W4118: OS Overview

Junfeng Yang

References: Modern Operating Systems (3™ edition), Operating Systems
Concepts (8™ edition), previous W4118, and OS at MIT, Stanford, and UWisc

Outline

a OS definitions
a OS abstractions/concepts
0 OS structure

a OS evolution

What is 0S?

Q "A program that acts as an intermediary
between a user of a computer and the
computer hardware.”

"stuff between"” ‘ .

Two popular definitions

a Top-down perspective: hardware abstraction
layer, turn hardware into something that
applications can use

Q Bottom-up perspective: resource
manager/coordinator, manage your computer’s
resources

OS = hardware abstraction layer

Q "standard library” "OS as virtual machine”
= E.g. printf("hello world"), shows up on screen
= App issue system calls to use OS abstractions

a Why good?
= Ease of use: higher level, easier to program

- Reusability: provide common functionality for reuse
- E.g. each app doesn't have to write a graphics driver

= Portability / Uniformity: stable, consistent
interface, different OS/ver/hw look same

* E.g. scsi/ide/flash disks

a Why hard?
» What are the right abstractions ?

Two popular definitions

0 Top-down perspective: hardware abstraction
layer, turn hardware into something that
applications can use

Q Bottom-up perspective: resource
manager/coordinator, manage your computer’s
resources

OS = resource manager/coordinator

a Computer has resources, OS must manage.
= Resource = CPU, Memory, disk, device, bandwidth, ...

System Call

- - - -
) - - -

Hardware

OS = resource manager/coordinator
(cont.)

0 Why good?

= Sharing/Multiplexing: more than 1 app/user to use
resource

« Protection: protect apps from each other, OS from

app
- Who gets what when

« Performance: efficient/fair access to resources

a Why hard? Mechanisms vs policies
= Mechanism: how to do things
« Policy: what will be done

» Ideal: general mechanisms, flexible policies
- Difficult to design right

Outline

0 OS definitions
a OS abstractions/concepts
Q OS structure

a OS evolution

OS abstraction: process

a Running program, stream of running
Instructions + process state

= A key OS abstraction: the applications you use are
built of processes

- Shell, powerpoint, gcc, browser, ...

Q Easy to use

= Processes are protected from each other
- process = address space

- Hide details of CPU, when&where to run

10

Unix process-related system calls

0 int fork (void)
» Create a copy of the invoking process

= Return process ID of new process in "parent”
» Return O in "child"

Q int execv (const char* prog, const char™ argv[])
= Replace current process with a new one
= prog: program fo run
= argv: arguments to pass to main()

0 int wait (int *status)
- wait for a child to exit

1

Simple shell

// parse user-typed command line into command and args

/] execute the command
switch(pid = fork ()) {
case -1: perror (“fork”); break;
case 0: // child
execv (command, args, 0); break;
default: // parent
wait (0); break; // wait for child to terminate

12

OS abstraction: file

a Array of bytes, persistent across reboot

= Nice, clean way to read and write data

« Hide the details of disk devices (hard disk, CDROM,
flash ...)

0 Related abstraction: directory, collection of
file entries

13

Unix file system calls

int open(const char *path, int flags, int mode)

= Opens a file and returns an integer called a file descriptor
to use in other file system calls

- Default file descriptors
« 0 = stdin, 1 = stdout, 2 = stderr

int write(int fd, const char* buf, size_t sz)
- Worites sz bytes of data in buf to fd at current file of fset
- Advance file offset by sz

int close(int fd)

int dup2 (int oldfd, int newfd)
- makes newfd an exact copy of oldfd
- closes newfd if it was open
- two file descriptors will share same offset

14

Process communication: pipe

Q int pipe(int fds[2])
= Creates a one way communication channel
« fds[2] is used to return two file descriptors
= Bytes written to fds[1] will be read from fds[0]

0 Often used together with fork() fo create a
channel between parent and child

15

Q sh.c

xv6 shell

16

Outline

O OS definitions and functionalities
0 OS abstractions/concepts
0 OS structure

a OS evolution

17

OS structure

a OS structure: what goes into the kernel?

= Kernel: most interesting part of OS
* Privileged; can do everything = must be careful
* Manages other parts of OS

a Different structures lead to different
= Performance, functionality, ease of use, security,

reliability, portability, extensibility, cost, ...

a Tradeoffs depend on technology and workload

18

Monolithic

0 Most traditional functionality in kernel

Kernel

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block /O page replacement

character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Unix System Architecture

19

Microkernel

0 Move functionality out of kernel

(M
el | (@) ‘ ‘ ‘ /
e @ @

Microkernel handles interrupts,

processes, scheduling, IPC

Minix 3 System Architecture

20

Virtual machine

a Export a fake hardware interface so that
multiple OS can run on top

processes

.

kernel

hardware

(@)

programming/
»~ interface

Non-virtual Machine

processes
processes
processes
kernel kernel kernel
VM1 VM2 VM3

virtual-machine
implementation

hardware

(b)

Virtual Machine

21

Outline

O OS definitions and functionalities
0 OS abstractions/concepts
O OS structure

a OS evolution

22

OS evolution

Q Many outside factors affect OS

a User needs + technology changes = OS must
evolve
- New/better abstractions to users
= New/better algorithms to implement abstractions
= New/better low-level implementations (hw change)

a Current OS: evolution of these things

23

Major trend in History

a Hardware: cheaper and cheaper
a Computers/user: increases

a Timeline
» 70s: mainframe, 1 / organization
= 80s: minicomputer, 1 / group
- 90s: PC,1/ user

24

70s: mainframe

0O Hardware:

- Huge, $$%, slow
= TO: punch card, line printer

o OS

= simple library of device drivers (no resource coordination)

- Human = OS: single programmer/operator programs, runs,
debugs

= One job at a time

Q Problem: poor performance (utilization / throughput)

Machine $$$, but idle most of the time because
programmer slow

25

Batch Processing

QO Batch: submit group of jobs together to machine
= Operator collects, orders, runs (resource coordinator)

0 Why good? can better optimize given more jobs
= Cover setup overhead
= Operator quite skilled at using machine
= Machine busy more (programmers debugging offline)

0 Why bad?
= Must wait for results for long time

Q Result: utilization increases, interactivity drops

26

Q

Q

Spooling

Problem: slow I/O ties up fast CPU
« Input = Compute => Output
= Slow punch card reader and line printer

on-hmn
0 —— o] — &5

card reader line printer

Idea: overlap one job's IO with other jobs' compute

OS functionality
= buffering, DMA, interrupts

Good: better utilization/throughput [=—
Bad: still not interactive

disk

1

/10

L/

CPU

.

27

Multiprogramming

a Spooling = multiple jobs
a Multiprogramming

= keep multiple jobs in memory, OS
chooses which to run

= When job waits for I/0, switch

a OS functionality
« job scheduling, mechanism/policies
= Memory management/protection

Q Good: better throughput
Q Bad: still not interactive

512M

operating system

job 1

job 2

job 3

job 4

28

d

d

a

80s: minicomputer

Hardware gets cheaper. 1/ group
Need better interactivity, short response time

Concept: timesharing

« Fast switch between jobs to give impression of dedicated

machine

OS functionality:
= More complex scheduling, memory management
= Concurrency control, synchronization

Good: immediate feedback to users

29

90s: PC

a Even cheaper. 1/ user
Q Goal: easy of use, more responsive
a Do not need a lot of stuff

0 Example: DOS
= No time-sharing, multiprogramming, protection, VM
= One job at a time
= OS is subroutine again

30

00s: smartphones, tablets

a Even cheaper. N/ user
a Offload to cloud

Q Goal: easy of use, more responsive, new user
interfaces, always connected, "cool”

a Example: iOS, Android, Windows
» Time-sharing, multiprogramming, protection, VM

a Users + Hardware = OS functionality

31

Current trends?

a Large
= Users want more features
= More devices
» Parallel hardware, fast network
- Result: large system, millions of lines of code

a Reliability, Security
« Few errors in code, can recover from failures
= At odds with previous trend

O Small: e.qg. wearable devices
- New user interface
= Energy: battery life
= One job at a tfime. OS is subroutine again

32

Next lecture

a PC hardware and x86 programming

33

OS abstraction: thread

0 "miniprocesses,” stream of instructions +
thread state

= Convenient abstraction to express concurrency in
program execution and exploit parallel hardware

for(;;) {
int fd = accept_client();
create_thread(process_request, fd);

}

= More efficient communication than processes

34

