
W4118 Operating Systems I

Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Bad News

 This is a TOUGH course
 “Most difficult” rated by CS alumni

 Unfamiliar low-level systems programming
 C and Assembly
 No abstraction, close to hardware

 Intense
 “Should be 6 units instead of 3” …
 Most of those struggling in CS lounge or CLIC lab late or

possibly overnight were OS students

 And you have to climb up N floors for lecture!
 Or wait 10 minutes for elevator …

More Good News

 Not interested in learning OS or low-level
systems programming? Don’t have to take this
course!
 New MS Breadth requirement

 Waive if you have taken a similar course

Good News

 Heavy, but totally worth it
 “Most useful after graduating” rated by alumni

 Works hard  good grade

 We’ll do our best to help you

 Climbing up N floors is good exercise!

Why Study OS?

 OS = arguably the most fundamental software
 We do almost everything with computers through OS

 By studying OS, you will
 Gain a good understanding of OS
 Gain a good understanding of the big picture

• How do hardware, programming language, compiler, algorithms,
OS work together?

 Learn some portable tricks

Possibly

 Land a job at Facebook/Google/Microsoft/VMware/…
 Get started in systems research
 Apply OS ideas to your research area
 …

What Will We Learn?

 OS concepts
 What does an OS do?

• Abstract hardware: processes, threads, files

• Manage resources: CPU scheduling, memory
management, file systems

 OS implementation techniques
 How does an OS implement X in general?

 How do two kernels, xv6 and Linux, implement X?

What Will We Learn? (cont.)

 Hands on OS programming experience with
several kernel programming assignments
 Best way: learning by doing

 Low-level systems programming skills

 Practical programming skills
• How to understand large codebase

• How to modify large codebase

• How to debug large codebase

• …

 Tools and systems
• QEMU, gdb, Android, …

My Background

 Research area: systems
 Publish in systems conferences (e.g., OSDI, SOSP, NSDI)

 Research-wise, practical kind of guy; believe only
in stuff that works and is useful

 System reliability research for N years
 Systems research shifted from pure performance to

reliability starting around 2000
 I was fortunate to be at the cutting edge of this shift
 Hacked Linux & Windows, found some of the worst bugs
 Current focus: concurrency

 Cool projects available for interested students
 http://rcs.cs.columbia.edu/student-projects.html

http://rcs.cs.columbia.edu/student-projects.html
http://rcs.cs.columbia.edu/student-projects.html
http://rcs.cs.columbia.edu/student-projects.html

Some of My Previous Results

 Built several effective bug-finding tools
 One transferred to Microsoft SQL Azure

 Found 100+ serious bugs
 Security holes: write arbitrary memory
 Data loss errors: lose entire file system data
 Errors in commercial data center systems: stuck w/o

progress

 Serious enough that developers immediately
worked on fixes
 google “lkml junfeng”

 Appeared at various website (e.g., cacm.org,
lwn.net)

 Won a few awards (OSDI best paper, NSF Career,
AFOSR YIP, Sloan)

Why Two Kernels?

 The xv6 teaching operating system from MIT
 Small, easy to understand

• Comes with code and a commentary

• Make discussions concrete

 Very good for illustrating OS concepts and
implementation techniques

 The Linux kernel
 Code readily available, many books

 Real, widespread, relevant

 Very good for helping you learn practical skills

xv6 Overview

 Created by MIT

 Implementation of Unix 6th Edition on x86

 A subset of Unix system calls
 fork, exec, read, write, pipe, …

 Runs with multiple processors/multicore

 User-mode programs (can do some real stuff)
 mkdir, rm, …

 Bootable on real PC hardware

Understanding xv6

 Lectures + study code and commentary +
programming exercises

 Resources:
http://www.cs.columbia.edu/~junfeng/os/reso
urces.html
 gcc inline assembly

 Intel programming manual

 QEMU monitor commands

 gdb commands

 PC hardware programming

http://www.cs.columbia.edu/~junfeng/os/resources.html
http://www.cs.columbia.edu/~junfeng/os/resources.html

xv6 Files
 Generic: asm.h (segmentation), mmu.h, x86.h (inline assembly), elf.h

(ELF format), types.h, param.h (kernel constants), string.c

 Boot: bootasm.S, bootother.S, bootmain.c, main.c

 Process and virtual memory: proc.h, proc.c, vm.c, pipe.c, exec.c,
kalloc.c, sysproc.c, swtch.S, initcode.S

 System call and interrupt: syscall.h, traps.h, trap.c, syscall.c,
trapasm.S, vector.S

 Synchronization and multicore: spinlock.h, mp.h, spinlock.c, mp.c

 Disk and file system: defs.h, fs.h, stat.h file.h, buf.h, fcntl.h, bio.c,
fs.c, file.c, sysfile.c

 Device: kbd.h, kbd.c, timer.c, lapic.c, picirq.c, uart.c, console.c, ide.c,
ioapic.c

 User-mode programs: user.h, sh.c, wc.c, kill.c, cat.c, grep.c, ln.c,
ulib.c, echo.c, init.c, ls.c, printf.c, umalloc.c, mkdir.c, rm.c, usys.S,

 Initialize a file system: mkfs.c

 Build: Makefile, kernel.ld

 Test: stressfs.c, forktest.c, zombie.c, usertests.c

Linux Overview

 A modern, open-source OS, based on UNIX
standards
 1991, 0.1 MLOC, single developer

• Linus Torvalds wrote from scratch
• Main design goal: UNIX compatibility

 Now, 10 MLOC, developers worldwide
• Unique source code management model

 Linux distributions: ubuntu, redhat, fedora,
Gentoo, CentOS, Android …
 Kernel is Linux
 Different set of user applications and package

management systems
 Run on cloud, server, desktop, mobile, …

 Run on 1 billion (Android) devices by end of this

year, and 2 billion by end of 2014 or 2015 [Eric
Schmidt]

Understanding Linux

 Lectures + study code and book + programming
assignments

 Resources:
http://www.cs.columbia.edu/~junfeng/os/reso
urces.html

http://www.cs.columbia.edu/~junfeng/os/resources.html
http://www.cs.columbia.edu/~junfeng/os/resources.html

Linux Licensing

 The GNU General Public License (GPL)

 Anyone creating their own derivative of Linux
may not make the derived product proprietary;
software released under GPL may not be
redistributed as a binary-only product

Linux kernel structure

Applications

System Libraries (libc)

System Call Interface

Hardware

Architecture-Dependent Code

I/O Related Process Related

Scheduler

Memory Management

IPC

File Systems

Networking

Device Drivers

M
o
d
u
le

s

Linux kernel structure (cont.)

 Core + dynamically loaded modules
 E.g., device drivers, file systems, network protocols

 Modules were originally developed to support
the conditional inclusion of device drivers
 Early OS has to include code for all possible device

or be recompiled to add support for a new device

 Modules are now used extensively
 Standard way to add new functionalities to kernel

 Reasonably well designed kernel-module interface

Linux kernel source

 Download: kernel.org
 Browse: lxr.linux.no (with cross reference)

 Android: http://androidxref.com/

 Directory structure
 include: public headers
 kernel: core kernel components (e.g., scheduler)
 arch: hardware-dependent code
 fs: file systems
 mm: memory management
 ipc: inter-process communication
 drivers: device drivers
 usr: user-space code
 lib: common libraries

Additional Course Info

 Course website:
http://www.cs.columbia.edu/~junfeng/os/

 Next: tour of course website

http://www.cs.columbia.edu/~junfeng/os/

Homework 1

 Written part: basic OS concepts

 Programming part: warmup, sanity test
 Get you familiar with some basic tools

 Set up xv6 and qemu

 Learn xv6 boot loader, kernel, calling conventions

 A little bit of low-level C coding

TA Sessions (Optional)

 First TA session
 Wei Wang

 Introduction to git, qemu, gdb, ssh

 Friday 9/6, 3-4pm, CLIC lab

Other Action Items

 Highly recommended: apply for a CS account

 Find groupmates for Linux kernel programming
assignments

 Buy Nexus 7

