W4118: virtual machines

Instructor: Junfeng Yang

References: Modern Operating Systems (3" edition), Operating Systems
Concepts (8™ edition), previous W4118,and OS at MIT, Stanford, and UWisc

Virtual machines (VM)

VMO | VM1 | VM2 | VM4

Software

Real computer

CPU Memory | Devices

Why virtual machines?

a Manage big machines
= Multiplex CPUs/memory/devices at VM granularity
- Eg., Amazon EC2

a Multiple OS on one machine
- Eg., use Windows on Linux OS

Q Isolate faults/break-ins
= One VM is compromised/crashes, others

0 Kernel development
« Like QEMU, but

a OS granularity checkpoint/record/replay

Usual VM goals

Q Accurate
 Guest can't distinguish VM from real computer

Q Isolated
= Guest can't escape VM

a Fast

0 Some VM implementations require guest kernel
modifications
- Eg., Xen

Virtual machine lineage

0 1960s: IBM used VMs to share mainframe
- VM/370, today's z/VM
= Still in usel

0 1990s: VMWare re-popularized VMs for x86
- VMWare ESX servers
- VMWare work station

Virtual machine structures

User programs

Guest OS

Virtual Machine
Monitor (VMM)

Real computer

“guest”

"host”

User programs

Guest OS

Virtual Machine
Monitor (VMM)

Host OS

Real computer

VMM responsibilities

0 Time-share CPU among guests
0 Space-share memory among guests

a Simulate disk, network, and other devices
= Often multiplex on host devices

aptdd €
#define
#define
#define

int32 t
intlé ¢

Naive approach: simulation

for (;:;) {
read instruction();
switch (decode instruction opcode()) {

regs[8]; case OPCODE_ADD:
REG EAX 1: int src = decode_src_reg();
REG EBX 2 int dzt = decode_gst_reg();
— & regs[dst] = regs[dst] + regs([src];
REG_ECX 3; break:
. case OPCODE_SUB:
€lp; int src = decode src reg();
segregs([4]; int dst = decode dst reg();
regs[dst] = regs[dst] - regs[src];
break;

i..

eip += instruction_length;

}

Q Interpret each guest instruction
Q Maintain each VM state purely in software
a Problem: too slow!

24 approach: trap-and-emulate

0 Execute guest instructions on real CPU when
possible
« E.g., addl %eax, %ebx

a Run guest OS in unprivileged mode

Q Privileged instructions trap, and VMM emulates
« E.g., movl %eax, %cr3

0 VMM hides real machine state from guests
- Eg., virtual %cr3 set by guest, real %cr3 set by VMM,
- More: page table, privilege level, interrupt flag, ...

Trap-and-emulate: tricky on x86

a Not all instructions that should be emulated
cause traps

a Instructions have different effects depending
on privilege mode

0 Instructions reading privileged state don't trap
0 Page table modifications don't trap

a Trap them all = slow

Real x86 state to hide&protect

a CPL (low bits of CS) = 3, but guest expects O

a Physical memory: guest expects 0.PHYSTORP,

VMM maps to one slice of physical memory

Q Page tables: don't map to physical addresses
expected by guest OS
= Shadow page table

Q 7cr3: points to shadow page table

10

Real x86 state to hide&protect (cont.)

a GDT: guest OS descriptors have DPL = 3, but
guest expects O

a0 GDTR: points to shadow GDT table

a IDT descriptors: traps go to VMM, not guest
0 IDTR: points to shadow IDT table

0 IF in EFLAGS: guest expects O after cli

I

11

Virtualize physical memory

0 Guest wants
« Physical address starts at PA=0
= Use "all” physical memory

0 VMM must

= Space-share all physical memory among guests
« Protect one guest's memory from another

a Idea:
= Claim DRAM smaller than real DRAM
= Ensuring paging is enabled
= Rewrite guest's PTEs to map to real PA?

= Copy guest's PTEs to shadow page table and map copied
PTEs to real PA

12

Example: VMM allocates a guest 0x1000000-0x2000000

13

Handling page table modifications

0 VMM must make shadow page table entries
(PTEs) consistent with guest PTEs

Q PTE Joading. copy guest PTEs to shadow PTEs
on context switch

Q PTE tfracing. when guest modifies guest PTEs,
modify shadow PTEs as well

14

PTE loading

0 Nadive approach: on guest %cr3 write, copy all
gueste PTEs

= Problem: slow context switch

a Another approach: start with minimum
mappings (just the PTEs of VMM), and copy on
demand on “hidden” page faults

- Problem: too many page faults

a Approach used in VMware: reuse populated
shadow PTEs

15

PTE tracing

a Approach I: mark the memory region holding
guest PTES as readonly, and copy updates to
shadow PTEs on page faults

= Problem: too many page faults

a Approach II: binary translate code that writes
to shadow PTEs to call out to VMM

= Faster than traps

16

Do all instructions that read/write
sensitive state cause traps at CPL = 3?

Q pushw %ocs: reveals CPL = 3, not O

Q sgdt: reveals real GDTR

Q sidt: reveals real IDTR

0 pushfl: reveals IF flag

a popfl: if CPL = 3, do not set IF flag (no trap)

0 iret: no privilege mode change so won't restore
SS/ESP

17

3rd approach: binary translation

a Simplified idea
= Replace non-trapping instructions that read/write
sensitive state with trap instruction

e int3: triggers a break point exception. Shortest
instruction (1 byte), doesn't change code size/layout

= Keep track of original instruction
- VMM emulate original instruction in trap

QO Problems: how does the rewriter find all code?
« Or where the instruction boundaries are,
= Or whether bytes are code or data ...

18

Dynamic binary translation

0 Idea: disassemble code only as executed, since
jump instructions reveal where code is

0 When VMM first loads guest kernel, translate
from entry (fixed) up to first jump

« Replace bad instructions with equivalent instructions on
virtual states

= Replace "jmp X" with "movl X, %eax; jmp translator;"
a Intranslator, look where the jump goes
= Repeat above steps

Q Keep track of what we've translated to avoid re-
translate

- Store ftranslated code in code cache (original =
translated mapping)

19

Binary translation example

Entry: Entry” '

pushl %ebp pushl %ebp '

|_:>opfl vm-fTIF = ... movl y, %eax
X_an X POp jmp translator

movl X, Y%eax
jnz translator
jmpy

20

4th approach: hardware support

0 Simplified implementation of VMM

0 Hardware maintains per-guest virtual state
- CPL,EFLAGS, idtr, etc

0 Hardware knows it is in "guest mode”
« Instructions directly modify virtual state
= Avoids many traps to VMM

21

Hardware support details

0 Hardware basically adds a new privilege level
- VMM mode, CPL=0, CPL=3
» Guest-mode, CPL=0 is not fully privileged

0 No traps on system calls; hardware handles
CPL fransition

a0 Hardware supports fwo page tables: guest
page table and VMM's page table
« Virtual address = guest physical address
= Guest physical address = host physical address

22

