W4118: disks

Instructor: Junfeng Yang

References: Modern Operating Systems (3^{rd} edition), Operating Systems Concepts (8^{th} edition), previous W4118, and OS at MIT, Stanford, and UWisc

Outline

- Disk characteristics
- Disk scheduling

Disk structure

Disk interface

 From FS perspective: disk is addressed as a one dimension array of logical sectors

□ Disk controller maps logical sector to physical sector identified by surface #, track #, and

sector #

Disk latencies

- Rotational delay: rotate disk to get to the right sector
- Seek time: move disk arm to get to the right track
- □ Transfer time: get bits off the disk

Rotational delay

- □ Full rotation time: e.g., 4-8ms
- Average rotational delay: half of full rotation time

Seek time

- □ Must move arm to the right track
- □ Can take a while (e.g., 0.5 2ms)

Transfer time

- Transfer bits out of disk
- □ Actually pretty fast (e.g., 125MB/s)

I/O time (T) and rate (R)

- □ T = Rotational delay + seek time + txfer time
- □ R = Size of transfer / T
- □ Workload 1: large sequential accesses?
- Workload 2: small random accesses?

Example

	Barracuda	Cheetah 15K.5
Capacity	1TB	300GB
Rotational speed	7200 RPM	15000 RPM
Rotational latency (ms)	4.2	2.0
Avg seek (ms)	9	4
Max Transfer	105 MB/s	125 MB/s
Platters	4	4
Connects via	SATA	SCSI

Random 4KB read

Barracuda: T = 13.2ms, R = 0.31MB/s

Cheetah: T = 6ms, R = 0.66MB/s

Sequential 100 MB read

Barracuda: T = 950ms, R = 105 MB/s

Cheetah: T = 800ms, R = 125 MB/s

Design tip: use disks sequentially

- Disk performance differs by a factor of 200 or 300 for random v.s. sequential accesses
- When possible, access disks sequentially

Mapping of logical sectors to physical

- □ Logical sector 0: the first sector of the first (outermost) track of the first surface
- Logical sector address incremented within track, then tracks within cylinder, then across cylinders, from outermost to innermost

Track skew

11

10

19

12

13

20

9

18

23

21

14

3

22

8

17

16

5

Pros and cons of default mapping

Pros

- Simple to program
- Default mapping reduces seek time for sequential access

Cons

- FS can't precisely see mapping
- Reverse-engineer mapping in OS is difficult
 - # of sectors per track changes
 - Disk silently remaps bad sectors

Disk cache

- □ Internal memory (8MB-32MB) used as cache
- □ Read-ahead: "track buffer"
 - Read contents of entire track into memory during rotational delay
- Write caching with volatile memory
 - Write back or immediate reporting: claim written to disk when not
 - Faster, but data could be lost on power failure
 - Write through: ack after data written to platter

Disk scheduling

- □ Goal: minimize positioning time
 - Performed by both OS and disk itself
 - Why?
- □ Schedule requests in order received (FCFS)
 - Advantage: fair
 - Disadvantage: high seek cost and rotation
- □ Shortest seek time first (SSTF):
 - Handle nearest cylinder next
 - Advantage: reduces arm movement (seek time)
 - Disadvantage: unfair, can starve some requests

Elevator (aka SCAN or C-SCAN)

- □ Disk arm sweeps across disk
- □ If request comes for a block already serviced in this sweep, queue it for next sweep

Modern disk scheduling issues

- □ Elevator (or SSTF) ignores rotation!
- □ Shortest positioning time first (SPTF)
- □ OS + disk work together to implement

Disk technology trends

- □ Data → more dense
 - More bits per square inch
 - Disk head closer to surface
 - Create smaller disk with same capacity
- □ Disk geometry → smaller
 - Spin faster → Increase b/w, reduce rotational delay
 - Faster seek
 - Lighter weight
- □ Disk price → cheaper
- Density improving more than speed (mechanical limitations)

New mass storage technologies

- New memory-based mass storage technologies avoid seek time and rotational delay
 - NAND Flash
 - Battery-backed DRAM (NVRAM)
- Disadvantages
 - Price: more expensive than same capacity disk
 - Reliability: more likely to lose data
- Open research question: how to effectively use flash in commercial storage systems