
W4118: PC Hardware and x86 

Junfeng Yang 



A PC 

How to make it do something useful? 

2 



Outline 

 PC organization 

 

 x86 instruction set 

 

 gcc calling conventions 

 

 PC emulation  

 

3 



PC board 

 

4 



PC organization 

 One or more CPUs, memory, and device 
controllers connected through system bus 

5 



Abstract model 

 I/O: communicating data to and from devices 

 CPU: digital logic for doing computation 

 Memory: N words of B bits 

 

6 

Input  

and Output 

Central  

Processing  

Unit 

Main  

Memory 



The stored program computer 

 Memory holds both instructions and data 
 CPU interprets instructions 

 Instructions read/write data 

7 

for(;;) { 

   fetch next instruction 

   run next instruction 

} 

instruction 

instruction 

instruction 

data 

data 

data 

CPU 
Main Memory 



x86 implementation 

 EIP incremented after each instruction 

 Variable length instructions  

 EIP modified by CALL, RET, JMP, conditional JMP 

8 

instruction 

instruction 

instruction 

data 

data 

data 

2^32-1 

0 



Registers: work space 

 8, 16, and 32 bit versions 
 Example: ADD EAX, 10 

 More: SUB, AND, etc 

 By convention some for 
special purposes 

9 

ESP: stack pointer 

EBP: frame base pointer 

ESI: source index 

EDI: destination index 



EFLAGS register 

 Track current CPU status  

10 

TEST EAX, EAX  

JNZ address 



Memory: more work space 

 Memory instructions: MOV, PUSH, POP, etc 

 Most instructions can take a memory address 

11 



Stack memory + operations 

 For implementing function calls 

 Stack grows “down” on x86 

12 



More memory 

 8086 16-bit register and 20-bit bus addresses 

 These extra 4 bits come from segment register 
 CS: code segment,  for IP 

• Instruction address: CS * 16 + IP 

 SS: stack segment, for ESP and EBP 

 DS: data segment for load/store via other registers 

 ES: another data segment, destination for string ops 
 

 Make life more complicated 
 Cannot directly use 16-bit stack address as pointer 

 For a far pointer programmer must specify segment reg 

 Pointer arithmetic and array indexing across seg bound 

13 



And more memory 

 80386: 32 bit register and addresses (1985) 

 AMD k8: 64 bit (2003) 
 RAX instead of EAX 

 x86-64, x64, amd64, intel64: all same thing 
 

 Backward compatibility 
 Boots in 16-bit mode; bootasm.S switches to 32 

 Prefix 0x66 gets 32-bit mode instructions 

• MOVW in 32-bit mode  = 0x66 + MOVW in 16-bit mode 

 .code32 in bootasm.S tells assembler to insert 0x66 
 

 80386 also added virtual memory addresses 

 

 
14 



I/O space and instructions 

 8086: only 1024 addresses 

15 



Memory-mapped I/O 

 Use normal addresses for I/O 
 No special instructions 

 No 1024 limit 

 Hardware routes to device 
 

 Works like “magic” memory 
 I/O device addressed and accessed like memory 

 However, reads and writes have “side effects” 

 Read result can change due to external events 

16 



Memory layout 

 

17 



Instruction classes 

 Instruction classes 
 Data movement: MOV, PUSH, POP, … 

 Arithmetic: TEST, SHL, ADD, AND, … 

 I/O: IN, OUT, … 

 Control: JMP, JZ, JNZ, CALL, RET 

 String: MOVSB, REP, … 

 System: INT, IRET 
 

 Instruction syntax 
 Intel manual Volumne 2: op dst, src 
 AT&T (gcc/gas): op src, dst 

• op uses suffix b, w, l for 8, 16, 32-bit operands 

 

18 



gcc inline assembly 

 Can embed assembly code in C code 
 Many examples in xv6 

 

 Basic syntax:  asm (“assembly code”) 

        e.g., asm ("movl %eax %ebx") 
 

 Advanced syntax: 
         asm ( assembler template  
                : output operands /* optional */  
                : input operands   /* optional */  
                : list of clobbered registers /* optional */ );  
         e.g.,  int val; 
          asm ("movl %%ebp,%0" : "=r" (val)); 

19 



gcc calling conventions 

 Args, ret addr, locals: fixed offsets from EBP 

 Saved EBPs form a chain, can walk stack 

 
20 

Prologue: 

pushl %ebp 

movl %esp, %ebp 

Epilogue: 

movl %ebp, %esp 
popl %ebp 



Example 

 21 

main() { 

  return foo(10, 20); 

} 

int foo(int x, inty) { 

  return x+y; 

} 

_main: 

  pushl %ebp 

  movl %esp, %ebp 

  pushl $20 

  pushl $10 

  call foo 

  movl %ebp, %esp //addr X 

  popl %ebp 

  ret 

 

_foo: 

  pushl %ebp 

  movl %esp, %ebp 

  movl 0xc(%ebp),%eax 

  add 0x8(%ebp),%eax 

  movl %ebp, %esp 

  popl %ebp 

  ret 

ebp 

esp 
ebp of prev func 

20(arg 2 to foo) 

10 (arg 1 to foo) 

ret addr X 

esp 

esp 

esp 

esp 

stack frame of  

prev func 

ebp 

ebp of main 
ebp esp 



gcc calling conventions (cont.) 

 %eax contains return value, %ecx, %edx may 
be trashed 
 64 bit return value: %eax + %edx 

 

 %ebp, %ebx, %esi, %edi must be as before call 

 

 Caller saved: %eax, %ecx, %edx 

 

 Callee saved: %ebp, %ebx, %esi, %edi 

22 



From C to running program 

 Compiler, assembler, linker, and loader 

23 

.c .asm 
gcc 

.o 
gas 

.c .asm 
gcc 

.o 
gas 

a.out ld 
loader 

mem 



Development using PC emulator 

 QEMU pc emulator 
 Does what a real PC does 

 Except implemented in s/w! 
 

 Run like a normal program 
on “host” OS 

24 

PC 

Linux 

PC Emulator 

xv6 



Emulator of Registers 

 

25 



Emulator of CPU logic 

 

26 



Emulation of x86 memory 

 

27 



Emulating devices 

 Hard disk: use file of the host 

 VGA display: draw in a host window 

 Keyboard: host’s keyboard API 

 Clock chip: host’s clock 

 Etc. 

 

28 



Summary 

 PC and x86 
 

 Illustrate several big ideas 
 Stored program computer 

 Stack 

 Memory-mapped I/O 

 Software = hardware 

 

29 

Next lecture 
 Processes and address spaces 

 


