
W4118: scheduling

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

1

Outline

 Introduction to scheduling

 Scheduling algorithms

2

Direction within course

 Until now: interrupts, processes, threads,
synchronization
 Mostly mechanisms

 From now on: resources
 Resources: things processes operate upon

• E.g., CPU time, memory, disk space

 Mostly policies

3

Types of resource

 Preemptible
 OS can take resource away, use it for something

else, and give it back later
• E.g., CPU

 Non-preemptible
 OS cannot easily take resource away; have to wait

after the resource is voluntarily relinquished
• E.g., disk space

 Type of resource determines how to manage

4

Decisions about resource

 Allocation: which process gets which resources
 Which resources should each process receive?

 Space sharing: Controlled access to resource

 Implication: resources are not easily preemptible

 Scheduling: how long process keeps resource
 In which order should requests be serviced?

 Time sharing: more resources requested than can be
granted

 Implication: Resource is preemptible

5

Role of Dispatcher vs. Scheduler

 Dispatcher
 Low-level mechanism

 Responsibility: context switch

 Scheduler
 High-level policy

 Responsibility: deciding which process to run

 Could have an allocator for CPU as well
 Parallel and distributed systems

6

When to schedule?

 When does scheduler make decisions?
 When a process

1. switches from running to waiting state
2. switches from running to ready state
3. switches from waiting to ready
4. terminates

 Minimal: nonpreemptive
 ?

 Additional circumstances: preemptive
 ?

7

Outline

 Introduction to scheduling

 Scheduling algorithms

8

Overview of scheduling algorithms

 Criteria: workload and environment

 Workload
 Process behavior: alternating sequence of CPU and

I/O bursts

 CPU bound v.s. I/O bound

 Environment
 Batch v.s. interactive?

 Specialized v.s. general?

9

Scheduling performance metrics

 Min waiting time: don’t have process wait long
in ready queue

 Max CPU utilization: keep CPU busy

 Max throughput: complete as many processes
as possible per unit time

 Min response time: respond immediately

 Fairness: give each process (or user) same
percentage of CPU

10

First-Come, First-Served (FCFS)

 Simplest CPU scheduling algorithm
 First job that requests the CPU gets the CPU

 Nonpreemptive

 Implementation: FIFO queue

11

 Process Arrival Time Burst Time

 P1 0 7

 P2 0 4

 P3 0 1

 P4 0 4

 Gantt chart

 Average waiting time: (0 + 7 + 11 + 12)/4 = 7.5

Example of FCFS

P1 P2 P3 P4 Schedule:

12

P3

 Arrival order: P3 P2 P4 P1

 Gantt chart

 Average waiting time: (9 + 1 + 0 + 5)/4 = 3.75

Example of FCFS: different arrival order

P1 P2 P4 Schedule:

13

FCFS advantages and disadvantages

 Advantages
 Simple

 Fair

 Disadvantages
 waiting time depends on arrival order

 Convoy effect: short process stuck waiting for long
process

 Also called head of the line blocking

14

Shortest Job First (SJF)

 Schedule the process with the shortest time

 FCFS if same time

15

 Process Arrival Time Burst Time

 P1 0 7
 P2 2 4
 P3 4 1
 P4 5 4

 Gantt chart

 Average waiting time: (0 + 6 + 3 + 7)/4 = 4

Example of SJF (w/o preemption)

P1 P2 P3 P4

P1 P2 P3 P4 Schedule:

Arrival:

16

Shortest Job First (SJF)

 Schedule the process with the shortest time
 FCFS if same time

 Advantages
 Minimizes average wait time. Provably optimal if no

preemption allowed

 Disadvantages
 Not practical: difficult to predict burst time

• Possible: past predicts future

 May starve long jobs

17

Shortest Remaining Time First (SRTF)

 If new process arrives w/ shorter CPU burst
than the remaining for current process,
schedule new process
 SJF with preemption

 Advantage: reduces average waiting time

18

 Gantt chart

 Average waiting time: (9 + 1 + 0 + 2)/4 = 3

Example of SRTF

P1 P2 P3 P4

P1 P2 P3 P4 Schedule:

Arrival:

P2 P1

19

Round-Robin (RR)

 Practical approach to support time-sharing

 Run process for a time slice, then move to
back of FIFO queue

 Preempted if still running at end of time-slice

 How to determine time slice?

20

 Gantt chart with time slice = 3

 Average waiting time: (8 + 8 + 5 + 7)/4 = 7

 Average response time: (0 + 1 + 5 + 5)/4 = 2.75

 # of context switches: 7

Example of RR: time slice = 3

P1 P2 P3 P4 Arrival:

Queue: P1

P2

P1

P1

P2

P1

P3

P2

P1

P3

P4

P2 P1

P3

P4

P2 P1

P3

P4

P2 P1

P4

P2 P1

P4

P2 P1

P4

P4

21

 Gantt chart with time slice = 1

 Average waiting time: (8 + 6 + 1 + 7)/4 = 5.5

 Average response time: (0 + 0 + 1 + 2)/4 = 0.75

 # of context switches: 14

Example of RR: smaller time slice

P1 P2 P3 P4 Arrival:

Queue: P1

P1

P2

P1

P3

P2

P1

P4

P2 P1

P4

P4

P2

P1 P1

P1

P3

P4

P2

P1

P4

P2 P1

P4

P2 P1

P4

P2 P1

P4

P2 P1

P4

P2 P1

P4 P1

P4

22

 Gantt chart with time slice = 10

 Average waiting time: (0 + 5 + 7 + 7)/4 = 4.75

 Average response time: same

 # of context switches: 3 (minimum)

Example of RR: larger time slice

P1 P2 P3 P4 Arrival:

Queue: P1

P2

P1 P1

P3

P2 P3

P4

P2 P3

P4

P4 P1

P3

P2

P4

23

RR advantages and disadvantages

 Advantages
 Low response time, good interactivity

 Fair allocation of CPU across processes

 Low average waiting time when job lengths vary widely

 Disadvantages
 Poor average waiting time when jobs have similar lengths

• Average waiting time is even worse than FCFS!

 Performance depends on length of time slice
• Too high degenerate to FCFS

• Too low too many context switches, costly

24

Priorities

 A priority is associated with each process
 Run highest priority ready job (some may be

blocked)

 Round-robin among processes of equal priority

 Can be preemptive or nonpreemptive

 Representing priorities
 Typically an integer

 The larger the higher or the lower?

25

Setting priorities

 Priority can be statically assigned
 Some always have higher priority than others

 Problem: starvation

 Priority can be dynamically changed by OS
 Aging: increase the priority of processes that wait

in the ready queue for a long time

26

Priority inversion

 High priority process depends on low priority
process (e.g. to release a lock)
 Another process with in-between priority arrives?

 Solution: priority inheritance
 Inherit highest priority of waiting process

 Must be able to chain multiple inheritances

 Must ensure that priority reverts to original value

