
W4118: FFS and LFS

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

1

File system examples

 BSD Fast File System (FFS)
 What were the problems with Unix FS?

 How did FFS solve these problems?

 Log-Structured File system (LFS)
 What was the motivation of LFS?

 How did LFS work?

1

2

Original Unix FS

 From Bell Labs

 Simple and elegant

 Problem: slow
 2% of maximum disk bandwidth even for sequential

disk transfer (20KB/s)

data blocks (512 bytes) inodes

su
pe

r

Unix disk layout

3

Why so slow?

 Problem 1: blocks too small
 Fixed costs per transfer (seek and rotational

delays)
 Require more indirect blocks

 Problem 2: unorganized freelist
 Consecutive file blocks are not close together
 Pay seek cost even for sequential access

 Problem 3: no data locality
 inodes far from data blocks
 inodes of files in directory not close together

4

Problem 1: blocks too small

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

512B 1024B 2048B 4096 1MB

Block size

Space Wasted Bandwidth

5

Larger blocks

 BSD FFS: make block 4096 or 8192 bytes

 Solve the internal fragmentation problem by chopping
large blocks into small ones called fragments
 Algorithm to ensure fragments only used for end of file
 Limit number of fragments per block to 2, 4, or 8
 Keep track of free fragments

 Pros
 High transfer speed for larger files
 Low wasted space for small files or ends of files

 This internal fragmentation problem is not a big
deal today

6

Problem 2: unorganized freelist

 Leads to random allocation of sequential file
blocks overtime

Initial performance good Get worse over time

7

Fixing the unorganized free list

 Periodical compact/defragment disk
 Cons: locks up disk bandwidth during operation

 Keep adjacent free blocks together on freelist
 Cons: costly to maintain

 Bitmap of free blocks
 Bitmap: each bit indicates whether block is free

• E.g., 010001000101010000001

• cache (all or parts of) bitmap in mem few disk ops

 Used in BSD FFS

8

Problem 3: data Locality

 Locality techniques
 Store related data together
 Spread unrelated data apart

• Make room for related data

 Always find free blocks nearby
• Rule of thumb: keep some free space on disks (10%)

 FFS new organization: cylinder group
 Set of adjacent cylinders
 Fast seek between cylinders in same group
 Each cylinder group contains superblock, inodes,

bitmap of free blocks, usage summary for block
allocation, data blocks

9

Achieving locality in FFS

 Maintain locality of each file
 Allocate data blocks within a cylinder group

 Maintain locality of inodes in a directory
 Allocate inodes in same dir in a cylinder group

 Make room for locality within a directory
 Spread out directories to cylinder groups

 Switch to a different cylinder group for large files

10

BSD FFS performance improvements

 Achieve 20-40% of disk bandwidth on large
files
 10X improvements over original Unix FS

 Stable over FS lifetime

 Can be further improved with additional placement
techniques

 Better small file performance

 More enhancements

11

File system examples

 BSD Fast File System (FFS)
 What were the problems with Unix FS?

 How did FFS solve these problems?

 Log-Structured File system (LFS)
 What was the motivation of LFS?

 How did LFS work?

11

12

Log-structured file system

 Motivation
 Faster CPUs: I/O becomes more and more of a

bottleneck

 More memory: file cache is effective for reads

 Implication: writes compose most of disk traffic

 Problems with previous FS
 Perform many small writes

• Good performance on large, sequential writes, but
many writes are still small, random

 Synchronous operation to avoid data loss

 Depends upon knowledge of disk geometry

13

LFS idea

 Insight: treat disk like a tape-drive
 Best performance from disk for sequential access

 Write data to disk in a sequential log
 Delay all write operations

 Write metadata and data for all files intermixed in
one operation

 Do not overwrite old data on disk

14

Pros and cons

 Pros
 Always Large sequential writes good performance

 No knowledge of disk geometry
• Assume sequential better than random

 Potential problems
 How do you find data to read?

 What happens when you fill up the disk?

15

Read in LFS

 Same basic structures as Unix
 Directories, inodes, indirect blocks, data blocks

 Reading data block implies finding the file’s inode
• Unix: inodes kept in array

• LFS: inodes move around on disk

 Solution: inode map indicates where each inode
is stored
 Small enough to keep in memory

 inode map written to log with everything else

 Periodically written to known checkpoint location on
disk for crash recovery

16

Disk cleaning

 When disk runs low on free space
 Run a disk cleaning process
 Compacts live information to contiguous blocks of disk

 Problem: long-lived data repeatedly copied over time
 Solution: partition disk in to segments

• Group older files into same segment
• Do not clean segments with old files

 Try to run cleaner when disk is not being used

 LFS: neat idea, influential
 Paper on LFS is likely the most widely cited OS paper
 Real file systems based on the idea

