
W4118 Operating Systems I

Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Bad News

 This is a TOUGH course
 “Most difficult” rated by CS alumni

 Unfamiliar low-level systems programming
 C and Assembly
 No abstraction, close to hardware

 Intense
 “Should be 6 units instead of 3” …
 Most of those struggling in CS lounge or CLIC lab late or

possibly overnight were OS students

 And you have to climb up N floors for lecture!
 Or wait 10 minutes for elevator …

More Good News

 Not interested in learning OS or low-level
systems programming? Don’t have to take this
course!
 New MS Breadth requirement

 Waive if you have taken a similar course

Good News

 Heavy, but totally worth it
 “Most useful after graduating” rated by alumni

 Works hard good grade

 We’ll do our best to help you

 Climbing up N floors is good exercise!

Why Study OS?

 OS = arguably the most fundamental software
 We do almost everything with computers through OS

 By studying OS, you will
 Gain a good understanding of OS
 Gain a good understanding of the big picture

• How do hardware, programming language, compiler, algorithms,
OS work together?

 Learn some portable tricks

Possibly

 Land a job at Facebook/Google/Microsoft/VMware/…
 Get started in systems research
 Apply OS ideas to your research area
 …

What Will We Learn?

 OS concepts
 What does an OS do?

• Abstract hardware: processes, threads, files

• Manage resources: CPU scheduling, memory
management, file systems

 OS implementation techniques
 How does an OS implement X in general?

 How do two kernels, xv6 and Linux, implement X?

What Will We Learn? (cont.)

 Hands on OS programming experience with
several kernel programming assignments
 Best way: learning by doing

 Low-level systems programming skills

 Practical programming skills
• How to understand large codebase

• How to modify large codebase

• How to debug large codebase

• …

 Tools and systems
• QEMU, gdb, Android, …

My Background

 Research area: systems
 Publish in systems conferences (e.g., OSDI, SOSP, NSDI)

 Research-wise, practical kind of guy; believe only
in stuff that works and is useful

 System reliability research for N years
 Systems research shifted from pure performance to

reliability starting around 2000
 I was fortunate to be at the cutting edge of this shift
 Hacked Linux & Windows, found some of the worst bugs
 Current focus: concurrency

 Cool projects available for interested students
 http://rcs.cs.columbia.edu/student-projects.html

http://rcs.cs.columbia.edu/student-projects.html
http://rcs.cs.columbia.edu/student-projects.html
http://rcs.cs.columbia.edu/student-projects.html

Some of My Previous Results

 Built several effective bug-finding tools
 One transferred to Microsoft SQL Azure

 Found 100+ serious bugs
 Security holes: write arbitrary memory
 Data loss errors: lose entire file system data
 Errors in commercial data center systems: stuck w/o

progress

 Serious enough that developers immediately
worked on fixes
 google “lkml junfeng”

 Appeared at various website (e.g., cacm.org,
lwn.net)

 Won a few awards (OSDI best paper, NSF Career,
AFOSR YIP, Sloan)

Why Two Kernels?

 The xv6 teaching operating system from MIT
 Small, easy to understand

• Comes with code and a commentary

• Make discussions concrete

 Very good for illustrating OS concepts and
implementation techniques

 The Linux kernel
 Code readily available, many books

 Real, widespread, relevant

 Very good for helping you learn practical skills

xv6 Overview

 Created by MIT

 Implementation of Unix 6th Edition on x86

 A subset of Unix system calls
 fork, exec, read, write, pipe, …

 Runs with multiple processors/multicore

 User-mode programs (can do some real stuff)
 mkdir, rm, …

 Bootable on real PC hardware

Understanding xv6

 Lectures + study code and commentary +
programming exercises

 Resources:
http://www.cs.columbia.edu/~junfeng/os/reso
urces.html
 gcc inline assembly

 Intel programming manual

 QEMU monitor commands

 gdb commands

 PC hardware programming

http://www.cs.columbia.edu/~junfeng/os/resources.html
http://www.cs.columbia.edu/~junfeng/os/resources.html

xv6 Files
 Generic: asm.h (segmentation), mmu.h, x86.h (inline assembly), elf.h

(ELF format), types.h, param.h (kernel constants), string.c

 Boot: bootasm.S, bootother.S, bootmain.c, main.c

 Process and virtual memory: proc.h, proc.c, vm.c, pipe.c, exec.c,
kalloc.c, sysproc.c, swtch.S, initcode.S

 System call and interrupt: syscall.h, traps.h, trap.c, syscall.c,
trapasm.S, vector.S

 Synchronization and multicore: spinlock.h, mp.h, spinlock.c, mp.c

 Disk and file system: defs.h, fs.h, stat.h file.h, buf.h, fcntl.h, bio.c,
fs.c, file.c, sysfile.c

 Device: kbd.h, kbd.c, timer.c, lapic.c, picirq.c, uart.c, console.c, ide.c,
ioapic.c

 User-mode programs: user.h, sh.c, wc.c, kill.c, cat.c, grep.c, ln.c,
ulib.c, echo.c, init.c, ls.c, printf.c, umalloc.c, mkdir.c, rm.c, usys.S,

 Initialize a file system: mkfs.c

 Build: Makefile, kernel.ld

 Test: stressfs.c, forktest.c, zombie.c, usertests.c

Linux Overview

 A modern, open-source OS, based on UNIX
standards
 1991, 0.1 MLOC, single developer

• Linus Torvalds wrote from scratch
• Main design goal: UNIX compatibility

 Now, 10 MLOC, developers worldwide
• Unique source code management model

 Linux distributions: ubuntu, redhat, fedora,
Gentoo, CentOS, Android …
 Kernel is Linux
 Different set of user applications and package

management systems
 Run on cloud, server, desktop, mobile, …

 Run on 1 billion (Android) devices by end of this

year, and 2 billion by end of 2014 or 2015 [Eric
Schmidt]

Understanding Linux

 Lectures + study code and book + programming
assignments

 Resources:
http://www.cs.columbia.edu/~junfeng/os/reso
urces.html

http://www.cs.columbia.edu/~junfeng/os/resources.html
http://www.cs.columbia.edu/~junfeng/os/resources.html

Linux Licensing

 The GNU General Public License (GPL)

 Anyone creating their own derivative of Linux
may not make the derived product proprietary;
software released under GPL may not be
redistributed as a binary-only product

Linux kernel structure

Applications

System Libraries (libc)

System Call Interface

Hardware

Architecture-Dependent Code

I/O Related Process Related

Scheduler

Memory Management

IPC

File Systems

Networking

Device Drivers

M
o
d
u
le

s

Linux kernel structure (cont.)

 Core + dynamically loaded modules
 E.g., device drivers, file systems, network protocols

 Modules were originally developed to support
the conditional inclusion of device drivers
 Early OS has to include code for all possible device

or be recompiled to add support for a new device

 Modules are now used extensively
 Standard way to add new functionalities to kernel

 Reasonably well designed kernel-module interface

Linux kernel source

 Download: kernel.org
 Browse: lxr.linux.no (with cross reference)

 Android: http://androidxref.com/

 Directory structure
 include: public headers
 kernel: core kernel components (e.g., scheduler)
 arch: hardware-dependent code
 fs: file systems
 mm: memory management
 ipc: inter-process communication
 drivers: device drivers
 usr: user-space code
 lib: common libraries

Additional Course Info

 Course website:
http://www.cs.columbia.edu/~junfeng/os/

 Next: tour of course website

http://www.cs.columbia.edu/~junfeng/os/

Homework 1

 Written part: basic OS concepts

 Programming part: warmup, sanity test
 Get you familiar with some basic tools

 Set up xv6 and qemu

 Learn xv6 boot loader, kernel, calling conventions

 A little bit of low-level C coding

TA Sessions (Optional)

 First TA session
 Wei Wang

 Introduction to git, qemu, gdb, ssh

 Friday 9/6, 3-4pm, CLIC lab

Other Action Items

 Highly recommended: apply for a CS account

 Find groupmates for Linux kernel programming
assignments

 Buy Nexus 7

