
W4118: virtual machines

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Virtual machines (VM)

1

Real computer

CPU Memory Devices

VM0 VM1 VM2 VM4

Software

Why virtual machines?

 Manage big machines
 Multiplex CPUs/memory/devices at VM granularity
 E.g., Amazon EC2

 Multiple OS on one machine
 E.g., use Windows on Linux OS

 Isolate faults/break-ins
 One VM is compromised/crashes, others OK

 Kernel development
 Like QEMU, but faster

 OS granularity checkpoint/record/replay

2

Usual VM goals

 Accurate
 Guest can’t distinguish VM from real computer

 Isolated
 Guest can’t escape VM

 Fast

 Some VM implementations require guest kernel
modifications
 E.g., Xen

3

Virtual machine lineage

 1960s: IBM used VMs to share mainframe
 VM/370, today’s z/VM

 Still in use!

 1990s: VMWare re-popularized VMs for x86
 VMWare ESX servers

 VMWare work station

 …

4

Virtual machine structures

5

Real computer

Virtual Machine
Monitor (VMM)

Guest OS

User programs

Real computer

Virtual Machine
Monitor (VMM)

Guest OS

User programs

Host OS

“guest”

“host”

VMM responsibilities

 Time-share CPU among guests

 Space-share memory among guests

 Simulate disk, network, and other devices
 Often multiplex on host devices

6

Naïve approach: simulation

 Interpret each guest instruction

 Maintain each VM state purely in software

 Problem: too slow!

7

2nd approach: trap-and-emulate

 Execute guest instructions on real CPU when
possible
 E.g., addl %eax, %ebx

 Run guest OS in unprivileged mode

 Privileged instructions trap, and VMM emulates
 E.g., movl %eax, %cr3

 VMM hides real machine state from guests
 E.g., virtual %cr3 set by guest, real %cr3 set by VMM,

 More: page table, privilege level, interrupt flag, …

8

Trap-and-emulate: tricky on x86

 Not all instructions that should be emulated
cause traps

 Instructions have different effects depending
on privilege mode

 Instructions reading privileged state don’t trap

 Page table modifications don’t trap

 Trap them all  slow

9

Real x86 state to hide&protect

 CPL (low bits of CS) = 3, but guest expects 0

 Physical memory: guest expects 0..PHYSTOP,
VMM maps to one slice of physical memory

 Page tables: don’t map to physical addresses
expected by guest OS
 Shadow page table

 %cr3: points to shadow page table

10

Real x86 state to hide&protect (cont.)

 GDT: guest OS descriptors have DPL = 3, but
guest expects 0

 GDTR: points to shadow GDT table

 IDT descriptors: traps go to VMM, not guest

 IDTR: points to shadow IDT table

 IF in EFLAGS: guest expects 0 after cli

 …

11

Virtualize physical memory

 Guest wants
 Physical address starts at PA = 0
 Use “all” physical memory

 VMM must
 Space-share all physical memory among guests
 Protect one guest’s memory from another

 Idea:
 Claim DRAM smaller than real DRAM
 Ensuring paging is enabled
 Rewrite guest’s PTEs to map to real PA?
 Copy guest’s PTEs to shadow page table and map copied

PTEs to real PA

12

Example: VMM allocates a guest 0x1000000-0x2000000

13

Handling page table modifications

 VMM must make shadow page table entries
(PTEs) consistent with guest PTEs

 PTE loading: copy guest PTEs to shadow PTEs
on context switch

 PTE tracing: when guest modifies guest PTEs,
modify shadow PTEs as well

14

PTE loading

 Naïve approach: on guest %cr3 write, copy all
gueste PTEs
 Problem: slow context switch

 Another approach: start with minimum
mappings (just the PTEs of VMM), and copy on
demand on “hidden” page faults
 Problem: too many page faults

 Approach used in VMware: reuse populated
shadow PTEs

15

PTE tracing

 Approach I: mark the memory region holding
guest PTES as readonly, and copy updates to
shadow PTEs on page faults
 Problem: too many page faults

 Approach II: binary translate code that writes
to shadow PTEs to call out to VMM
 Faster than traps

16

Do all instructions that read/write
sensitive state cause traps at CPL = 3?

 pushw %cs: reveals CPL = 3, not 0

 sgdt: reveals real GDTR

 sidt: reveals real IDTR

 pushfl: reveals IF flag

 popfl: if CPL = 3, do not set IF flag (no trap)

 iret: no privilege mode change so won’t restore
SS/ESP

17

3rd approach: binary translation

 Simplified idea
 Replace non-trapping instructions that read/write

sensitive state with trap instruction
• int3: triggers a break point exception. Shortest

instruction (1 byte), doesn’t change code size/layout

 Keep track of original instruction

 VMM emulate original instruction in trap

 Problems: how does the rewriter find all code?
 Or where the instruction boundaries are,

 Or whether bytes are code or data …

18

Dynamic binary translation

 Idea: disassemble code only as executed, since
jump instructions reveal where code is

 When VMM first loads guest kernel, translate
from entry (fixed) up to first jump
 Replace bad instructions with equivalent instructions on

virtual states
 Replace “jmp X” with “movl X, %eax; jmp translator;”

 In translator, look where the jump goes
 Repeat above steps

 Keep track of what we’ve translated to avoid re-
translate
 Store translated code in code cache (original 

translated mapping)

19

Binary translation example

20

Entry:

 pushl %ebp

 popfl

 jnz x

x:

 …

 jmp y

Entry’:

 pushl %ebp

 vm->IF = …

 popfl

 movl x, %eax

 jnz translator

x’:

 …

 movl y, %eax

 jmp translator

4th approach: hardware support

 Simplified implementation of VMM

 Hardware maintains per-guest virtual state
 CPL, EFLAGS, idtr, etc

 Hardware knows it is in “guest mode”
 Instructions directly modify virtual state

 Avoids many traps to VMM

21

Hardware support details

 Hardware basically adds a new privilege level
 VMM mode, CPL=0, CPL=3

 Guest-mode, CPL=0 is not fully privileged

 No traps on system calls; hardware handles
CPL transition

 Hardware supports two page tables: guest
page table and VMM’s page table
 Virtual address  guest physical address

 Guest physical address  host physical address

22

