
W4118: file systems  

Instructor: Junfeng Yang 

References: Modern Operating Systems (3rd edition), Operating Systems 
Concepts (8th edition),  previous W4118, and OS at MIT, Stanford, and UWisc 
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Outline 

 File system concepts 
 What is a file? 

 What operations can be performed on files? 

 What is a directory and how is it organized? 
 

 File implementation 
 How to allocate disk space to files? 
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What is a file 

 User view 
 Named byte array 

• Types defined by user 

 Persistent across reboots and power failures 
 

 OS view 
 Map bytes as collection of blocks on physical 

storage 

 Stored on nonvolatile storage device 
• Magnetic Disks 
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Role of file system 

 Naming 
 How to “name” files 
 Translate “name” + offset  logical block # 

 

 Reliability 
 Must not lose file data 

 

 Protection 
 Must mediate file access from different users 
 

 Disk management 
 Fair, efficient use of disk space 
 Fast access to files 
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File metadata 

 Name – only information kept in human-readable form 

 Identifier – unique tag (number) identifies file within 
file system (inode number in UNIX) 

 Location – pointer to file location on device 

 Size – current file size 

 Protection – controls who can do reading, writing, 
executing 

 Time, date, and user identification – data for 
protection, security, and usage monitoring 

 

 How is metadata stored? (inode in UNIX) 
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File operations 

 int creat(const char* pathname, mode_t mode) 

 int unlink(const char* pathname) 

 int rename(const char* oldpath, const char* 
newpath) 

 int open(const char* pathname, int flags, mode_t 
mode) 

 int read(int fd, void* buf, size_t count); 

 int write(int fd, const void* buf, size_t count) 

 int lseek(int fd, offset_t offset, int whence) 

 int truncate(const char* pathname, offset_t len) 

 ... 
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Open files 

 Problem: expensive to resolve name to identifier on 
each access 

  Solution: open file before access 
 Name resolution: search directories for file name and 

check permission 

 Read relevant file metadata into open file table in 
memory 

 Return index in open file table (file descriptor) 

 Application pass index to OS for subsequent access 
 

 System-wide open file table shared across processes 

 Per-process open file table stores current pointer 
position and index to system-wide open file table 
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Directories 

 Organization technique 
 Map file name to location on disk 

 Also stored on disk 
 

 Single-Level directory 
 Single directory for entire disk 

• Each file must have unique name 

 Not very usable 
 

 Two-level directory 
 Directory for each user 

 Still not very usable 
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Tree-structured directory 

 Directory stored on disk just like files 
 Data consists of <name, index> pairs 

• Name can be another directory 

 Designated by special bit in meta-data 
 Reference by separating names with slashes 
 Operations 

• User programs can read (readdir()) 
• Only special system calls can write 

 

 Special directories 
 Root (/): fixed index for metadata 
 . : this directory 
 .. : parent directory 
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Acyclic-graph directories 

 Directories can share files 

 Create links from one file  

 Two types of links 
 Hard link 

• Multiple directory entries point to same file 

• Store reference count in file metadata 

• Cannot refer to directories; why? 

 Symbolic link 
• Special file, designated by bit in meta-data 

• File data is name to another file 
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Path names 

 Absolute path name (full path name) 
 Start at root directory 

• E.g. /home/junfeng/teaching 
 

 Relative path name 
 Full path is lengthy and inflexible 

 Give each process current working directory 

 Assume file in current directory 
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Directories as files 

 Direction as special files that store pointers 
to the contained files 
 File data is interpreted by FS code 

 

 Separate functionality in two levels 
 Lowest: storage management 

 Highest: naming, directory 
 

 Advantage: simplifies design and 
implementation 
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Protection 

 Type of access 
 Read, write, execute, append, delete, list … 

 

 Access control list  
 Associate lists of users with access rights for every file 

 Advantage: complete control 

 Disadvantage 
• Tedious to construct list (may not know in advance for all users) 

• Require variable-size information 
 

 Classify users 
 user, group, other 

 Advantage: easier to implement 

 Disadvantage: no fine grained control 
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Outline 

 File system concepts 
 What is a file? 

 What operations can be performed on files? 

 What is a directory and how is it organized? 
 

 File implementation 
 How to allocate disk space to files? 
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Typical file access patterns 

 Sequential Access 
 Data read or written in order 

• Most common access pattern 
– E.g., copy files, compiler read and write files,  

 Can be made very fast (peak transfer rate from 
disk) 

 

 Random Access 
 Randomly address any block 

• E.g.,  update records in a database file 

 Difficult to make fast (seek time and rotational 
delay) 

 

 

 
14 



15 

Disk management 

 Need to track where file data is on disk 
 How should we map logical sector # to surface #, 

track #, and sector #? 
• Order disk sectors to minimize seek time for 

sequential access 
 

 Need to track where file metadata is on disk 
 

 Need to track free versus allocated areas of 
disk 
 E.g.,  block allocation bitmap (Unix) 

• Array of bits, one per block 
• Usually keep entire bitmap in memory 

 

 
15 



16 

Allocation strategies 

 Various approaches (similar to memory allocation) 
 Contiguous 
 Extent-based 
 Linked 
 FAT tables 
 Indexed 
 Multi-Level Indexed 

 

 Key metrics 
 Fragmentation (internal & external)? 
 Grow file over time after initial creation? 
 Fast to find data for sequential and random access? 
 Easy to implement? 
 Storage overhead? 
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Contiguous allocation 

 Allocate files like continuous memory 
allocation (base & limit) 
 User specifies length, file system allocates space all 

at once 

 Can find disk space by examining bitmap  

 Metadata: contains starting location and size of file 
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Contiguous allocation example 
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Pros and cons 

 Pros 
 Easy to implement 

 Low storage overhead (two variables to specify disk 
area for file) 

 Fast sequential access since data stored in 
continuous blocks 

 Fast to compute data location for random 
addresses.  Just an array index 

 

 Cons 
 Large external fragmentation 

 Difficult to grow file 
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Extent-based allocation 

 Multiple contiguous regions per file (like 
segmentation) 
 Each region is an extent 

 Metadata: contains small array of entries 
designating extents 

• Each entry: start and size of extent 
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Pros and cons 

 Pros 
 Easy to implement 

 Low storage overhead (a few entries to specify file 
blocks) 

 File can grow overtime (until run out of extents) 

 Fast sequential access 

 Simple to calculate random addresses 
 

 Cons 
 Help with external fragmentation, but still a 

problem 
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Linked allocation 

 All blocks (fixed-size) of a file on linked list 
 Each block has a pointer to next 

 Metadata: pointer to the first block 
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Linked allocation example 
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Pros and cons 

 Pros 
 No external fragmentation 

 Files can be easily grown with no limit 

 Also easy to implement, though awkward to spare 
space for disk pointer per block 

 

 Cons 
 Large storage overhead (one pointer per block) 

 Potentially slow sequential access 

 Difficult to compute random addresses 
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Variation: FAT table 

 Store linked-list pointers outside block in File-
Allocation Table  
 One entry for each block 

 Linked-list of entries for each file 
 

 Used in MSDOS and Windows operating 
systems 

25 



26 

FAT example 
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Pros and cons 

 Pros 
 Fast random access.  Only search cached FAT 

 

 Cons 
 Large storage overhead for FAT table 

 Potentially slow sequential access 
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Indexed allocation 

 File has array of pointers (index) to block 
 Allocate block pointers contiguously in metadata 

• Must set max length when file created 

• Allocate pointers at creation, allocate blocks on 
demand 

• Cons:  

 Maintain multiple lists of block pointers 
• Last entry points to next block of pointers 

• Cons: 

28 

block pointers 



29 

Indexed allocation example 
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Pros and cons 

 Pros 
 Easy to implement 

 No external fragmentation 

 Files can be easily grown with the limit of the array 
size 

 Fast random access.  Use index 
 

 Cons 
 Large storage overhead for the index 

 Sequential access may be slow. 
• Must allocate contiguous block for fast access 
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Multi-level indexed files 

 Block index has multiple levels 
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outer-index 

index table data blocks 
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Multi-level indexed allocation example 
(xv6, UNIX FFS, and Linux ext2/ext3) 
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Pros and cons 

 Pros 
 No external fragmentation 

 Files can be easily grown with much larger limit 
compared to one-level index 

 Fast random access.  Use index 

 

 Cons 
 Large space overhead (index) 

 Sequential access may be slow. 
• Must allocate contiguous block for fast access 

 Implementation can be complex 
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