
W4118: file systems

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

1

Outline

 File system concepts
 What is a file?

 What operations can be performed on files?

 What is a directory and how is it organized?

 File implementation
 How to allocate disk space to files?

1

2

What is a file

 User view
 Named byte array

• Types defined by user

 Persistent across reboots and power failures

 OS view
 Map bytes as collection of blocks on physical

storage

 Stored on nonvolatile storage device
• Magnetic Disks

2

3

Role of file system

 Naming
 How to “name” files
 Translate “name” + offset  logical block #

 Reliability
 Must not lose file data

 Protection
 Must mediate file access from different users

 Disk management
 Fair, efficient use of disk space
 Fast access to files

3

4

File metadata

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within
file system (inode number in UNIX)

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing,
executing

 Time, date, and user identification – data for
protection, security, and usage monitoring

 How is metadata stored? (inode in UNIX)

4

5

File operations

 int creat(const char* pathname, mode_t mode)

 int unlink(const char* pathname)

 int rename(const char* oldpath, const char*
newpath)

 int open(const char* pathname, int flags, mode_t
mode)

 int read(int fd, void* buf, size_t count);

 int write(int fd, const void* buf, size_t count)

 int lseek(int fd, offset_t offset, int whence)

 int truncate(const char* pathname, offset_t len)

 ...

6

Open files

 Problem: expensive to resolve name to identifier on
each access

 Solution: open file before access
 Name resolution: search directories for file name and

check permission

 Read relevant file metadata into open file table in
memory

 Return index in open file table (file descriptor)

 Application pass index to OS for subsequent access

 System-wide open file table shared across processes

 Per-process open file table stores current pointer
position and index to system-wide open file table

7

Directories

 Organization technique
 Map file name to location on disk

 Also stored on disk

 Single-Level directory
 Single directory for entire disk

• Each file must have unique name

 Not very usable

 Two-level directory
 Directory for each user

 Still not very usable

7

8

Tree-structured directory

 Directory stored on disk just like files
 Data consists of <name, index> pairs

• Name can be another directory

 Designated by special bit in meta-data
 Reference by separating names with slashes
 Operations

• User programs can read (readdir())
• Only special system calls can write

 Special directories
 Root (/): fixed index for metadata
 . : this directory
 .. : parent directory

8

9

Acyclic-graph directories

 Directories can share files

 Create links from one file

 Two types of links
 Hard link

• Multiple directory entries point to same file

• Store reference count in file metadata

• Cannot refer to directories; why?

 Symbolic link
• Special file, designated by bit in meta-data

• File data is name to another file

9

10

Path names

 Absolute path name (full path name)
 Start at root directory

• E.g. /home/junfeng/teaching

 Relative path name
 Full path is lengthy and inflexible

 Give each process current working directory

 Assume file in current directory

10

11

Directories as files

 Direction as special files that store pointers
to the contained files
 File data is interpreted by FS code

 Separate functionality in two levels
 Lowest: storage management

 Highest: naming, directory

 Advantage: simplifies design and
implementation

12

Protection

 Type of access
 Read, write, execute, append, delete, list …

 Access control list
 Associate lists of users with access rights for every file

 Advantage: complete control

 Disadvantage
• Tedious to construct list (may not know in advance for all users)

• Require variable-size information

 Classify users
 user, group, other

 Advantage: easier to implement

 Disadvantage: no fine grained control

13

Outline

 File system concepts
 What is a file?

 What operations can be performed on files?

 What is a directory and how is it organized?

 File implementation
 How to allocate disk space to files?

13

14

Typical file access patterns

 Sequential Access
 Data read or written in order

• Most common access pattern
– E.g., copy files, compiler read and write files,

 Can be made very fast (peak transfer rate from
disk)

 Random Access
 Randomly address any block

• E.g., update records in a database file

 Difficult to make fast (seek time and rotational
delay)

14

15

Disk management

 Need to track where file data is on disk
 How should we map logical sector # to surface #,

track #, and sector #?
• Order disk sectors to minimize seek time for

sequential access

 Need to track where file metadata is on disk

 Need to track free versus allocated areas of
disk
 E.g., block allocation bitmap (Unix)

• Array of bits, one per block
• Usually keep entire bitmap in memory

15

16

Allocation strategies

 Various approaches (similar to memory allocation)
 Contiguous
 Extent-based
 Linked
 FAT tables
 Indexed
 Multi-Level Indexed

 Key metrics
 Fragmentation (internal & external)?
 Grow file over time after initial creation?
 Fast to find data for sequential and random access?
 Easy to implement?
 Storage overhead?

16

17

Contiguous allocation

 Allocate files like continuous memory
allocation (base & limit)
 User specifies length, file system allocates space all

at once

 Can find disk space by examining bitmap

 Metadata: contains starting location and size of file

17

18

Contiguous allocation example

19

Pros and cons

 Pros
 Easy to implement

 Low storage overhead (two variables to specify disk
area for file)

 Fast sequential access since data stored in
continuous blocks

 Fast to compute data location for random
addresses. Just an array index

 Cons
 Large external fragmentation

 Difficult to grow file

19

20

Extent-based allocation

 Multiple contiguous regions per file (like
segmentation)
 Each region is an extent

 Metadata: contains small array of entries
designating extents

• Each entry: start and size of extent

20

21

Pros and cons

 Pros
 Easy to implement

 Low storage overhead (a few entries to specify file
blocks)

 File can grow overtime (until run out of extents)

 Fast sequential access

 Simple to calculate random addresses

 Cons
 Help with external fragmentation, but still a

problem

21

22

Linked allocation

 All blocks (fixed-size) of a file on linked list
 Each block has a pointer to next

 Metadata: pointer to the first block

22

pointer block

23

Linked allocation example

24

Pros and cons

 Pros
 No external fragmentation

 Files can be easily grown with no limit

 Also easy to implement, though awkward to spare
space for disk pointer per block

 Cons
 Large storage overhead (one pointer per block)

 Potentially slow sequential access

 Difficult to compute random addresses

24

25

Variation: FAT table

 Store linked-list pointers outside block in File-
Allocation Table
 One entry for each block

 Linked-list of entries for each file

 Used in MSDOS and Windows operating
systems

25

26

FAT example

27

Pros and cons

 Pros
 Fast random access. Only search cached FAT

 Cons
 Large storage overhead for FAT table

 Potentially slow sequential access

27

28

Indexed allocation

 File has array of pointers (index) to block
 Allocate block pointers contiguously in metadata

• Must set max length when file created

• Allocate pointers at creation, allocate blocks on
demand

• Cons:

 Maintain multiple lists of block pointers
• Last entry points to next block of pointers

• Cons:

28

block pointers

29

Indexed allocation example

30

Pros and cons

 Pros
 Easy to implement

 No external fragmentation

 Files can be easily grown with the limit of the array
size

 Fast random access. Use index

 Cons
 Large storage overhead for the index

 Sequential access may be slow.
• Must allocate contiguous block for fast access

30

31

Multi-level indexed files

 Block index has multiple levels

31



outer-index

index table data blocks

32

Multi-level indexed allocation example
(xv6, UNIX FFS, and Linux ext2/ext3)

Inode

Indirect

 Blocks

Indirect

 Blocks

Indirect

 Blocks

Double

Indirect

Indirect

 Blocks

Indirect

 Blocks

Double

Indirect

Triple

Indirect

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

direct blocks

BLKSIZE/4

(BLKSIZE/4)2

(BLKSIZE/4)3

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

33

Pros and cons

 Pros
 No external fragmentation

 Files can be easily grown with much larger limit
compared to one-level index

 Fast random access. Use index

 Cons
 Large space overhead (index)

 Sequential access may be slow.
• Must allocate contiguous block for fast access

 Implementation can be complex

33

