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Need for protection 

 Kernel privileged, cannot trust user processes 
 User processes may be malicious or buggy 

 
 Must protect 

 User processes from one another 
 Kernel from user processes 
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Hardware mechanisms for protection 

 Memory protection 
 Segmentation and paging 

• E.g., kernel sets segment/page table 
 

 Timer interrupt 
 Kernel periodically gets back control 

 

 Dual mode of operation 
 Privileged (+ non-privileged) operations in kernel mode 
 Non-privileged operations in user mode 
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What operations are privileged? 

 Read raw keyboard input 
 

 Call printf() 
 

 Call write() 
 

 Write global descriptor table 
 

 Divide by 0 
 

 Set timer interrupt handler 
 

 Set segment registers 
 

 Load cr3 
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x86 protection modes 

 Four modes (0-3), but often only 0 & 3 used 
 Kernel mode: 0 
 User mode: 3 
 “Ring 0”, “Ring 3” 

 

 Segment has Descriptor Privilege Level (DPL) 
 DPL of kernel code and data segments: 0 
 DPL of user code and data segments: 3 

 

 Current Privilege Level (CPL) = current code 
segment’s DPL 
 Can only access data segments when CPL <= DPL 

 

6 



Outline 

 Dual mode of operation 
 

 Interrupt 
 

 System call 
 
 

7 



OS: “event driven” 

 Events causing mode switches 
 System calls: issued by user processes to request 

system services 
 Exceptions: illegal instructions (e.g., division by 0) 
 Interrupts: raised by devices to get OS attention 

 
 Often handled using same hardware 

mechanism: interrupt 
 Also called trap 
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Interrupt view of CPU 
while (fetch next instruction) { 
    run instruction; 
    if (there is an interrupt) { 
 
 
        process interrupt 
 
 
    } 
} 
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x86 interrupt view 

 Q1: how does hardware find OS-provided 
interrupt handler? 

 Q2: why switch stack? 
 Q3: what CPU context to save and restore? 
 Q4: what does handler do? 

while (fetch next instruction) { 
    run instruction; 
    if (there is an interrupt) { 
        switch to kernel stack if necessary 
        save CPU context and error code if any 
        find OS-provided interrupt handler 
        jump to handler 
        restore CPU context when handler returns 
    } 
} 
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Q1: how to find interrupt handler? 

 Hardware maps interrupt type to interrupt number 
 

 OS sets up Interrupt Descriptor Table (IDT) at boot 
 Also called interrupt vector 
 IDT is in memory 
 Each entry is an interrupt handler 
 OS lets hardware know IDT base 
 Defines all kernel entry points 

 
 Hardware finds handler using interrupt number as 

index into IDT 
 handler = IDT[intr_number] 
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x86 interrupt hardware (legacy) 
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x86 interrupt numbers 

 Total 256 number [0, 255] 
 

 Intel reserved first 32, OS can use 224 
 

 0: divide by 0 
 1: debug (for single stepping) 
 2: non-maskable interrupt 
 3: breakpoint 
 14: page fault 

 
 64: system call in xv6 

 
 xv6 traps.h 

13 



x86 interrupt gate descriptor 

 Interrupt gate descriptor 
 Code segment selector and offset of handler 
 Descriptor Privilege Level (DPL) 
 Trap or exception flag 

 lidt instruction loads CPU with IDT base 
 

 xv6 
 Handler entry points: vector.S 
 Interrupt gate format: SETGATE in mmu.h 
 IDT initialization: tvinit() & idtinit() in trap.c 
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Q2: why switch stack? 

 Cannot trust stack (SS, ESP) of user process! 
 

 x86 hardware switches stack when interrupt 
handling requires user-kernel mode switch 

 

 Where to find kernel stack? 
 Task gate descriptor has SS and ESP for interrupt 
 ltr loads CPU with task gate descriptor 

 

 xv6 assigns each process a kernel stack, used 
in interrupt handling 
 switchuvm() in vm.c 
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Q3: what does hardware save? 

 x86 saves SS, ESP, EFLAGS, CS, EIP, Err code 
 Restored by iret 
 OS can save more context 
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Q4: what does interrupt handler do? 

 Typical steps 
 Assembly to save additional CPU context 
 Invoke C handler to process interrupt 

• E.g., communicate with I/O devices 
 Invoke kernel scheduler 
 Assembly to restore CPU context and return 

 

 xv6  
 Interrupt handler entries: vector.S 
 Saves & restore additional CPU context: trapasm.S 
 C handler: trap.c, struct trapframe in x86.h 
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xv6 kernel stack before calling trap(tf) 

 xv6 saves all registers (user-mode CPU context) 
 struct trapframe (x86.h) captures this layout 
 “pushl %esp” pushes argument for trap(tf) 
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Interrupt v.s. Polling 

 Instead for device to interrupt CPU, CPU can 
poll the status of device 
 Intr: “I want to see a movie.” 
 Poll: for(each week) {“Do you want to see a movie?”} 

 
 Good or bad? 

 For mostly-idle device? 
 For busy device? 
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System call 

 User processes cannot perform privileged 
operations themselves 

 

 Must request OS to do so on their behalf by 
issuing system calls 

 

 OS must validate system call parameters 
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System call dispatch 

1. Kernel assigns system call type a system call number 
2. Kernel initializes system call table, mapping system call 

number to functions implementing the system call 
 Also called system call vector 

 

3. User process sets up system call number and arguments 
4. User process runs int X  
5. Hardware switches to kernel mode and invokes kernel’s 

interrupt handler for X (interrupt dispatch) 
6. Kernel looks up syscall table using system call number 
7. Kernel invokes the corresponding function 
8. Kernel returns by running iret (interrupt return) 
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syscall() { 
   syscalls[%eax]() 

} // syscall.c 

sys_write(…) { 
 // do real work 
} // sysfile.c 

xv6 system call dispatch 
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movl $SYS_write, %eax 
int 64 
ret        // usys.S 

User mode 

kernel mode 
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System call parameter passing 

 Typical methods 
 Pass via registers (e.g., Linux) 
 Pass via user-mode stack (e.g., xv6) 
 Pass via designated memory region 

 

 xv6 system call parameter passing 
 Arguments pushed onto user stack based on gcc  

calling convention 
 Kernel function uses special routines to fetch these 

arguments 
• syscall.c 
• Why? 

24 



xv6 system call naming convention 

 Usually the user-mode wrapper foo() (usys.S) 
traps into kernel, which calls sys_foo() 
 sys_foo() implemented in sys*.c 
 Often wrappers to foo() in kernel  

 
 System call number for foo() is SYS_foo 

 syscalls.h 
 

 All system calls begin with sys_ 
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Tracing system calls in Linux 

 Use the “strace” command (man strace for info) 
 

 Linux has a powerful mechanism for tracing 
system call execution for a compiled application 

 

 Output is printed for each system call as it is 
executed, including parameters and return codes 

 

 ptrace() system call is used to implement strace 
 Also used by debuggers (breakpoint, singlestep, etc) 

 

 Use the “ltrace” command to trace dynamically 
loaded library calls 
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