
Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs

Stefan Savage
Department of Computer Science and Engineering

University of Washington, Seattle
Michael Burrows Greg Nelson Patrick Sobalvarro

Digital Equipment Corporation
Systems Research Center

Thomas Anderson
Computer Science Division

University of California, Berkeley

Abstract
Multi-threaded programming is difficult and error prone. It
is easy to make a mistake in synchronization that produces a
data race, yet it can be extremely hard to locate this mistake
during debugging. This paper describes a new tool, called
Eraser, for dynamically detecting data races in lock-based
multi-threaded programs. Eraser uses binary rewriting tech-
niques to monitor every shared memory reference and verify
that consistent locking behavior is observed. We present sev-
eral case studies, including undergraduate coursework and a
multi-threaded Web search engine, that demonstrate the ef-
fectiveness of this approach.

1 Introduction
Multi-threading has become a common programming tech-
nique. Most commercial operating systems support threads,
and popular applications like Microsoft Word and Netscape
Navigator are multi-threaded.

Unfortunately, debugging a multi-threaded program can
be difficult. Simple errors in synchronization can produce
timing-dependent data races that can take weeks or months
to track down. For this reason, many programmers have re-
sisted using threads. The difficulties with using threads are
well summarized by John Ousterhout in his 1996 USENIX
presentation “Why Threads are a bad idea (for most pur-
poses)”[Ousterhout 96].

savage@cs.washington.edu

In this paper we describe a tool, called Eraser, that dy-
namically detects data races in multi-threaded programs. We
have implemented Eraser for DIGITAL Unix and used it to
detect data races in a number of programs, ranging from the
AltaVista Web search engine to introductory programming
exercises written by undergraduates.

Previous work in dynamic race detection is based on Lam-
port’s happens-before relation[Lamport 78] and checks that
conflicting memory accesses from different threads are sepa-
rated by synchronization events. Happens-before algorithms
handle many styles of synchronization, but this generality
comes at a cost. We have aimed Eraser specifically at the
lock-based synchronization used in modern multi-threaded
programs. Eraser simply checks that all shared memory ac-
cesses follow a consistent locking discipline. A locking dis-
cipline is a programming policy that ensures the absence of
data races. For example, a simple locking discipline is to re-
quire that every variable shared between threads is protected
by a mutual exclusion lock. We will argue that for many pro-
grams Eraser’s approach of enforcing a locking discipline is
simpler, more efficient, and more thorough at catching races
than the approach based on happens-before. As far as we
know, Eraser is the first dynamic race detection tool to be
applied to multi-threaded production servers.

The remainder of this paper is organized as follows: After
reviewing what a data race is and describing previous work
in race detection, we present the Lockset algorithm used by
Eraser, first at a high level and then at a level low enough
to reveal the main performance-critical implementation tech-
niques. Finally, we describe the experience we have had us-
ing Eraser with a number of multi-threaded programs.

Eraser bears no relationship to the tool by the same name
constructed by John Mellor-Crummey for detecting data
races in shared-memory parallel Fortran programs as part of
the ParaScope Programming Environment[Mellor-Crummey
93].

1.1 Definitions
A lock is a simple synchronization object used for mutual
exclusion; it is either available, or owned by a thread. The
operations on a lock mu are lock(mu) and unlock(mu).
Thus it is essentially a binary semaphore used for mutual ex-
clusion, but differs from a semaphore in that only the owner
of a lock is allowed to release it.

A data race occurs when two concurrent threads access a
shared variable, and:

at least one access is a write, and

the threads use no explicit mechanism to prevent the
accesses from being simultaneous.

If a program has a potential data race, then the effect of
the conflicting accesses to the shared variable will depend on
the interleaving of the thread executions. Although program-
mers occasionally deliberately allow a data race when the
non-determinism seems harmless, usually a potential data
race is a serious error caused by failure to synchronize prop-
erly.

1.2 Related work
An early attempt to avoid data races was the pioneering con-
cept of a monitor introduced by C.A.R. Hoare [Hoare 74]. A
monitor is a group of shared variables together with the pro-
cedures that are allowed to access them, all bundled together
with a single anonymous lock that is automatically acquired
and released at the entry and exit of the procedures. The
shared variables in the monitor are out of scope (that is, invis-
ible) outside the monitor, consequently they can be accessed
only from within the monitor’s procedures, where the lock is
held. Thus monitors provide a static, compile-time guarantee
that accesses to shared variables are serialized and therefore
free from data races. Monitors are an effective way to avoid
data races if all shared variables are static globals, but they
don’t protect against data races in programs with dynami-
cally allocated shared variables, a limitation that early users
found was significant[Lampson & Redell 80]. By substitut-
ing dynamic checking for static checking, our work aims to
allow dynamically allocated shared data while retaining as
much of the safety of monitors as possible.

Some attempts have been made to create purely static (that
is, compile-time) race detection systems that work in the
presence of dynamically allocated shared data: for exam-
ple, Sun’s lock lint [SunSoft 94] and the Extended Static
Checker for Modula-3 [Detlefs et al. 97, Nelson et al. 96].
But these approaches seem problematical since they require
statically reasoning about the program’s semantics.

Most of the previous work in dynamic race detection
has been carried out by the scientific parallel programming
community [Dinning & Schonberg 90, Netzer 91, Mellor-
Crummey 91, Perkovic & Keleher 96] and is based on Lam-
port’s happens-before relation, which we now describe.

Thread 1 Thread 2

lock(mu);

v := v+1;

unlock(mu);

lock(mu);

v := v+1;

unlock(mu);

Figure 1: Lamport’s happens-before orders events in the same
thread in temporal order, and orders events in different threads if
the threads synchronized with one another between the events.

The happens-before order is a partial order on all events
of all threads in a concurrent execution. Within any single
thread, events are ordered in the order in which they oc-
curred. Between threads, events are ordered according to the
properties of the synchronization objects they access. If one
thread accesses a synchronization object and the next access
to the object is by a different thread, then the first access is
defined to happen before the second if the semantics of the
synchronization object forbid a schedule in which these two
interactions are exchanged in time. For example, Figure 1
shows one possible ordering of two threads executing the
same code segment. The three program statements executed
by Thread 1 are ordered by happens-before because they are
executed sequentially in the same thread. The lock of mu by
Thread 2 is ordered by happens-before with the unlock of
mu by Thread 1 because a lock cannot be acquired before its
previous owner has released it. Finally, the three statements
executed by Thread 2 are ordered by happens-before because
they are executed sequentially within that thread.

If two threads both access a shared variable and the ac-
cesses are not ordered by the happens-before relation, then in
another execution of the program in which the slower thread
ran faster and/or the faster thread ran slower, the two ac-
cesses could have happened simultaneously; that is, a data
race could have occurred, whether or not it actually did oc-
cur. All previous dynamic race detection tools that we know
of are based on this observation. These race detectors mon-

itor every data reference and synchronization operation and
check for conflicting accesses to shared variables that are un-
related by the happens-before relation for the particular exe-
cution they are monitoring.

Unfortunately, tools based on happens-before have two
significant drawbacks. First, they are difficult to implement
efficiently because they require per-thread information about
concurrent accesses to each shared memory location. More
importantly, the effectiveness of tools based on happens-
before is highly dependent on the interleaving produced by
the scheduler. Figure 2 shows a simple example where the
happens-before approach can miss a data race. While there is
a potential data race on the unprotected accesses to y, it will
not be detected in the execution shown in the figure, because
Thread 1 holds the lock before Thread 2, and so the accesses
to y are ordered in this interleaving by happens-before. A
tool based on happens-before would detect the error only if
the scheduler produced an interleaving in which the fragment
of code for Thread 2 occurred before the fragment of code
for Thread 1. Thus, to be effective, a race detector based
on happens-before needs a large number of test cases to test
many possible interleavings. In contrast, the programming
error in Figure 2 will be detected by Eraser with any test
case that exercises the two code paths, because the paths vio-
late the locking discipline for y regardless of the interleaving
produced by the scheduler. While Eraser is a testing tool and
therefore cannot guarantee that a program is free from races,
it can detect more races than tools based on happens-before.

The lock covers technique of Dinning and Shonberg is an
improvement to the happens-before approach for programs
that make heavy use of locks[Dinning & Schonberg 91]. In-
deed, one way to describe our approach would be that we
extend Dinning and Shonberg’s improvement and discard the
underlying happens-before apparatus that they were improv-
ing.

2 The Lockset algorithm
In this section we describe how the Lockset algorithm detects
races. The discussion is at a fairly high level; the techniques
used to implement the algorithm efficiently will be described
in the following section.

The first and simplest version of the Lockset algorithm
enforces the simple locking discipline that every shared vari-
able is protected by some lock, in the sense that the lock is
held by any thread whenever it accesses the variable. Eraser
checks whether the program respects this discipline by mon-
itoring all reads and writes as the program executes. Since
Eraser has no way of knowing which locks are intended to
protect which variables, it must infer the protection relation
from the execution history.

For each shared variable , Eraser maintains the set
of candidate locks for . This set contains those locks that
have protected for the computation so far. That is, a lock
is in if in the computation up to that point, every thread

Thread 1 Thread 2

lock(mu);

v := v+1;

unlock(mu);

lock(mu);

v := v+1;

unlock(mu);

y := y+1;

y := y+1;

Figure 2: The program allows a data race on y, but the error is not
detected by happens-before in this execution interleaving.

that has accessed was holding at the moment of the ac-
cess. When a new variable is initialized, its candidate set

is considered to hold all possible locks. When the vari-
able is accessed, Eraser updates with the intersection
of and the set of locks held by the current thread. This
process, called lockset renement, ensures that any lock that
consistently protects is contained in . If some lock
consistently protects , it will remain in as is re-
fined. If becomes empty this indicates that there is no
lock that consistently protects .

In summary, here is the first version of the Lockset algo-
rithm:

Let be the set of locks held by thread .

For each , initialize to the set of all locks.

On each access to by thread ,
set := ;
if = , then issue a warning.

Figure 3 illustrates how a potential data race is discovered
through lockset refinement. The left column contains pro-
gram statements, executed in order from top to bottom. The
right column reflects the set of candidate locks, , after
each statement is executed. This example has two locks, so

starts containing both of them. After v is accessed
while holding mu1, is refined to contain that lock.

lock(mu1);

v := v+1;

unlock(mu1);

lock(mu2);

v := v+1;

unlock(mu2);

{mu1,mu2}

{mu1}

{}

{}

{mu1}

{}

{mu2}

{}

Program locks_held C(v)

Figure 3: If a shared variable is sometimes protected by lock mu1
and sometimes by lock mu2, then no lock protects it for the whole
computation. The figure shows the progressive refinement of the
set of candidate locks for . When becomes empty, the
Lockset algorithm has detected that no lock protects .

Later, is accessed again, with only mu2 held. The inter-
section of the singleton sets mu1 and mu2 is the empty
set, correctly indicating that no lock protects .

2.1 Improving the locking discipline
The simple locking discipline we have used so far is too
strict. There are three very common programming practices
that violate the discipline yet are free from any data races:

Initialization. Shared variables are frequently initial-
ized without holding a lock.

Read-shared data. Some shared variables are written
during initialization only and are read-only thereafter.
These can be safely accessed without locks.

Read-write locks. Read-write locks allow multiple
readers to access a shared variable, but allow only a sin-
gle writer to do so.

We will extend the Lockset algorithm to accommodate ini-
tialization and read-shared data, and then extend it further to
accommodate read-write locks.

2.2 Initialization and read-sharing
There is no need for a thread to lock out others if no other
thread can possibly hold a reference to the data being ac-
cessed. Programmers often take advantage of this observa-
tion when initializing newly allocated data. To avoid false
alarms caused by these unlocked initialization writes, we de-
lay the refinement of a location’s candidate set until after it
has been initialized. Unfortunately, we have no easy way

Virgin

Exclusive

Shared

Shared!
Modified

wr

rd, new
thread

rd/wr, first
thread

 rd

 wr

 wr, new
thread

Figure 4: Eraser keeps track of the state of all locations in mem-
ory. Newly allocated locations begin in the Virgin state. As various
threads read and write a location, its state changes according to the
transitions in the figure. Race conditions are reported only for loca-
tions in the Shared-Modied state.

of knowing when initialization is complete. Eraser therefore
considers a shared variable to be initialized when it is first
accessed by a second thread. As long as a variable has been
accessed by a single thread only, reads and writes have no
effect on the candidate set.

Since simultaneous reads of a shared variable by multiple
threads are not races, there is also no need to protect a vari-
able if it is read-only. To support unlocked read-sharing for
such data, we report races only after an initialized variable
has become write-shared by more than one thread.

Figure 4 illustrates the state transitions that control when
lockset refinement occurs and when races are reported.
When a variable is first allocated, it is set to the Virgin state,
indicating that the data is new and has not yet been refer-
enced by any thread. Once the data is accessed, it enters
the Exclusive state, signifying that it is has been accessed,
but by one thread only. In this state, subsequent reads and
writes by the same thread do not change the variable’s state
and do not update . This addresses the initialization is-
sue, since the first thread can initialize the variable without
causing to be refined. When and if another thread ac-
cesses the variable, then the state changes. A read access
changes the state to Shared. In the Shared state, is up-
dated, but data races are not reported, even if becomes
empty. This takes care of the read-shared data issue, since
multiple threads can read a variable without causing a race
to be reported. A write access from a new thread changes
the state from Exclusive or Shared to the Shared-Modied
state, in which is updated and races are reported, just
as described in the original, simple version of the algorithm.

Our support for initialization makes Eraser’s checking
more dependent on the scheduler than we would like. Sup-
pose that a thread allocates and initializes a shared variable

without a lock, and erroneously makes the variable accessi-
ble to a second thread before it has completed the initializa-
tion. Then Eraser will detect the error if any of the second
thread’s accesses occur before the first thread’s final initial-
ization actions, but otherwise Eraser will miss the error. We
don’t think this has been a problem, but we have no way of
knowing for sure.

2.3 Read-write locks
Many programs use single-writer, multiple-reader locks as
well as simple locks. To accommodate this style we intro-
duce our last refinement of the locking discipline: we require
that for each variable , some lock protects , meaning
is held in write mode for every write of , and is held in
some mode (read or write) for every read of .

We continue to use the state transitions of Figure 4,
but when the variable enters the Shared-Modied state, the
checking is slightly different:

Let be the set of locks held in any mode by
thread .

Let be the set of locks held in write
mode by thread .

For each , initialize to the set of all locks.

On each read of by thread ,
set := ;
if = , then issue a warning.

On each write of by thread ,
set := ;
if = , then issue a warning.

That is, locks held purely in read mode are removed from
the candidate set when a write occurs, as such locks held by
a writer do not protect against a data race between the writer
and some other reader thread.

3 Implementing Eraser
Eraser is implemented for the DIGITAL Unix operating sys-
tem on the Alpha processor, using the ATOM [Srivastava &
Eustace 94] binary modification system. Eraser takes an un-
modified program binary as input and adds instrumentation
to produce a new binary that is functionally identical, but in-
cludes calls to the Eraser runtime to implement the Lockset
algorithm.

To maintain , Eraser instruments each load and store
in the program. To maintain for each thread ,
Eraser instruments each call to acquire or release a lock, as
well as the stubs that manage thread initialization and final-
ization. To initialize for dynamically allocated data,
Eraser instruments each call to the storage allocator.

Eraser treats each 32-bit word in the heap or global data
as a possible shared variable, since on our platform a 32-bit
word is the smallest memory-coherent unit. Eraser does not
instrument loads and stores whose address mode is indirect
off the stack pointer, since these are assumed to be stack ref-
erences, and shared variables are assumed to be in global
locations or in the heap. Eraser will maintain candidate sets
for stack locations that are accessed via registers other than
the stack pointer, but this is an artifact of the implementation
rather than a deliberate plan to support programs that share
stack locations between threads.

When a race is reported, Eraser indicates the file and line
number at which it was discovered and a backtrace listing of
all active stack frames. The report also includes the thread
ID, memory address, type of memory access, and important
register values such as the program counter and stack pointer.
We have found that this information is usually sufficient for
locating the source of the race. If the cause of a race is still
unclear, the user can direct Eraser to log all the accesses to
a particular variable that result in a change to its candidate
lock set.

3.1 Representing the candidate lock sets

A naı̈ve implementation of lock sets would store a list of
candidate locks for each memory location, potentially con-
suming many times the allocated memory of the program.
We can avoid this expense by exploiting the fortunate fact
that the number of distinct sets of locks observed in practice
is quite small. In fact, we have never observed more than
10,000 distinct sets of locks occurring in any execution of
the Lockset monitoring algorithm. Consequently, we rep-
resent each set of locks by a small integer, a lockset index
into a table whose entries represent the set of locks as sorted
vectors of lock addresses. Hashing is used to eliminate du-
plicates in the table and to find a lockset index from a given
set of locks. The entries in the table are never deallocated or
modified, so each lockset index remains valid for the lifetime
of the program. Eraser also caches the result of each inter-
section, so that the fast case for set intersection is simply a
table lookup. Each lock vector in the table is sorted, so that
when the cache fails, the slow case of the intersection oper-
ation can be performed by a simple comparison of the two
sorted vectors.

For every 32-bit word in the data segment and heap, there
is a corresponding shadow word that is used to contain a 30-
bit lockset index and a 2-bit state condition. In the Exclusive
state, the 30 bits are not used to store a lockset index, but
used instead to store the ID of the thread with exclusive ac-
cess.

All the standard memory allocation routines are instru-
mented to allocate and initialize a shadow word for each
word allocated by the program. When a thread accesses a
memory location, Eraser finds the shadow word by adding a
fixed displacement to the location’s address.

3.2 Performance
Performance was not a major goal in our implementation of
Eraser; consequently it has many opportunities for optimiza-
tion. Applications typically slow down by a factor of 10 to
30 while using Eraser. We estimate that half of the slowdown
is due to the overhead incurred by making a procedure call at
every load and store instruction; which could be eliminated
by using a version of ATOM that can inline monitoring code
[Scales et al. 96]. Also, there are many opportunities for us-
ing static analysis to reduce the overhead of the monitoring
code; but we have not explored them.

In spite of our limited performance tuning, we have found
that Eraser is fast enough to debug most programs, and there-
fore meets the most essential performance criteria.

3.3 Program annotations
As expected, our experience with Eraser showed that it can
produce false alarms. Part of our research was aimed at find-
ing effective annotations to suppress false alarms without ac-
cidentally losing useful warnings. This is a key to making a
tool like Eraser useful. If the false alarms are suppressed
with accurate and specific annotations, then when a program
is modified and the modified program is tested, only fresh
and relevant warnings will be produced.

In our experience false alarms fell mainly into three broad
categories:

Memory reuse. False alarms were reported because
memory is reused without resetting the shadow mem-
ory. Eraser instruments all of the standard C, C++,
and Unix memory allocation routines. However, many
programs implement free lists or private allocators, and
Eraser has no way of knowing that a privately recycled
piece of memory is protected by a new set of locks.

Private locks. False alarms were reported because locks
are taken without communicating this information to
the Eraser runtime. This was usually caused by private
implementations of multiple-reader/single-writer locks,
which are not part of the standard pthreads interface
that Eraser instruments.

Benign races. True data races were found that did not
affect the correctness of the program. Some of these
were intentional and others were accidental.

For each of these categories, we developed a program anno-
tation to allow users of Eraser to eliminate the false report.
For benign races, we added

EraserIgnoreOn()
EraserIgnoreOff()

which inform the race detector that it shouldn’t report any
races in the bracketed code. To prevent memory reuse races
from being reported, we added

EraserReuse(address, size)

which instructs Eraser to reset the shadow memory corre-
sponding to the indicated memory range to the Virgin state.
Finally, the existence of private lock implementations can be
communicated by annotating them with

EraserReadLock(lock)
EraserReadUnlock(lock)
EraserWriteLock(lock)
EraserWriteUnlock(lock)

We found that a handful of these annotations usually suf-
fices to eliminate all false alarms.

3.4 Race detection in an OS kernel
We have begun to modify Eraser to detect races in the SPIN
operating system [Bershad et al. 95]. While we do not yet
have results in terms of data races found, we have acquired
some useful experience about implementing such a tool at
the kernel level, which is different from the user level in sev-
eral ways.

First, SPIN (like many operating systems) often raises
the processor interrupt level to provide mutual exclusion to
shared data structures accessed by device drivers and other
interrupt level code. In most systems, raising the interrupt
level to n ensures that only interrupts of priority greater than
nwill be serviced until the interrupt level is lowered. Raising
and then restoring the interrupt level can be used instead of a
lock, as follows:

level := SetInterruptLevel(n);
(* Manipulate data *)
RestoreInterruptLevel(level);

However, unlike locks, a particular interrupt level inclusively
protects all data protected by lower interrupt levels. We have
incorporated this difference into Eraser by assigning a lock
to each individual interrupt level. When the kernel sets the
interrupt level to n, Eraser treats this operation as if the first
n interrupt locks had all been acquired. We expect this tech-
nique to allow us to detect races between code using standard
locks and code using interrupt levels.

Another difference is that operating systems make greater
use of post/wait style synchronization. The most common
example is the use of semaphores to synchronize execution
between a thread and an I/O device driver. Upon receiving
data, the device driver will perform some minimal process-
ing and then use a V operation to signal a thread waiting on
P operation; for example, to wake up a thread waiting for an
I/O completion. This can cause problems for Eraser if data
is shared between the device driver and the thread. Because
semaphores are not “owned” it is difficult for Eraser to infer
which data they are being used to protect, leading it to issue
false alarms. Systems that integrate thread and interrupt pro-
cessing [Kleiman & Eykholt 95] may have less trouble with
this problem.

4 Experience
We calibrated Eraser on a number of simple programs that
contained common synchronization errors (e.g. forgot to
lock, used the wrong lock, etc.) and versions of those pro-
grams with the errors corrected. While programming these
tests, we accidentally introduced a race, and encouragingly,
Eraser detected it. These simple tests were extremely use-
ful for finding bugs in Eraser. After convincing ourselves
that the tool worked, we tackled some large multi-threaded
servers written by experienced researchers at DEC SRC: the
HTTP server and indexing engine from AltaVista, the Vesta
cache server, and the Petal distributed disk system. We also
applied Eraser to some homework problems written by un-
dergraduate programmers.

Eraser found undesirable race conditions in three of the
four server programs and in many of the undergraduate
homework problems. It also produced false alarms, which
we were able to suppress with annotations.

The programmers of the servers on which we tested Eraser
did not begin with a plan to test Eraser or even to use Eraser’s
locking discipline. The fact that Eraser worked well on the
servers is evidence that experienced programmers tend to
obey the simple locking discipline even in an environment
that offers many more elaborate synchronization primitives.

In the remainder of this section we report on the details of
our experiences with each program.

4.1 AltaVista
We examined two components of the popular AltaVista [Dig-
ital Equipment 96a] Web indexing service, mhttpd and
Ni2.

The mhttpd program is a lightweight HTTP server de-
signed to support the extremely high server loads experi-
enced by AltaVista. Each search request is handled by a
separate thread and relies on locking to synchronize access
by concurrent requests to shared data structures. In addition,
mhttpd employs several additional threads to manage back-
ground tasks such as configuration and name cache manage-
ment. The server consists of approximately 5000 lines of C
source code. We tested mhttpd by invoking a series of test
scripts from three separate Web browsers. The mhttpd test
used approximately 100 distinct locks that formed approxi-
mately 250 different lock sets.

The Ni2 indexing engine is used to look up information
in response to index queries. Index data structures are shared
among all of the server threads and explicitly use locks to
guarantee that updates are serialized. The basic Ni2 libraries
contain approximately 20,000 lines of C source code. We
tested Ni2 separately using a utility called ft that submits a
series of random requests using a specified number of threads
(we used 10). The ft test used approximately 900 locks that
formed approximately 3600 distinct lock sets.

We found a large number of reported races, most of which
turned out to be false alarms. These were primarily caused

by memory reuse, followed by private locks and benign
races. The benign races found in Ni2 are particularly in-
teresting, because they exemplify the intentional use of races
to reduce locking overhead. For example, consider the fol-
lowing code fragment:

/* unlocked hint */
if (p->ip_fp == (NI2_XFILE *) 0) {

NI2_LOCKS_LOCK (&p->ip_lock);
if (p->ip_fp == (NI2_XFILE *) 0) {

p->ip_fp = ni2_xfopen (
p->ip_name, "rb");

}
NI2_LOCKS_UNLOCK (&p->ip_lock);

}
. . .

In this code fragment the ip fp field is tested without a
lock held, which creates a data race with other threads that
modify the field with the ip lock lock held. The race was
deliberately programmed as an optimization to avoid locking
overhead in the common case that ip fp has already been
set. The program is correct even with the race, since the
ip fp field never transitions from non-zero to zero while
in the scope of multiple threads, and the program repeats the
test inside the lock in case the field tested zero (thus avoiding
the race in which two threads find the field zero and both then
initialize it).

This kind of code is very tricky. For example, it might
seem safe to access the p->ip fp field in the rest of the
procedure (the lines replaced by the ellipsis above). But in
fact this would be a mistake, because the Alpha’s memory
consistency model permits processors to see memory opera-
tions out of order if there is no intervening synchronization.
Although the Ni2 code was correct, after using Eraser the
programmer decided to reprogram this part of it so that its
correctness argument was simpler.

We also found a benign race in the Ni2 test harness pro-
gram, where multiple threads race on reads and writes to a
global variable called kill queries. This variable is ini-
tialized to false and is set to true to indicate that all threads
should exit. Each thread periodically polls the variable and
exits when it is set to true. Other finalization code had sim-
ilar benign races. To keep the race detector from reporting
such races, we used the EraserIgnoreOn/Off() anno-
tations. Similarly, mhttpd omits locks when periodically
updating global configuration data and statistics. These are
indeed synchronization errors, but their effect is relatively
minor, which is perhaps why they were undetected for so
long.

Inserting nine annotations in the Ni2 library, five in the
ft test harness, and ten in the mhttpd server reduced the
number of reported races from more than a hundred to zero.

4.2 Vesta cache server
Vesta [Digital Equipment 96b] is an advanced software con-
figuration management system. Configurations are written

in a specialized functional language that describes the de-
pendencies and rules used to derive the current state of the
software. Partial results, such as “.o” files generated by the
C compiler, are cached in the Vesta cache server and used
by the Vesta builder to create a particular configuration. The
cache server consists of approximately 30,000 lines of C++
code. We tested the cache server using the TestCache util-
ity that issues a stream of concurrent random requests. The
cache server used 10 threads, acquired 26 distinct locks and
instantiated 70 different lock sets.

In testing the cache server, Eraser reported a number of
races, mostly revolving around three data structures. The
first set of races were detected in the code maintaining the
fingerprints in cache entries. Because computing a finger-
print can be expensive, the cache server maintains a boolean
field in the cache entry recording whether the fingerprint is
valid. The fingerprint is computed only if its true value is
needed and its current value is invalid. Unfortunately, the
boolean was accessed without a protecting lock, in code like
this:

Combine::XorFPTag::FPVal() {
if (!this->validFP) {

/* NamesFP changes this->fp */
NamesFP(fps, bv, this->fp, imap);
this->validFP = true;

}
return this->fp;

}

This is a serious data race, since in the absence of memory
barriers the Alpha semantics don’t guarantee that the con-
tents of the validFP field is consistent with the fp field.

Another set of races revolved around free lists in the
CacheS object. The CacheS object maintains a free list
of various kinds of log entries. Our first response was to
use EraserReuse() annotations where elements were al-
located off this free list. However, this didn’t make all the
warnings disappear; calls to flush the log still caused races.
Examination revealed that the head of each log was protected
by a lock, but not the individual entries. The Flush routines
lock the head of the log, store its value in a stack variable,
set the head to , and release the lock. After this they ac-
cess the individual entries without any locks held, ultimately
putting them onto the free list. This is correct because other
threads access the log entries with the log head lock held, and
threads do not maintain pointers into the log. Consequently,
Flush effectively makes the data private to the thread in
which Flush was called. We eliminated the report of these
races by moving the EraserReuse() annotations to the
three Flush routines.

Finally, there were several false alarms related to the
TCP sock and SRPC objects that are used to implement
server-side RPCs. The cache server uses a main server thread
to wait for incoming RPC requests. Upon receiving a re-
quest, this thread passes the current socket and RPC data
structures to a worker thread that is responsible for handling

the rest of the RPC. Since the main thread and the worker
thread will never access the data structures concurrently they
don’t need to use locks to serialize access. To Eraser this
looks like violation of the locking discipline and is flagged
as a race. With some effort it would be possible to mod-
ify Eraser to recognize this locking discipline, but we were
able to achieve the same effect with two EraserReuse()
annotations.

In total, ten annotations and one bug fix were enough to
reduce the race reports from several hundred to zero.

4.3 Petal
Petal is a distributed storage system that presents its clients
with a huge virtual disk implemented by a cluster of servers
and physical disks [Lee & Thekkath 96]. Petal implements
a distributed consensus algorithm as well as failure detec-
tion and recovery mechanisms. The Petal server is roughly
25,000 lines of C code and we used 64 concurrent worker
threads in our tests. We tested Petal using a utility that is-
sued random read and write requests.

We found a number of false alarms caused by a private
reader-writer lock implementation. These were easily sup-
pressed using annotations. We also detected a real race in
the routine GMapCh CheckServerThread(). This rou-
tine is run by a single thread and periodically checks to make
sure that the neighboring servers are running. However, in so
doing, it reads the gmap->state field without holding the
gmapState lock (that all other threads hold before writing
gmap->state).

We found two races where global variables containing
statistics were modified without locking. These races were
intentional, based on the premises that locking is expensive
and that the server statistics need to be only approximately
correct.

Finally, we found one false alarm that we were un-
able to annotate away. The function GmapCh Write2()
forks a number of threads and passes each a refer-
ence to a component of GmapCh Write2’s stack frame.
GmapCh Write2() implements a join-like construct to
keep the stack frame active until the threads return. But
Eraser doesn’t re-initialize the shadow memory for each new
stack frame; consequently the reuse of the stack memory
for different instances of the stack frame resulted in a false
alarm.

4.4 Undergraduate coursework
As a counterpoint to our experience with mature multi-
threaded server programs, two of our colleagues used Eraser
to examine the kinds of synchronization errors found in the
homework assignments produced by their undergraduate op-
erating systems class [Choi & Lewis 97]. We report their
results here to demonstrate how Eraser functions with a less
sophisticated code base.

The class was required to complete four standard
multi-threading assignments. These assignments can be
roughly categorized as low-level (build locks from test-
and-set), thread-level (build a small threads package),
synchronization-level (build semaphores and mutexes), and
application-level (producer/consumer-style problems). Each
assignment builds on the implementation of the previous as-
signment. Our colleagues used Eraser to examine each of
these assignments for roughly 40 groups; a total of about 100
runnable assignments were turned in (not all groups com-
pleted all assignments, some didn’t compile, and a few im-
mediately deadlocked). Of these “working” assignments, 10
percent had data races found by Eraser. These were caused
by forgetting to take locks, taking locks during writes but not
for reads, using different locks to protect the same data struc-
ture at different times, and forgetting to re-acquire locks that
were released in a loop.

Eraser also reported a false alarm that was triggered by
a queue that implicitly protected elements by accessing the
queue through locked head and tail fields (much like Vesta’s
CacheS object).

4.5 Effectiveness and Sensitivity

Since Eraser uses a testing methodology it cannot prove that
a program is free from data races. But we believe that Eraser
works well compared to manual testing and debugging, and
that Eraser’s testing is not very sensitive to the scheduler in-
terleaving. To test these beliefs we performed two additional
experiments.

We consulted the program history of Ni2 and re-
introduced two data races that had existed in previous ver-
sions. The first error was an unlocked access to a reference
count used to garbage collect file data structures. The other
race was caused by failing to take an additional and neces-
sary lock needed to protect the data structures of a subroutine
called in the middle of a large procedure. These races had ex-
isted in the Ni2 source code for several months before they
were manually found and fixed by the program author. Us-
ing Eraser, one of us was able to locate both races in several
minutes without being given any information about where
the races were or how they were caused. It took 30 minutes
to correct both errors and verify the absence of further race
reports.

We examined the issue of sensitivity by re-running the
Ni2 and Vesta experiments but using only two concurrent
threads instead of ten. If Eraser was sensitive to differences
in thread interleaving then we would expect to find a dif-
ferent set of race reports. In fact, we found the same race
reports (albeit sometimes in different order) across multiple
runs using using either two threads or ten.

5 Additional experience
In this section we briefly touch on two further topics, each
of which concerns a form of dynamic checking for synchro-
nization errors in multi-threaded programs that we experi-
mented with and believe is important and promising, but
which we did not implement in Eraser.

The first topic is protection by multiple locks. Some pro-
grams protect some shared variables by multiple locks in-
stead of a single lock. In this case the rule is that every thread
that writes the variable must hold all the protecting locks,
and every thread that reads the variable must hold at least
one protecting lock. This policy allows a pair of simultane-
ous accesses only if both accesses are reads, and therefore
prevents data races.

Using multiple protecting locks is in some ways similar
to using reader locks and writer locks, but it is not so much
aimed at increasing concurrency as at avoiding deadlock in a
program that contains upcalls.

Using an earlier version of Eraser that detected race con-
ditions in multi-threaded Modula-3 programs, we found that
the Lockset algorithm reported false alarms for Trestle pro-
grams[Manasse & Nelson 91] that protected shared locations
with multiple locks, because each of two readers could ac-
cess the location while holding two different locks. As an ex-
periment, we dealt with the problem by modifying the Lock-
set algorithm to refine the candidate set only for writes, while
checking it for both reads and writes, as follows:

On each read of by thread ,
if = , then issue a warning.

On each write of by thread ,
set := ;
if = , then issue a warning.

This prevented the false alarms, but it is possible for this
modification to cause false negatives. For example, if a
thread reads while holding lock , and a thread
writes while holding lock , the violation of the lock-
ing discipline will be reported only if the write precedes the
read. In general, the modified version will do a good job only
if the test case causes enough shared variable reads to follow
the corresponding writes.

Theoretically it would be possible to handle multiple pro-
tecting locks without any risk of false negatives, but the data
structures required (sets of sets of locks instead of just sets
of locks) seem to have a cost in complexity that is out of pro-
portion to the likely gain. Since we are uncomfortable with
false negatives and the multiple protecting lock technique is
not common, the current version of Eraser ignores the tech-
nique, producing false alarms for programs that use it.

The second topic is deadlock. If the data race is Scylla,
the deadlock is Charybdis.

A simple discipline that avoids deadlock is to choose a
partial order among all locks and program each thread so
that whenever it holds more than one lock, it acquires them

in ascending order. This discipline is similar to the locking
discipline for avoiding data races: it is suitable for checking
by dynamic monitoring, and it is easier to produce a test case
that exposes a breach of the discipline than it is to produce a
test case that actually causes a deadlock.

As a stand-alone experiment, we chose a large Trestle
application that was known to have complicated synchro-
nization (formsedit, a double-view user interface editor),
logged all lock acquisitions and tested to see if an order ex-
isted on the locks that was respected by every thread. A few
seconds into formsedit startup our experimental moni-
tor detected a cycle of locks, showing that no partial order
existed. Examining the cycle closely revealed a potential
deadlock in formsedit. We consider this a promising re-
sult and conjecture that deadlock-checking along these lines
would be a useful addition to Eraser. But more work is re-
quired to catalog the sound and useful variations on the par-
tial order discipline, and to develop annotations to suppress
false alarms.

6 Conclusion
Hardware designers have learned to design for testability.
Programmers using threads must learn the same. It is not
enough to write a correct program; the correctness must
be demonstrable, ideally by static checking, realistically by
a combination of partial static checking followed by disci-
plined dynamic testing.

This paper has described the advantages of enforcing a
simple locking discipline instead of checking for races in
general parallel programs that employ many different syn-
chronization primitives, and has also demonstrated that with
this technique it is practical to dynamically check production
multi-threaded programs for data races.

Programmers in the area of operating systems seem to
view dynamic race detection tools as esoteric and imprac-
tical. Our experience leads us to believe instead that they are
a practical and effective way to avoid data races, and that dy-
namic race detection should be a standard procedure in any
disciplined testing effort for a multithreaded program. As
the use of multi-threading expands, so will the unreliability
caused by data races, unless better methods are used to elimi-
nate them. We believe that the Lockset method implemented
in Eraser is promising.

Acknowledgments
We would like the thank the following individuals for
their contributions to this project. Sung-Eun Choi and E.
Christoper Lewis were responsible for all of the undergrad-
uate experiments. Alan Heydon, Dave Detlefs, Chandu
Thekkath and Edward Lee, provided expert advice on Vesta
and Petal. Puneet Kumar worked on a earlier version of
Eraser. Cynthia Hibbard, Brian Bershad, Michael Ernst,

Wilson Hsieh and Terri Watson provided useful feedback on
earlier drafts of this paper. The SOSP reviewers and our
shepherd, Paulo Guedes, also provided many useful com-
ments.

References
[Bershad et al. 95] Bershad, B. N., Savage, S., Pardyak, P.,

Sirer, E. G., Fiuczynski, M., Becker, D., Eggers,
S., and Chambers, C. Extensibility, Safety and
Performance in the SPIN Operating System. In
Proceedings of the Fifteenth ACMSymposium on
Operating Systems Principles, pages 267–284,
Copper Mountain, CO, December 1995.

[Choi & Lewis 97] Choi, S.-E. and Lewis, E. C. Uni-
versity of Washington CSE 552 Project.
Personal Communication, March 1997.

.

[Detlefs et al. 97] Detlefs, D. L., Leino, R. M., Nelson, G.,
and Saxe, J. B. Extended Static Checking. Tech-
nical Report 149, Digital Equipment Corpora-
tion, Systems Research Center, to appear 1997.

[Digital Equipment 96a] Digital Equipment. AltaVista
Search. ,
1996.

[Digital Equipment 96b] Digital Equipment. Vesta Home
Page.

, 1996.

[Dinning & Schonberg 90] Dinning, A. and Schonberg, E.
An Empirical Comparison of Monitoring Algo-
rithms for Access Anomaly Detection. In Pro-
ceedings of the Second ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel
Programming, pages 1–10, Seattle, WA, March
1990.

[Dinning & Schonberg 91] Dinning, A. and Schonberg, E.
Detected Access Anomalies in Programs with
Critical Sectons. Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debug-
ging, published in ACM SIGPLAN Notices,
26(12):85–96, December 1991.

[Hoare 74] Hoare, C. Monitors: An Operating System
Structuring Concept. Communications of the
ACM, 17(10), October 1974.

[Kleiman & Eykholt 95] Kleiman, S. and Eykholt, J. Inter-
rupts as Threads. ACM Operating Systems Re-
view, 29(2):21–26, April 1995.

[Lamport 78] Lamport, L. Time, clock, and the ordering of
events in a distributed system. Communications
of the ACM, 21(7), July 1978.

[Lampson & Redell 80] Lampson, B. and Redell, D. Ex-
periences with Processes and Monitors in Mesa.
Communications of the ACM, 23(2):104–117,
February 1980.

[Lee & Thekkath 96] Lee, E. K. and Thekkath, C. A. Petal:
Distributed virtual disks. In Proceedings of the
Seventh International Conference on Architec-
tural Support for Programming Languages and
Operating Systems (ASPLOS-VII), 1996.

[Manasse & Nelson 91] Manasse, M. S. and Nelson, G.
Trestle Reference Manual. Technical Report Re-
search Report 68, Digital Equipment Corpora-
tion’s Systems Research Center, Palo Alto, Cali-
fornia, December 1991.

[Mellor-Crummey 91] Mellor-Crummey, J. On-the-fly
Detection of Data Races for Programs with
Nested Fork-Join Parallelism. In Proceedings of
the 1991 Supercomputer Debugging Workshop,
pages 1–16, November 1991.

[Mellor-Crummey 93] Mellor-Crummey, J. Compile-time
Support for Efficient Data Race Detection in
Shared-Memory Parallel Programs. In Proceed-
ings of the ACM/ONRWorkshop on Parallel and
Distributed Debugging, pages 129–139, May
1993.

[Nelson et al. 96] Nelson, G., Leino, K. R. M., Saxe, J.,
and Stata, R. Extended Static Checking Home
Page.

, 1996.

[Netzer 91] Netzer, R. H. B. Race Condition Detec-
tion for Debugging Shared-Memory Parallel
Programs. PhD dissertation, University of
Wisconsin-Madison, 1991.

[Ousterhout 96] Ousterhout, J. K. Why Threads Are
A Bad Idea (for most purposes). Invited
talk at the 1996 USENIX Conference, January
1996.

.

[Perkovic & Keleher 96] Perkovic, D. and Keleher, P. On-
line Data-Race Detection via Coherency Guar-
antees. In Proceedings of the Second USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), pages 47–58, Seattle,
WA, October 1996.

[Scales et al. 96] Scales, D. J., Gharachorloo, K., and
Thekkath, C. A. Shasta: A Low Overhead,

Software-Only Approach for Supporting Fine-
Grain Shared Memory. In Proceedings of the
Seventh International Conference on Architec-
tural Support for Programming Languages and
Operating Systems (ASPLOS-VII), 1996.

[Srivastava & Eustace 94] Srivastava, A. and Eustace, A.
ATOM: A System for Building Customized Pro-
gram Analysis Tools. In Proceedings of the 1994
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages
196–205, 1994.

[SunSoft 94] SunSoft. lock lint User’s Guide. SunSoft
Manual, August 1994.

