W4118: RAID

Instructor: Junfeng Yang

RAID motivation

- **Performance**
 - Disks are slow compared to CPU
 - Disk speed improves slowly compared to CPU

- **Reliability**
 - In single disk systems, one disk failure → data loss

- **Cost**
 - A single fast, reliable disk is expensive
RAID idea

- RAID idea: use redundancy to improve performance and reliability
 - Redundant array of cheap disks as one storage unit
 - Fast: simultaneous read and write disks in the array
 - Reliable: use parity to detect and correct errors

- RAID can have different redundancy levels, achieving different performance and reliability
 - Seven different RAID levels (0-6)
Evaluating RAID

- **Cost**
 - Storage utilization: data capacity / total capacity

- **Reliability**
 - Tolerance of disk failures

- **Performance**
 - (Large) sequential read, write, read-modify-write
 - (Small) random read, write, read-modify-write
 - Speedup over a single disk
Computing cost

- $G =$ number of data disks in a RAID group
- $C =$ number of check disks in a RAID group

- Cost = $C/(G+C)$
Computing reliability

- $N =$ total number of disks
- $G =$ number of data disks in a RAID group
- $C =$ number of check/parity disks in a RAID group
- $MTTF\text{disk} =$ mean time to failure for a disk
- $MTTR =$ mean time to repair for a failed disk
- $MTTF\text{raid} =$?
RAID 0: non-redundant striping

- **Structure**
 - Data striped across all disks in an array
 - No parity

- **Advantages:**
 - Good performance: with N disks, roughly N times speedup

- **Disadvantages:**
 - Poor reliability: one disk failure \rightarrow data loss
RAID 0 performance
RAID 1: mirroring

- **Structure**
 - Keep a *mirrored* (shadow) copy of data

- **Advantages**
 - Good reliability: one disk failure OK
 - Good read performance

- **Disadvantage**
 - High cost: one data disk requires one parity disk
RAID 1 performance
RAID 2: error-correction parity

- **Structure**
 - A data sector striped across data disks
 - Compute *error-correcting parity* and store in parity disks

- **Advantages**
 - Good reliability with higher storage utilization than mirroring

- **Disadvantages**
 - Unnecessary cost: disk can already detect failure
 - Poor random performance

[Diagram of RAID 2 structure with parity disks]
RAID 3: bit-interleaved parity

- **Structure**
 - Single parity disk (XOR of each stripe of a data sector)

- **Advantages**
 - Same reliability with one disk failure as RAID2 since disk controller can determine what disk fails
 - Higher storage utilization

- **Disadvantages**
 - Poor random performance
RAID 4: block-interleaved parity

- **Structure**
 - A set of data sectors (*parity group*) striped across data disks

- **Advantages**
 - Same reliability as RAID3
 - Good random read performance

- **Disadvantages**
 - Poor random write and read-modify-write performance
RAID 4 performance
RAID 5: block-interleaved distributed parity

- **Structure**
 - Parity sectors distributed across all disks

- **Advantages**
 - *Good performance*
RAID 5 performance
RAID6: P+Q redundancy

- **Structure**
 - Same as RAID 5 except using two parity sectors per parity group

- **Advantages**
 - Can tolerate two disk failures
RAID levels

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.