40KE is
enough for anyone -
old DOS area)

4GB

JGB

1MB

960 KB

886 KB

768 KB

640 KB

a Specific to each platform

a Different across
architectures

a Different for machines
with the same processor

a Firmware knows exact
layout

Q Passes to kernel at boot
time (in Linux through
atag_mem structures)

27

Linux Address Space Layout

0 Same address layout for all processes

OxFFFFFFFF 4GB Kernel space
1GE User code CANNOT read from nor
dlealy sl bzl 0xC00PBRAa == TASK SIZE
d } Random stack offset
Stack (grows down}
3GB RLIMIT STACK (e.g., 8MB)
} Random mmap offset
Accessible RAM Memory Mapping Segment
Memory (nearly 3GB,
not to scale) File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so
OxFFFFF 1MB 68 program break
T—‘l‘ brk
960 KB
Heap start_brk
896 KB
Random brk offset
BSS segment
768 KB Uninitialized static variables, filled with zeros.
Example: static char *userName;
640 KB Data segment end_data
Static variables initialized by the programmer.
Accessible RAM Example: static char *gonzo = “God’s own prototype”; start data
M 640KB i o
. n:L:';;ch::r amnf_ Text segment (ELF) end_code
old DOS area) Stores the binary image of the process (e.g., /bin/gonzo) |g.ecaagean
. %]
a]

Read: http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
28

xv6 address space

(memlayout.h)

Virtual

4 Gig —»

§

Device memaory

OxFEQQOQO0— A
RW--
Free memory \
end —=
Kernel data RW-
Kermnel text RB--
+ 0x100000
RW-
KERNBASE—-
g Program data & heap §
PAGESIZE User stack RWLU
User data RwWU
User text RWU
0

PHYSTOP —»

0x100000 —»
6A0K " -

Physical

Devices

Extended memory

I/0 space

Base memory

xv6 address space implementation

Split into kernel space and user space

User: 0--KERNBASE
= Map to physical pages

Kernel: KERNBASE—(KERNBASE+PHYSTOP)
= Virtual address = physical address + KERNBASE

Kernel: OxFEOOOOOO--4GB
= Direct (virtual = physical)

Kernel: vm.c, setupkvm()
User: vm.c, inituvm() and exec.c, exec()

30

Outline

0 Memory management goals
Q Segmentation
Q Paging

o TLB

31

Avoiding extra memory accesses

a Observation: locality
» Temporal: access locations accessed just now

= Spatial: access locations adjacent to locations
accessed just now

» Process often needs only a small number of
vpn=>ppn mappings at any moment!

a Fast-lookup hardware cache called
associative memory or translation look-
aside buffers (TLBs) VPN PPN

= Fast parallel search (CPU speed)

« Small

32

Paging hardware with TLB

logical
address |
el > p d
page frame
number number
e
: TLB hit physical
: r address
) >
TLB
P
TLB miss
f
-~ physical
memory
page table

33

Effective access time with TLB

QO Assume memory cycle time is 1 unit time

a T
a T

_B Lookup time = ¢

| B Hit ratio = a

» Percentage of times that a vpn=>ppn mapping

is found in TLB

0 Effective Access Time (EAT)

EAT=(1+c)a+(2+e)1-a)
—otea+l+e-¢g0-20
=2+e—qQ

34

TLB Miss

0 Depending on the architecture, TLB misses are
handled in either hardware or software

a Hardware (CISC: x86)

« Pros: hardware doesn't have to trust OS |
= Cons: complex hardware, inflexible

Q Software (RISC: MIPS, SPARC)

« Pros: simple hardware, flexible
« Cons: code may have bug
« Question: what can't a TLB miss handler do?

35

TLB and context switches

a0 What happens to TLB on context switches?

a Option 1: flush entire TLB

« X86
+ "load cr3" (load page table base) flushes TLB

= x86 "INVLPG addr” invalidates one TLB entry

a Option 2: attach process ID to TLB entries
= ASID: Address Space Identifier
« MIPS, SPARC

36

Backup Slides

37

Motivation for page sharing

Q Efficient communication. Processes
communicate by write to shared pages

a Memory efficiency. One copy of read-only
code/data shared among processes
= Example 1: multiple instances of the shell program

= Example 2: copy-on-write fork. Parent and child
processes share pages right after fork; copy only
when either writes to a page

38

Page sharing example

ed 1 0
3
ed 2 4 1| data1
ed 3 6 2| data3
1
data 1 page table 3 ed
for P
1 ed
process P, 3 4 ed 2
ed?2
4 5
ed3 6
7 6 ed 3
data 2 page table
for P2 7 data 2
= 7 process P, o
ed 2 4
9
ed 3 g
= 10
data 3 page table
for P, 11
process P,
—————— ||

39

80x86 segment selector

Q Logical address: segment selector + offset

a Segment selector stored in segment registers (16-bit)
= cs: code segment selector
= ss: stack segment selector
= ds: data segment selector
= es, fs,gs

0 Segment register can be implicitly or explicitly
specified

= Implicit by type of memory reference (jmp)
- mov $8049780, %eax // implicitly use ds

- Through special registers (cs, ss, es, ds, fs, gs on x86)
- mov %ss:$8049780, %eax // explicitly use ss

40

Three-level Paging in Linux

(linear address)

| _global directory | middle directory | page table offset
global
directory middle
directory page
tabl
R able page
~ global i frame
directory entry page table |
_ middle entry >
CR3 —» directory entry
register

Page table structures
a Hierarchical paging
0 Hashed page tables

a Inverted page tables

42

Hashed page table

a Common in address spaces > 32 bits

0 Page table contains a chain of elements
hashing to the same location

0 On page translation
» Hash virtual page number into page table
« Search chain for a match on virtual page number

43

Hashed page table example

logical address

P

d

-—>|q|8|’T|JIp|r|lT...

physical
address

r d

hash table

physical
memory

44

Inverted page table

0 One entry for each real page of memory

= Entry consists of the virtual address of the page
stored in that real memory location, with
information about the process that owns that page

Q Can use hash table to limit the search to one
or at most a few page-table entries

45

Inverted page table example

logical

physical
address v address physical

cPu] pid d SR
| b i memory

g_(._/

search l

pid

-

page table

