
W4118: segmentation and paging

Instructor: Junfeng Yang

Outline

 Memory management goals

 Segmentation

 Paging

 TLB

1

Uni- v.s. multi-programming

 Simple uniprogramming with a single segment
per process

 Uniprogramming disadvantages
 Only one process can run a time

 Process can destroy OS

 Want multiprogramming!

2

OS

User
Process

Multiple address spaces co-exist

AS1

AS2

AS3

3
Logical view Physical view

max

max

max

0

0

0

PHYSTOP

0

Memory management wish-list

 Sharing
 multiple processes coexist in main memory

 Transparency
 Processes are not aware that memory is shared
 Run regardless of number/locations of other processes

 Protection
 Cannot access data of OS or other processes

 Efficiency: should have reasonable performance
 Purpose of sharing is to increase efficiency
 Do not waste CPU or memory resources (fragmentation)

4

Outline

 Memory management goals

 Segmentation

 Paging

 TLB

5

Memory Management Unit (MMU)

 Map program-generated address (virtual
address) to hardware address (physical
address) dynamically at every reference

 Check range and permissions

 Programmed by OS

6

CPU MMU MEMORY

Virtual Addresses

Physical Addresses

7

x86 address translation

 CPU generates virtual address (seg, offset)
 Given to segmentation unit

• Which produces linear addresses

 Linear address given to paging unit
• Which generates physical address in main memory

 Divide virtual address space into separate
logical segments; each is part of physical mem

Segmentation

8

code

data

stack

heap

code

data heap

stack

Segmentation translation

 Virtual address: <segment-number, offset>

 Segment table maps segment number to
segment information
 Base: starting address of the segment in physical

memory

 Limit: length of the segment

 Addition metadata includes protection bits

 Limit & protection checked on each access

9

x86 segmentation hardware

10

selector offset

0 31 0 15

base limit perm

base limit perm

base limit perm

Global descriptor table

Logical address

+

Linear address

0 31

Compute: base + offset

Check: offset <= limit

Check: permissions

xv6 segments

 vm.c, seginit()

 Kernel code: readable + executable in kernel mode
 Kernel data: writable in kernel mode
 User code: readable + executable in user mode
 User data: writable in user mode
 These are all null mappings

 Map to [0, 0xFFFFFFFF)

 Linear address = Offset

 Kernel CPU: shortcuts to per-CPU data

 Base: &c->cpu
 Limit: 8 bytes

11

12

Pros and cons of segmentation

 Advantages
 Segment sharing
 Easier to relocate segment than entire program
 Avoids allocating unused memory
 Flexible protection
 Efficient translation

• Segment table small  fit in MMU

 Disadvantages
 Segments have variable lengths  how to fit?
 Segments can be large  fragmentation

12

Outline

 Memory management goals

 Segmentation

 Paging

 TLB

13

Paging overview

 Goal
 Eliminate fragmentation due to large segments
 Don’t allocate memory that will not be used
 Enable fine-grained sharing

 Paging: divide memory into fixed-sized pages
 For both virtual and physical memory

 Another terminology
 A virtual page: page
 A physical page: frame

14

Page translation

 Address bits = page number + page offset

 Translate virtual page number (vpn) to physical
page number (ppn) using page table

 pa = page_table[va/pg_sz] + va%pg_sz

15

CPU vpn off ppn off

Page table

ppn vpn

Memory

ppn

Page translation example

16

Page 0

Page 1

Page 2

Page 3

Page 0

Page 2

Page 1

Page 3

Page table

Physical
Memory

Virtual
Memory

0

1

2

3

1

4

3

7

Page translation exercise

 8-bit virtual address, 10-bit physical address,
and each page is 64 bytes
 How many virtual pages?

 How many physical pages?

 How many entries in page table?

 Given page table = [2, 5, 1, 8], what’s the physical
address for virtual address 241?

 m-bit virtual address, n-bit physical address,
k-bit page size
 What are the answers to the above questions?

17

Page protection

 Implemented by associating protection bits
with each virtual page in page table

 Protection bits
 present bit: map to a valid physical page?

 read/write/execute bits: can read/write/execute?

 user bit: can access in user mode?

 x86: PTE_P, PTE_W, PTE_U

 Checked by MMU on each memory access

18

Page protection example

19

Page 0

Page 1

Page 3

Page 0

Page 1

Page 3

Page table

Physical
Memory

Virtual
Memory

0

1

2

3

1

4

3

7

110

000

111

pwu

101

Page allocation

 Free page management
 E.g., can put page on a free list

 Allocation policy
 E.g., one page at a time, from

head of free list

 xv6: kalloc.c

20

free_page_list

Page 1

Page 3

Page 0

2, 3, 6, 5, 0

Implementation of page table

 Page table is stored in memory
 Page table base register (PTBR) points to the base

of page table
• x86: cr3

 OS stores base in process control block (PCB)

 OS switches PTBR on each context switch

 Problem: each data/instruction access requires
two memory accesses
 Extra memory access for page table

21

Page table size issues

 Given:
 A 32 bit address space (4 GB)
 4 KB pages
 A page table entry of 4 bytes

 Implication: page table is 4 MB per process!

 Observation: address space are often sparse
 Few programs use all of 2^32 bytes

 Change page table structures to save memory
 Trade translation time for page table space

22

Hierarchical page table

 Break up virtual address space into multiple
page tables at different levels

23

Address translation with hierarchical
page table

24

x86 page translation with 4KB pages

 32-bit address space, 4 KB page
 4KB page  12 bits for page offset

 How many bits for 2nd-level page table?
 Desirable to fit a 2nd-level page table in one page

 4KB/4B = 1024  10 bits for 2nd-level page table

 Address bits for top-level page table: 32 – 10
– 12 = 10

25

page number page offset

pi p2 d

12 10 10

x86 paging architecture

26

x86 PC Physical Memory Layout

 Specific to each platform

 Different across
architectures

 Different for machines
with the same processor

 Firmware knows exact
layout

 Passes to kernel at boot
time (in Linux through
atag_mem structures)

27

Linux Address Space Layout
 Same address layout for all processes

28

Read: http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory

x
v6

 a
d
d
re

ss
 s

pa
ce

(m

e
m

la
yo

ut
.h

)

29

xv6 address space implementation

 Split into kernel space and user space

 User: 0--KERNBASE
 Map to physical pages

 Kernel: KERNBASE—(KERNBASE+PHYSTOP)
 Virtual address = physical address + KERNBASE

 Kernel: 0xFE000000--4GB
 Direct (virtual = physical)

 Kernel: vm.c, setupkvm()

 User: vm.c, inituvm() and exec.c, exec()

30

Outline

 Memory management goals

 Segmentation

 Paging

 TLB

31

Avoiding extra memory accesses

 Observation: locality
 Temporal: access locations accessed just now
 Spatial: access locations adjacent to locations

accessed just now
 Process often needs only a small number of

vpnppn mappings at any moment!

 Fast-lookup hardware cache called
associative memory or translation look-
aside buffers (TLBs)
 Fast parallel search (CPU speed)
 Small

32

VPN PPN

Paging hardware with TLB

33

Effective access time with TLB

 Assume memory cycle time is 1 unit time
 TLB Lookup time = 
 TLB Hit ratio = 

 Percentage of times that a vpnppn mapping
is found in TLB

 Effective Access Time (EAT)
 EAT = (1 + )  + (2 + )(1 – )
 =  +  + 2 +  -  - 2
 = 2 +  – 

34

TLB Miss

 Depending on the architecture, TLB misses are
handled in either hardware or software

 Hardware (CISC: x86)
 Pros: hardware doesn’t have to trust OS !

 Cons: complex hardware, inflexible

 Software (RISC: MIPS, SPARC)
 Pros: simple hardware, flexible

 Cons: code may have bug!

 Question: what can’t a TLB miss handler do?

35

TLB and context switches

 What happens to TLB on context switches?

 Option 1: flush entire TLB
 x86

• “load cr3” (load page table base) flushes TLB

 x86 “INVLPG addr” invalidates one TLB entry

 Option 2: attach process ID to TLB entries
 ASID: Address Space Identifier

 MIPS, SPARC

36

Backup Slides

37

Motivation for page sharing

 Efficient communication. Processes
communicate by write to shared pages

 Memory efficiency. One copy of read-only
code/data shared among processes
 Example 1: multiple instances of the shell program

 Example 2: copy-on-write fork. Parent and child
processes share pages right after fork; copy only
when either writes to a page

38

Page sharing example

39

40

80x86 segment selector

 Logical address: segment selector + offset

 Segment selector stored in segment registers (16-bit)
 cs: code segment selector
 ss: stack segment selector
 ds: data segment selector
 es, fs, gs

 Segment register can be implicitly or explicitly
specified
 Implicit by type of memory reference (jmp)

• mov $8049780, %eax // implicitly use ds

 Through special registers (cs, ss, es, ds, fs, gs on x86)
 mov %ss:$8049780, %eax // explicitly use ss

Three-level Paging in Linux

41

Page table structures

 Hierarchical paging

 Hashed page tables

 Inverted page tables

42

Hashed page table

 Common in address spaces > 32 bits

 Page table contains a chain of elements
hashing to the same location

 On page translation
 Hash virtual page number into page table

 Search chain for a match on virtual page number

43

Hashed page table example

44

Inverted page table

 One entry for each real page of memory
 Entry consists of the virtual address of the page

stored in that real memory location, with
information about the process that owns that page

 Can use hash table to limit the search to one
or at most a few page-table entries

45

Inverted page table example

46

