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Uni- v.s. multi-programming 

 Simple uniprogramming with a single segment 
per process 

 

 Uniprogramming disadvantages 
 Only one process can run a time 

 Process can destroy OS 

 

 Want multiprogramming! 
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Memory management wish-list 

 Sharing 
 multiple processes coexist in main memory 

 

 Transparency 
 Processes are not aware that memory is shared 
 Run regardless of number/locations of other processes 

 

 Protection 
 Cannot access data of OS or other processes 

 

 Efficiency: should have reasonable performance 
 Purpose of sharing is to increase efficiency 
 Do not waste CPU or memory resources (fragmentation) 
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Memory Management Unit (MMU) 

 Map program-generated address (virtual 
address) to hardware address (physical 
address) dynamically at every reference 

 Check range and permissions 

 Programmed by OS 
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x86 address translation 

 CPU generates virtual address (seg, offset) 
 Given to segmentation unit 

• Which produces linear addresses  

 Linear address given to paging unit 
• Which generates physical address in main memory 



 Divide virtual address space into separate 
logical segments; each is part of physical mem 

Segmentation 

8 

code 

data 

stack 

heap 

code 

data heap 

stack 



Segmentation translation 

 Virtual address: <segment-number, offset> 
 

 Segment table maps segment number to 
segment information 
 Base: starting address of the segment in physical 

memory 

 Limit: length of the segment 

 Addition metadata includes protection bits 
 

 Limit & protection checked on each access 
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x86 segmentation hardware 
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xv6 segments 

 vm.c, seginit() 
 

 Kernel code: readable + executable in kernel mode 
 Kernel data: writable in kernel mode 
 User code: readable + executable in user mode 
 User data: writable in user mode 
 These are all null mappings 

 
 Kernel CPU: shortcuts to per-CPU data 

 Base: &c->cpu 
 Limit: 8 bytes 
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Pros and cons of segmentation 

 Advantages 
 Segment sharing 
 Easier to relocate segment than entire program 
 Avoids allocating unused memory 
 Flexible protection 
 Efficient translation 

• Segment table small  fit in MMU 
 

 Disadvantages 
 Segments have variable lengths  how to fit? 
 Segments can be large  fragmentation 
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Paging overview 

 Goal 
 Eliminate fragmentation due to large segments 
 Don’t allocate memory that will not be used 
 Enable fine-grained sharing 

 

 Paging: divide memory into fixed-sized pages 
 For both virtual and physical memory 

 

 Another terminology 
 A virtual page: page 
 A physical page: frame 
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Page translation 

 Address bits = page number + page offset 

 Translate virtual page number (vpn) to physical 
page number (ppn) using page table 

       pa = page_table[va/pg_sz] + va%pg_sz 

 

15 

CPU vpn off ppn off 

Page table 

ppn vpn 

Memory 

ppn 



Page translation example 
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Page translation exercise 

 8-bit virtual address, 10-bit physical address, 
and each page is 64 bytes 
 How many virtual pages? 

 How many physical pages? 

 How many entries in page table? 

 Given page table = [2, 5, 1, 8], what’s the physical 
address for virtual address 241? 

 

 m-bit virtual address, n-bit physical address, 
k-bit page size 
 What are the answers to the above questions? 
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Page protection 

 Implemented by associating protection bits 
with each virtual page in page table 

 

 Protection bits 
 present bit: map to a valid physical page? 

 read/write/execute bits: can read/write/execute? 

 user bit: can access in user mode? 

 x86: PTE_P, PTE_W, PTE_U 
 

 Checked by MMU on each memory access 
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Page protection example 
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Page allocation 

 Free page management 
 E.g., can put page on a free list 

 

 Allocation policy 
 E.g., one page at a time, from 

head of free list 

 

 xv6: kalloc.c 
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Implementation of page table 

 Page table is stored in memory 
 Page table base register (PTBR) points to the base 

of page table 
• x86: cr3 

 OS stores base in process control block (PCB) 

 OS switches PTBR on each context switch 
 

 Problem: each data/instruction access requires 
two memory accesses 
 Extra memory access for page table 

21 



Page table size issues 

 Given: 
 A 32 bit address space (4 GB) 
 4 KB pages 
 A page table entry of 4 bytes 

 

 Implication: page table is 4 MB per process! 
 

 Observation: address space are often sparse 
 Few programs use all of 2^32 bytes 

 

 Change page table structures to save memory 
 Trade translation time for page table space 
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Hierarchical page table 

 Break up virtual address space into multiple 
page tables at different levels 
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Address translation with hierarchical 
page table 
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x86 page translation with 4KB pages 

 32-bit address space, 4 KB page 
 4KB page  12 bits for page offset 

 

 How many bits for 2nd-level page table? 
 Desirable to fit a 2nd-level page table in one page 

 4KB/4B = 1024  10 bits for 2nd-level page table  
 

 Address bits for top-level page table: 32 – 10 
– 12 = 10 
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x86 paging architecture 

26 



x
v6

 a
d
d
re

ss
 s

pa
ce

 
(m

e
m

la
yo

ut
.h

) 

27 



xv6 address space implementation 

 Split into kernel space and user space 
 

 User: 0--KERNBASE 
 Map to physical pages 

 Kernel: KERNBAS E—(KERNBASE+PHYSTOP) 
 Virtual address = physical address + KERNBASE 

 Kernel: 0xFE000000--4GB 
 Direct (virtual = physical) 

 

 Kernel: vm.c, setupkvm() 

 User: vm.c, inituvm() and exec.c, exec() 
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Avoiding extra memory access 

 Observation: locality 
 Temporal: access locations accessed just now 
 Spatial: access locations adjacent to locations 

accessed just now 
 Process often needs only a small number of 

vpnppn mappings at any moment! 
 

 Fast-lookup hardware cache called 
associative memory or translation look-
aside buffers (TLBs) 
 Fast parallel search (CPU speed) 
 Small 
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Paging hardware with TLB 
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Effective access time with TLB 

 Assume memory cycle time is 1 unit time 
 TLB Lookup time =  
 TLB Hit ratio =    

 Percentage of times that a vpnppn mapping 
is found in TLB 

 

 Effective Access Time (EAT) 
  EAT = (1 + )  + (2 + )(1 – ) 
   =  +  + 2 +  -  - 2  
   = 2 +  –  
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TLB Miss 

 Depending on the architecture, TLB misses are 
handled in either hardware or software 

 

 Hardware (CISC: x86) 
 Pros: hardware doesn’t have to trust OS ! 

 Cons: complex hardware, inflexible 
 

 Software (RISC: MIPS, SPARC) 
 Pros: simple, flexible 

 Cons: code may have bug! 

 Question: what can’t a TLB miss handler do? 
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TLB and context switches 

 What happens to TLB on context switches? 
 

 Option 1: flush entire TLB 
 x86 

• load cr3 flushes TLB 

• INVLPG addr: invalidates a single TLB entry 
 

 Option 2: attach process ID to TLB entries 
 ASID: Address Space Identifier 

 MIPS, SPARC 
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Backup Slides 
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Motivation for page sharing 

 Efficient communication.  Processes 
communicate by write to shared pages 

 

 Memory efficiency.  One copy of read-only 
code/data shared among processes 
 Example 1: multiple instances of the shell program 

 Example 2: copy-on-write fork.  Parent and child 
processes share pages right after fork; copy only 
when either writes to a page 
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Page sharing example 
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