
W4118: interrupt and system call  

Junfeng Yang 



Outline 

 Dual mode of operation 
 

 Interrupt 
 

 System call 
 
 

2 



Need for protection 

 Kernel privileged, cannot trust user processes 
 User processes may be malicious or buggy 

 
 Must protect 

 User processes from one another 
 Kernel from user processes 

3 



Hardware mechanisms for protection 

 Memory protection 
 Segmentation and paging 

• E.g., kernel sets segment/page table 
 

 Timer interrupt 
 Kernel periodically gets back control 

 

 Dual mode of operation 
 Privileged (+ non-privileged) operations in kernel mode 
 Non-privileged operations in user mode 

 

4 



What operations are privileged? 

 Read raw keyboard input 
 

 Call printf() 
 

 Call write() 
 

 Write global descriptor table 
 

 Divide by 0 
 

 Set timer interrupt handler 
 

 Set segment registers 
 

 Load cr3 
 

5 



x86 protection modes 

 Four modes (0-3), but often only 0 & 3 used 
 Kernel mode: 0 
 User mode: 3 
 “Ring 0”, “Ring 3” 

 

 Segment has Descriptor Privilege Level (DPL) 
 DPL of kernel code and data segments: 0 
 DPL of user code and data segments: 3 

 

 Current Privilege Level (CPL) = current code 
segment’s DPL 
 Can only access data segments when CPL <= DPL 

 

6 



Outline 

 Dual mode of operation 
 

 Interrupt 
 

 System call 
 
 

7 



OS: “event driven” 

 Events causing mode switches 
 System calls: issued by user processes to request 

system services 
 Exceptions: illegal instructions (e.g., division by 0) 
 Interrupts: raised by devices to get OS attention 

 
 Often handled using same hardware 

mechanism: interrupt 
 Also called trap 

8 



Interrupt view of CPU 
while (fetch next instruction) { 
    run instruction; 
    if (there is an interrupt) { 
 
 
        process interrupt 
 
 
    } 
} 

 

9 



x86 interrupt view 

 Q1: how does hardware find OS-provided 
interrupt handler? 

 Q2: why switch stack? 
 Q3: what CPU context to save and restore? 
 Q4: what does handler do? 

while (fetch next instruction) { 
    run instruction; 
    if (there is an interrupt) { 
        switch to kernel stack if necessary 
        save CPU context and error code if any 
        find OS-provided interrupt handler 
        jump to handler 
        restore CPU context when handler returns 
    } 
} 

10 



Q1: how to find interrupt handler? 

 Hardware maps interrupt type to interrupt number 
 

 OS sets up Interrupt Descriptor Table (IDT) at boot 
 Also called interrupt vector 
 IDT is in memory 
 Each entry is an interrupt handler 
 OS lets hardware know IDT base 
 Defines all kernel entry points 

 
 Hardware finds handler using interrupt number as 

index into IDT 
 handler = IDT[intr_number] 

11 



x86 interrupt hardware (legacy) 

PIC CPU 

Bus 

INTR 

IRQs 

IDT 
0 

255 

Interrupt 
handler 

idtr 

intr # 

Mask points 

intr #
 

12 



x86 interrupt numbers 

 Total 256 number [0, 255] 
 

 Intel reserved first 32, OS can use 224 
 

 0: divide by 0 
 1: debug (for single stepping) 
 2: non-maskable interrupt 
 3: breakpoint 
 14: page fault 

 
 64: system call in xv6 

 
 xv6 traps.h 

13 



x86 interrupt gate descriptor 

 Interrupt gate descriptor 
 Code segment selector and offset of handler 
 Descriptor Privilege Level (DPL) 
 Trap or exception flag 

 lidt instruction loads CPU with IDT base 
 

 xv6 
 Handler entry points: vector.S 
 Interrupt gate format: SETGATE in mmu.h 
 IDT initialization: tvinit() & idtinit() in trap.c 

14 



Q2: why switch stack? 

 Cannot trust stack (SS, ESP) of user process! 
 

 x86 hardware switches stack when interrupt 
handling requires user-kernel mode switch 

 

 Where to find kernel stack? 
 Task gate descriptor has SS and ESP for interrupt 
 ltr loads CPU with task gate descriptor 

 

 xv6 assigns each process a kernel stack, used 
in interrupt handling 
 switchuvm() in vm.c 

15 



Q3: what does hardware save? 

 x86 saves SS, ESP, EFLAGS, CS, EIP, Err code 
 Restored by iret 
 OS can save more context 

16 

SS 
ESP 

EFLAGS 
CS 
EIP 

Err code 
ESP 

when switch stack 

for some exceptions 



Q4: what does interrupt handler do? 

 Typical steps 
 Assembly to save additional CPU context 
 Invoke C handler to process interrupt 

• E.g., communicate with I/O devices 
 Invoke kernel scheduler 
 Assembly to restore CPU context and return 

 

 xv6  
 Interrupt handler entries: vector.S 
 Saves & restore additional CPU context: trapasm.S 
 C handler: trap.c, struct trapframe in x86.h 

17 



xv6 kernel stack before calling trap(tf) 

 xv6 saves all registers (user-mode CPU context) 
 struct trapframe (x86.h) captures this layout 
 “pushl %esp” pushes argument for trap(tf) 

 
18 

SS 
ESP 

EFLAGS 
CS 
EIP 

Err code or 0 

ESP 

when switch stack 

h/w pushes error code for 
some exceptions; xv6 pushes 
0 for others (vector.S) trapno 

DS 
… 

EAX 
… 

h/w saves 

xv6 saves 

struct trapframe 

arg to trap(tf) ESP 



Interrupt v.s. Polling 

 Instead for device to interrupt CPU, CPU can 
poll the status of device 
 Intr: “I want to see a movie.” 
 Poll: for(each week) {“Do you want to see a movie?”} 

 
 Good or bad? 

 For mostly-idle device? 
 For busy device? 

19 



Outline 

 Dual mode of operation 
 

 Interrupt 
 

 System call 
 
 

20 



System call 

 User processes cannot perform privileged 
operations themselves 

 

 Must request OS to do so on their behalf by 
issuing system calls 

 

 OS must validate system call parameters 
 

21 



System call dispatch 

1. Kernel assigns system call type a system call number 
2. Kernel initializes system call table, mapping system call 

number to functions implementing the system call 
 Also called system call vector 

 

3. User process sets up system call number and arguments 
4. User process runs int X  
5. Hardware switches to kernel mode and invokes kernel’s 

interrupt handler for X (interrupt dispatch) 
6. Kernel looks up syscall table using system call number 
7. Kernel invokes the corresponding function 
8. Kernel returns by running iret (interrupt return) 

22 



syscall() { 
   syscalls[%eax]() 

} // syscall.c 

sys_write(…) { 
 // do real work 
} // sysfile.c 

xv6 system call dispatch 

 
23 

 
movl $SYS_write, %eax 
int 64 
ret        // usys.S 

User mode 

kernel mode 

64 

  write(fd, buf, sz) 

User 
program 

IDT 

syscall 

syscalls 
table 

sys_write 



System call parameter passing 

 Typical methods 
 Pass via registers (e.g., Linux) 
 Pass via user-mode stack (e.g., xv6) 
 Pass via designated memory region 

 

 xv6 system call parameter passing 
 Arguments pushed onto user stack based on gcc  

calling convention 
 Kernel function uses special routines to fetch these 

arguments 
• syscall.c 
• Why? 

24 



xv6 system call naming convention 

 Usually the user-mode wrapper foo() (usys.S) 
traps into kernel, which calls sys_foo() 
 sys_foo() implemented in sys*.c 
 Often wrappers to foo() in kernel  

 
 System call number for foo() is SYS_foo 

 syscalls.h 
 

 All system calls begin with sys_ 

25 



Tracing system calls in Linux 

 Use the “strace” command (man strace for info) 
 

 Linux has a powerful mechanism for tracing 
system call execution for a compiled application 

 

 Output is printed for each system call as it is 
executed, including parameters and return codes 

 

 ptrace() system call is used to implement strace 
 Also used by debuggers (breakpoint, singlestep, etc) 

 

 Use the “ltrace” command to trace dynamically 
loaded library calls 

26 


	W4118: interrupt and system call 
	Outline
	Need for protection
	Hardware mechanisms for protection
	What operations are privileged?
	x86 protection modes
	Outline
	OS: “event driven”
	Interrupt view of CPU
	x86 interrupt view
	Q1: how to find interrupt handler?
	x86 interrupt hardware (legacy)
	x86 interrupt numbers
	x86 interrupt gate descriptor
	Q2: why switch stack?
	Q3: what does hardware save?
	Q4: what does interrupt handler do?
	xv6 kernel stack before calling trap(tf)
	Interrupt v.s. Polling
	Outline
	System call
	System call dispatch
	xv6 system call dispatch
	System call parameter passing
	xv6 system call naming convention
	Tracing system calls in Linux

