
W4118: segmentation and paging

Instructor: Junfeng Yang

Outline

 Memory management goals

 Segmentation

 Paging

 TLB

1

Uni- v.s. multi-programming

 Simple uniprogramming with a single segment
per process

 Uniprogramming disadvantages
 Only one process can run a time

 Process can destroy OS

 Want multiprogramming!

2

OS

User
Process

Multiple address spaces co-exist

AS1

AS2

AS3

3
Logical view Physical view

max

max

max

0

0

0

PHYSTOP

0

Memory management wish-list

 Sharing
 multiple processes coexist in main memory

 Transparency
 Processes are not aware that memory is shared
 Run regardless of number/locations of other processes

 Protection
 Cannot access data of OS or other processes

 Efficiency: should have reasonable performance
 Purpose of sharing is to increase efficiency
 Do not waste CPU or memory resources (fragmentation)

4

Outline

 Memory management goals

 Segmentation

 Paging

 TLB

5

Memory Management Unit (MMU)

 Map program-generated address (virtual
address) to hardware address (physical
address) dynamically at every reference

 Check range and permissions

 Programmed by OS

6

CPU MMU MEMORY

Virtual Addresses

Physical Addresses

7

x86 address translation

 CPU generates virtual address (seg, offset)
 Given to segmentation unit

• Which produces linear addresses

 Linear address given to paging unit
• Which generates physical address in main memory

 Divide virtual address space into separate
logical segments; each is part of physical mem

Segmentation

8

code

data

stack

heap

code

data heap

stack

Segmentation translation

 Virtual address: <segment-number, offset>

 Segment table maps segment number to
segment information
 Base: starting address of the segment in physical

memory

 Limit: length of the segment

 Addition metadata includes protection bits

 Limit & protection checked on each access

9

x86 segmentation hardware

10

selector offset

0 31 0 15

base limit perm

base limit perm

base limit perm

Global descriptor table

Logical address

+

Linear address

0 31

xv6 segments

 vm.c, seginit()

 Kernel code: readable + executable in kernel mode
 Kernel data: writable in kernel mode
 User code: readable + executable in user mode
 User data: writable in user mode
 These are all null mappings

 Kernel CPU: shortcuts to per-CPU data

 Base: &c->cpu
 Limit: 8 bytes

11

12

Pros and cons of segmentation

 Advantages
 Segment sharing
 Easier to relocate segment than entire program
 Avoids allocating unused memory
 Flexible protection
 Efficient translation

• Segment table small fit in MMU

 Disadvantages
 Segments have variable lengths how to fit?
 Segments can be large fragmentation

12

Outline

 Memory management goals

 Segmentation

 Paging

 TLB

13

Paging overview

 Goal
 Eliminate fragmentation due to large segments
 Don’t allocate memory that will not be used
 Enable fine-grained sharing

 Paging: divide memory into fixed-sized pages
 For both virtual and physical memory

 Another terminology
 A virtual page: page
 A physical page: frame

14

Page translation

 Address bits = page number + page offset

 Translate virtual page number (vpn) to physical
page number (ppn) using page table

 pa = page_table[va/pg_sz] + va%pg_sz

15

CPU vpn off ppn off

Page table

ppn vpn

Memory

ppn

Page translation example

16

Page 0

Page 1

Page 2

Page 3

Page 0

Page 2

Page 1

Page 3

Page table

Physical
Memory

Virtual
Memory

0

1

2

3

1

4

3

7

Page translation exercise

 8-bit virtual address, 10-bit physical address,
and each page is 64 bytes
 How many virtual pages?

 How many physical pages?

 How many entries in page table?

 Given page table = [2, 5, 1, 8], what’s the physical
address for virtual address 241?

 m-bit virtual address, n-bit physical address,
k-bit page size
 What are the answers to the above questions?

17

Page protection

 Implemented by associating protection bits
with each virtual page in page table

 Protection bits
 present bit: map to a valid physical page?

 read/write/execute bits: can read/write/execute?

 user bit: can access in user mode?

 x86: PTE_P, PTE_W, PTE_U

 Checked by MMU on each memory access

18

Page protection example

19

Page 0

Page 1

Page 3

Page 0

Page 1

Page 3

Page table

Physical
Memory

Virtual
Memory

0

1

2

3

1

4

3

7

110

000

111

pwu

101

Page allocation

 Free page management
 E.g., can put page on a free list

 Allocation policy
 E.g., one page at a time, from

head of free list

 xv6: kalloc.c

20

free_page_list

Page 1

Page 3

Page 0

2, 3, 6, 5, 0

Implementation of page table

 Page table is stored in memory
 Page table base register (PTBR) points to the base

of page table
• x86: cr3

 OS stores base in process control block (PCB)

 OS switches PTBR on each context switch

 Problem: each data/instruction access requires
two memory accesses
 Extra memory access for page table

21

Page table size issues

 Given:
 A 32 bit address space (4 GB)
 4 KB pages
 A page table entry of 4 bytes

 Implication: page table is 4 MB per process!

 Observation: address space are often sparse
 Few programs use all of 2^32 bytes

 Change page table structures to save memory
 Trade translation time for page table space

22

Hierarchical page table

 Break up virtual address space into multiple
page tables at different levels

23

Address translation with hierarchical
page table

24

x86 page translation with 4KB pages

 32-bit address space, 4 KB page
 4KB page 12 bits for page offset

 How many bits for 2nd-level page table?
 Desirable to fit a 2nd-level page table in one page

 4KB/4B = 1024 10 bits for 2nd-level page table

 Address bits for top-level page table: 32 – 10
– 12 = 10

25

page number page offset

pi p2 d

12 10 10

x86 paging architecture

26

x
v6

 a
d
d
re

ss
 s

pa
ce

(m

e
m

la
yo

ut
.h

)

27

xv6 address space implementation

 Split into kernel space and user space

 User: 0--KERNBASE
 Map to physical pages

 Kernel: KERNBAS E—(KERNBASE+PHYSTOP)
 Virtual address = physical address + KERNBASE

 Kernel: 0xFE000000--4GB
 Direct (virtual = physical)

 Kernel: vm.c, setupkvm()

 User: vm.c, inituvm() and exec.c, exec()

28

Outline

 Memory management goals

 Segmentation

 Paging

 TLB

29

Avoiding extra memory access

 Observation: locality
 Temporal: access locations accessed just now
 Spatial: access locations adjacent to locations

accessed just now
 Process often needs only a small number of

vpnppn mappings at any moment!

 Fast-lookup hardware cache called
associative memory or translation look-
aside buffers (TLBs)
 Fast parallel search (CPU speed)
 Small

30

VPN PPN

Paging hardware with TLB

31

Effective access time with TLB

 Assume memory cycle time is 1 unit time
 TLB Lookup time =
 TLB Hit ratio =

 Percentage of times that a vpnppn mapping
is found in TLB

 Effective Access Time (EAT)
 EAT = (1 +) + (2 +)(1 –)
 = + + 2 + - - 2
 = 2 + –

32

TLB Miss

 Depending on the architecture, TLB misses are
handled in either hardware or software

 Hardware (CISC: x86)
 Pros: hardware doesn’t have to trust OS !

 Cons: complex hardware, inflexible

 Software (RISC: MIPS, SPARC)
 Pros: simple, flexible

 Cons: code may have bug!

 Question: what can’t a TLB miss handler do?

33

TLB and context switches

 What happens to TLB on context switches?

 Option 1: flush entire TLB
 x86

• load cr3 flushes TLB

• INVLPG addr: invalidates a single TLB entry

 Option 2: attach process ID to TLB entries
 ASID: Address Space Identifier

 MIPS, SPARC

34

Backup Slides

35

Motivation for page sharing

 Efficient communication. Processes
communicate by write to shared pages

 Memory efficiency. One copy of read-only
code/data shared among processes
 Example 1: multiple instances of the shell program

 Example 2: copy-on-write fork. Parent and child
processes share pages right after fork; copy only
when either writes to a page

36

Page sharing example

37

