
W4118: PC Hardware and x86

Junfeng Yang

A PC

How to make it do something useful?

2

Outline

 PC organization

 x86 instruction set

 gcc calling conventions

 PC emulation

3

PC board

4

PC organization

 One or more CPUs, memory, and device
controllers connected through system bus

5

Abstract model

 I/O: communicating data to and from devices

 CPU: digital logic for doing computation

 Memory: N words of B bits

6

Input

and Output

Central

Processing

Unit

Main

Memory

The stored program computer

 Memory holds both instructions and data
 CPU interprets instructions

 Instructions read/write data

7

for(;;) {

 fetch next instruction

 run next instruction

}

instruction

instruction

instruction

data

data

data

CPU
Main Memory

x86 implementation

 EIP incremented after each instruction

 Variable length instructions

 EIP modified by CALL, RET, JMP, conditional JMP

8

instruction

instruction

instruction

data

data

data

2^32-1

0

Registers: work space

 8, 16, and 32 bit versions
 Example: ADD EAX, 10

 More: SUB, AND, etc

 By convention some for
special purposes

9

ESP: stack pointer

EBP: frame base pointer

ESI: source index

EDI: destination index

EFLAGS register

 Track current CPU status

10

TEST EAX, EAX

JNZ address

Memory: more work space

 Memory instructions: MOV, PUSH, POP, etc

 Most instructions can take a memory address

11

Stack memory + operations

 For implementing function calls

 Stack grows “down” on x86

12

More memory

 8086 16-bit register and 20-bit bus addresses

 These extra 4 bits come from segment register
 CS: code segment, for IP

• Instruction address: CS * 16 + IP

 SS: stack segment, for ESP and EBP

 DS: data segment for load/store via other registers

 ES: another data segment, destination for string ops

 Make life more complicated
 Cannot directly use 16-bit stack address as pointer

 For a far pointer programmer must specify segment reg

 Pointer arithmetic and array indexing across seg bound

13

And more memory

 80386: 32 bit register and addresses (1985)

 AMD k8: 64 bit (2003)
 RAX instead of EAX

 x86-64, x64, amd64, intel64: all same thing

 Backward compatibility
 Boots in 16-bit mode; bootasm.S switches to 32

 Prefix 0x66 gets 32-bit mode instructions

• MOVW in 32-bit mode = 0x66 + MOVW in 16-bit mode

 .code32 in bootasm.S tells assembler to insert 0x66

 80386 also added virtual memory addresses

14

I/O space and instructions

 8086: only 1024 addresses

15

Memory-mapped I/O

 Use normal addresses for I/O
 No special instructions

 No 1024 limit

 Hardware routes to device

 Works like “magic” memory
 I/O device addressed and accessed like memory

 However, reads and writes have “side effects”

 Read result can change due to external events

16

Memory layout

17

Instruction classes

 Instruction classes
 Data movement: MOV, PUSH, POP, …

 Arithmetic: TEST, SHL, ADD, AND, …

 I/O: IN, OUT, …

 Control: JMP, JZ, JNZ, CALL, RET

 String: MOVSB, REP, …

 System: INT, IRET

 Instruction syntax
 Intel manual Volumne 2: op dst, src
 AT&T (gcc/gas): op src, dst

• op uses suffix b, w, l for 8, 16, 32-bit operands

18

gcc inline assembly

 Can embed assembly code in C code
 Many examples in xv6

 Basic syntax: asm (“assembly code”)

 e.g., asm ("movl %eax %ebx")

 Advanced syntax:
 asm (assembler template
 : output operands /* optional */
 : input operands /* optional */
 : list of clobbered registers /* optional */);
 e.g., int val;
 asm ("movl %%ebp,%0" : "=r" (val));

19

gcc calling conventions

 Args, ret addr, locals: fixed offsets from EBP

 Saved EBPs form a chain, can walk stack

20

Prologue:

pushl %ebp

movl %esp, %ebp

Epilogue:

movl %ebp, %esp
popl %ebp

Example

 21

main() {

 return foo(10, 20);

}

int foo(int x, inty) {

 return x+y;

}

_main:

 pushl %ebp

 movl %esp, %ebp

 pushl $20

 pushl $10

 call foo

 movl %ebp, %esp //addr X

 popl %ebp

 ret

_foo:

 pushl %ebp

 movl %esp, %ebp

 movl 0xc(%ebp),%eax

 add 0x8(%ebp),%eax

 movl %ebp, %esp

 popl %ebp

 ret

ebp

esp
ebp of prev func

20(arg 2 to foo)

10 (arg 1 to foo)

ret addr X

esp

esp

esp

esp

stack frame of

prev func

ebp

ebp of main
ebp esp

gcc calling conventions (cont.)

 %eax contains return value, %ecx, %edx may
be trashed
 64 bit return value: %eax + %edx

 %ebp, %ebx, %esi, %edi must be as before call

 Caller saved: %eax, %ecx, %edx

 Callee saved: %ebp, %ebx, %esi, %edi

22

From C to running program

 Compiler, assembler, linker, and loader

23

.c .asm
gcc

.o
gas

.c .asm
gcc

.o
gas

a.out ld
loader

mem

Development using PC emulator

 QEMU pc emulator
 Does what a real PC does

 Except implemented in s/w!

 Run like a normal program
on “host” OS

24

PC

Linux

PC Emulator

xv6

Emulator of Registers

25

Emulator of CPU logic

26

Emulation of x86 memory

27

Emulating devices

 Hard disk: use file of the host

 VGA display: draw in a host window

 Keyboard: host’s keyboard API

 Clock chip: host’s clock

 Etc.

28

Summary

 PC and x86

 Illustrate several big ideas
 Stored program computer

 Stack

 Memory-mapped I/O

 Software = hardware

29

Next lecture
 Processes and address spaces

