W4118: virtual machines

Instructor: Junfeng Yang
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Why virtual machines?

a Manage big machines
= Multiplex CPUs/memory/devices at VM granularity
- Eg., Amazon EC2

a Multiple OS on one machine
- Eg., use Windows on Linux OS

Q Isolate faults/break-ins
= One VM is compromised/crashes, others

0 Kernel development
« Like QEMU, but

a OS granularity checkpoint/record/replay



Usual VM goals

Q Accurate
 Guest can't distinguish VM from real computer

Q Isolated
= Guest can't escape VM

a Fast

0 Some VM implementations require guest kernel
modifications
- Eg., Xen



Virtual machine lineage

0 1960s: IBM used VMs to share mainframe
- VM/370, today's z/VM
= Still in usel

0 1990s: VMWare re-popularized VMs for x86
- VMWare ESX servers
- VMWare work station
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VMM responsibilities

0 Time-share CPU among guests
0 Space-share memory among guests

a Simulate disk, network, and other devices
= Often multiplex on host devices
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Naive approach: simulation

for (;:;) {
read instruction();
switch (decode instruction opcode()) {

regs[8]; case OPCODE_ADD:
REG EAX 1: int src = decode_src_reg();
REG EBX 2 int dzt = decode_gst_reg();
— & regs[dst] = regs[dst] + regs([src];
REG_ECX 3; break:
. case OPCODE_SUB:
€lp; int src = decode src reg();
segregs([4]; int dst = decode dst reg();
regs[dst] = regs[dst] - regs[src];
break;

i..

eip += instruction_length;

}

Q Interpret each guest instruction
Q Maintain each VM state purely in software
a Problem: too slow!



24 approach: trap-and-emulate

0 Execute guest instructions on real CPU when
possible
« E.g., addl %eax, %ebx

a Run guest OS in unprivileged mode

Q Privileged instructions trap, and VMM emulates
« E.g., movl %eax, %cr3

0 VMM hides real machine state from guests
- Eg., virtual %cr3 set by guest, real %cr3 set by VMM,
- More: page table, privilege level, interrupt flag, ...



Trap-and-emulate: tricky on x86

a Not all instructions that should be emulated
cause traps

a Instructions have different effects depending
on privilege mode

0 Instructions reading privileged state don't trap
0 Page table modifications don't trap

a Trap them all = slow



Real x86 state to hide&protect

a CPL (low bits of CS) = 3, but guest expects O

a Physical memory: guest expects 0.PHYSTORP,

VMM maps to one slice of physical memory

Q Page tables: don't map to physical addresses
expected by guest OS
= Shadow page table

Q 7cr3: points to shadow page table
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Real x86 state to hide&protect (cont.)

a GDT: guest OS descriptors have DPL = 3, but
guest expects O

a0 GDTR: points to shadow GDT table

a IDT descriptors: traps go to VMM, not guest
0 IDTR: points to shadow IDT table

0 IF in EFLAGS: guest expects O after cli

I
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Virtualize physical memory

0 Guest wants
« Physical address starts at PA=0
= Use "all” physical memory

0 VMM must

= Space-share all physical memory among guests
« Protect one guest's memory from another

a Idea:
= Claim DRAM smaller than real DRAM
= Ensuring paging is enabled
= Rewrite guest's PTEs to map to real PA?

= Copy guest's PTEs to shadow page table and map copied
PTEs to real PA
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Example: VMM allocates a guest 0x1000000-0x2000000
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Handling page table modifications

0 VMM must make shadow page table entries
(PTEs) consistent with guest PTEs

Q PTE Joading. copy guest PTEs to shadow PTEs
on context switch

Q PTE tfracing. when guest modifies guest PTEs,
modify shadow PTEs as well
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PTE loading

0 Nadive approach: on guest %cr3 write, copy all
gueste PTEs

= Problem: slow context switch

a Another approach: start with minimum
mappings (just the PTEs of VMM), and copy on
demand on “hidden” page faults

- Problem: too many page faults

a Approach used in VMware: reuse populated
shadow PTEs
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PTE tracing

a Approach I: mark the memory region holding
guest PTES as readonly, and copy updates to
shadow PTEs on page faults

= Problem: too many page faults

a Approach II: binary translate code that writes
to shadow PTEs to call out to VMM

= Faster than traps
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Do all instructions that read/write
sensitive state cause traps at CPL = 3?

Q pushw %ocs: reveals CPL = 3, not O

Q sgdt: reveals real GDTR

Q sidt: reveals real IDTR

0 pushfl: reveals IF flag

a popfl: if CPL = 3, do not set IF flag (no trap)

0 iret: no privilege mode change so won't restore
SS/ESP
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3rd approach: binary translation

a Simplified idea
= Replace non-trapping instructions that read/write
sensitive state with trap instruction

e int3: triggers a break point exception. Shortest
instruction (1 byte), doesn't change code size/layout

= Keep track of original instruction
- VMM emulate original instruction in trap

QO Problems: how does the rewriter find all code?
« Or where the instruction boundaries are,
= Or whether bytes are code or data ...
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Dynamic binary translation

0 Idea: disassemble code only as executed, since
jump instructions reveal where code is

0 When VMM first loads guest kernel, translate
from entry (fixed) up to first jump

« Replace bad instructions with equivalent instructions on
virtual states

= Replace "jmp X" with "movl X, %eax; jmp translator;"
a Intranslator, look where the jump goes
= Repeat above steps

Q Keep track of what we've translated to avoid re-
translate

- Store ftranslated code in code cache (original =
translated mapping)
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Binary translation example

Entry: Entry” '

pushl %ebp pushl %ebp '

|_:>opfl vm-fTIF = ... movl y, %eax
X_an X POp jmp translator

movl X, Y%eax
jnz translator
jmpy
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4th approach: hardware support

0 Simplified implementation of VMM

0 Hardware maintains per-guest virtual state
- CPL,EFLAGS, idtr, etc

0 Hardware knows it is in "guest mode”
« Instructions directly modify virtual state
= Avoids many traps to VMM
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Hardware support details

0 Hardware basically adds a new privilege level
- VMM mode, CPL=0, CPL=3
» Guest-mode, CPL=0 is not fully privileged

0 No traps on system calls; hardware handles
CPL fransition

a0 Hardware supports fwo page tables: guest
page table and VMM's page table
« Virtual address = guest physical address
= Guest physical address = host physical address
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