
W4118: Process and Address Space

Junfeng Yang

Outline

 Process

 Address space

 Process dispatch

 Common process operations

2

What is a process

 Process: an execution stream in the context of a
particular process state
 “Program in execution” “virtual CPU”

 Execution stream: a stream of instructions

 Process state: determines effect of running code
 Registers: general purpose, instruction pointer (program

counter), floating point, …

 Memory: everything a process can address, code, data,
stack, heap, …

 I/O status: file descriptor table, …

3

Program v.s. process

 Program != process
 Program: static code + static data

 Process: dynamic instantiation of code + data + more

 Program process: no 1:1 mapping
 Process > program: more than code and data

 Program > process: one program runs many
processes

 Process > program: many processes of same program

4

Why use processes?

 Express concurrency
 Systems have many concurrent jobs going on

• E.g. Multiple users running multiple shells, I/O, …

 OS must manage

 General principle of divide and conquer
 Decompose a large problem into smaller ones

easier to think of well contained smaller problems

 Isolated from each other
 Sequential with well defined interactions

5

Process management

 Process control block (PCB)
 Process state (new, ready, running, waiting, finish …)
 CPU registers (e.g., %eip, %eax)
 Scheduling information
 Memory-management information
 Accounting information
 I/O status information

 OS often puts PCBs on various queues
 Queue of all processes
 Ready queue
 Wait queue

6

Outline

 Process

 Address space

 Process dispatch

 Common process operations

7

System categorization

 Uniprogramming: one process at a time
 Eg., early main frame systems, MSDOS

 Good: simple

 Bad: poor resource utilization, inconvenient for users

 Multiprogramming: multiple processes, when one
waits, switch to another
 E.g, modern OS

 Good: increase resource utilization and user convenience

 Bad: complex

 Note: multiprogramming != multiprocessing

8

Multiprogramming

 OS requirements for multiprogramming
 Scheduling: what process to run? (later)
 Dispatching: how to switch? (today + later)
 Memory protection: how to protect from one

another? (today + later)

 Separation of policy and mechanism
 Recurring theme in OS
 Policy: decision making with some performance

metric and workload (scheduling)
 Mechanism: low-level code to implement decisions

(dispatching, protection)

9

Address Space

 Address Space (AS): all memory a process can address
 Really large memory to use
 Linear array of bytes: [0, N), N roughly 2^32, 2^64

 Process address space: 1 : 1 mapping

 Address space = protection domain
 OS isolates address spaces
 One process can’t access another’s address space
 Same pointer address in different processes point

to different memory

10

Address space illustration

Process A Process B

11

x
v6

 a
d
d
re

ss
 s

pa
ce

(m

e
m

la
yo

ut
.h

)

12

Process dispatching mechanism

 OS dispatching loop:

while(1) {

 run process for a while;

 save process state;

 next process = schedule (ready processes);

 load next process state;

}

 Q1: how to gain control?

Q2: how to switch context?

13

Q1: How does Dispatcher gain control?

 Must switch from user mode to kernel mode

 Cooperative multitasking: processes voluntarily
yield control back to OS
 When: system calls that relinquish CPU
 OS trusts user processes!

 True multitasking: OS preempts processes by
periodic alarms
 Processes are assigned time slices
 Counts timer interrupts before context switch
 OS trusts no one!

14

Q2: how to switch context?

 Implementation: machine dependent
 Tricky: OS must save state w/o changing state!

• Need to save all registers to PCB in memory

• Run code to save registers? Code changes registers

 Solution: software + hardware

 Performance?
 Can take long. Save and restore many things. The time

needed is hardware dependent

 Context switch time is pure overhead: the system does
no useful work while switching

 Must balance context switch frequency with scheduling
requirement

15

1. Save P1’s user-mode CPU context and
switch from user to kernel mode (need hw)

2. Handle system call or interrupt

3. Save P1’s kernel CPU context and switch to
scheduler CPU context (need hw)

4. Select another process P2

5. Switch to P2’s address space (need hw)

6. Save scheduler CPU context and switch to
P2’s kernel CPU context (need hw)

7. Switch from kernel to user mode and load
P2’s user-mode CPU context (need hw)

 swtch.S

xv6 context switch

16

user
kernel

P1 P2
sch

e
d
ule

r

Outline

 What is a process?

 Address space

 Process dispatch

 Common process operations

17

Process creation

 Option 1: cloning (e.g., Unix fork(), exec())
 Pause current process and save its state
 Copy its PCB (can select what to copy)
 Add new PCB to ready queue
 Must distinguish parent and child

 Option 2: from scratch (Win32 CreateProcess)
 Load code and data into memory
 Create and initialize PCB (make it like saved from

context switch)
 Add new PCB to ready queue

18

Process termination

 Normal: exit(int status)

 OS passes exit status to parent via wait(int *status)

 OS frees process resources

 Abnormal: kill(pid_t pid, int sig)

 OS can kill process

 Process can kill process

19

Zombie and orphan

 What if child exits before parent?
 Child becomes zombie

• Need to store exit status

• OS can’t fully free

 Parent must call wait() to reap child

 What if parent exits before child?
 Child becomes orphan

• Need some process to query exit status and maintain
process tree

 Re-parent to the first process, the init process

20

Cooperating Processes

 Independent process cannot affect or be
affected by the execution of another process.

 Cooperating process can affect or be affected
by the execution of another process

 Advantages of process cooperation
 Information sharing

 Computation speed-up

 Modularity/Convenience

21

Interprocess Communication Models

 Message Passing Shared Memory

22

Message Passing v.s. Shared Memory

 Message passing
 Why good? All sharing is explicit less chance for

error

 Why bad? Overhead. Data copying, cross
protection domains

 Shared Memory
 Why good? Performance. Set up shared memory

once, then access w/o crossing protection domains

 Why bad? Things change behind your back error
prone

23

IPC Example: Unix signals

 Signals
 A very short message: just a small integer
 A fixed set of available signals. Examples:

• 9: kill
• 11: segmentation fault

 Installing a handler for a signal
 sighandler_t signal(int signum, sighandler_t handler);

 Send a signal to a process
 kill(pid_t pid, int sig)

24

IPC Example: Unix pipe

 int pipe(int fds[2])
 Creates a one way communication channel
 fds[2] holds the returned two file descriptors
 Bytes written to fds[1] will be read from fds[0]

 int pipefd[2];
 pipe(pipefd);
 switch(pid=fork()) {
 case -1: perror("fork"); exit(1);
 case 0: close(pipefd[0]);
 // write to fd 1
 break;
 default: close(pipefd[1]);
 // read from fd 0
 break;
 }

25

IPC Example: Unix Shared Memory

 int shmget(key_t key, size_t size, int shmflg);
 Create a shared memory segment; returns ID of segment
 key: unique key of a shared memory segment, or

IPC_PRIVATE

 int shmat(int shmid, const void *addr, int flg)
 Attach shared memory segment to address space of the

calling process
 shmid: id returned by shmget()

 int shmdt(const void *shmaddr);
 Detach from shared memory

 Problem: synchronization! (later)

26

Next lecture

 Memory management

27

