
W4118: OS Overview

Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Outline

 OS definitions

 OS abstractions/concepts

 OS structure

 OS evolution

2

What is OS?

 “A program that acts as an intermediary
between a user of a computer and the
computer hardware.”

OS

HW

App

User

“stuff between”

3

Two popular definitions

 Top-down perspective: hardware abstraction
layer, turn hardware into something that
applications can use

 Bottom-up perspective: resource
manager/coordinator, manage your computer’s
resources

4

OS = hardware abstraction layer

 “standard library” “OS as virtual machine”
 E.g. printf(“hello world”), shows up on screen
 App issue system calls to use OS abstractions

 Why good?
 Ease of use: higher level, easier to program
 Reusability: provide common functionality for reuse

• E.g. each app doesn’t have to write a graphics driver
 Portability / Uniformity: stable, consistent

interface, different OS/ver/hw look same
• E.g. scsi/ide/flash disks

 Why hard?
 What are the right abstractions ?

5

Two popular definitions

 Top-down perspective: hardware abstraction
layer, turn hardware into something that
applications can use

 Bottom-up perspective: resource
manager/coordinator, manage your computer’s
resources

6

OS = resource manager/coordinator

 Computer has resources, OS must manage.
 Resource = CPU, Memory, disk, device, bandwidth, …

Memory
management

File system
management

CPU
scheduling

Network
stack

OS

System Call
Interface

Hardware

Shell gcc browser ppt

Device
drivers

Disk system
management

7

OS = resource manager/coordinator
(cont.)

 Why good?
 Sharing/Multiplexing: more than 1 app/user to use

resource
 Protection: protect apps from each other, OS from

app
• Who gets what when

 Performance: efficient/fair access to resources

 Why hard? Mechanisms vs policies
 Mechanism: how to do things
 Policy: what will be done
 Ideal: general mechanisms, flexible policies

• Difficult to design right

8

Outline

 OS definitions

 OS abstractions/concepts

 OS structure

 OS evolution

9

OS abstraction: process

 Running program, stream of running
instructions + process state
 A key OS abstraction: the applications you use are

built of processes
• Shell, powerpoint, gcc, browser, …

 Easy to use
 Processes are protected from each other

• process = address space

 Hide details of CPU, when&where to run

10

Unix process-related system calls

 int fork (void)
 Create a copy of the invoking process

 Return process ID of new process in “parent”

 Return 0 in “child”

 int execv (const char* prog, const char* argv[])
 Replace current process with a new one

 prog: program to run

 argv: arguments to pass to main()

 int wait (int *status)
 wait for a child to exit

11

Simple shell

 // parse user-typed command line into command and args
…

// execute the command
switch(pid = fork ()) {
 case -1: perror (“fork”); break;
 case 0: // child
 execv (command, args, 0); break;
 default: // parent
 wait (0); break; // wait for child to terminate
 }

12

OS abstraction: file

 Array of bytes, persistent across reboot
 Nice, clean way to read and write data

 Hide the details of disk devices (hard disk, CDROM,
flash …)

 Related abstraction: directory, collection of
file entries

13

Unix file system calls

 int open(const char *path, int flags, int mode)
 Opens a file and returns an integer called a file descriptor

to use in other file system calls
 Default file descriptors

• 0 = stdin, 1 = stdout, 2 = stderr

 int write(int fd, const char* buf, size_t sz)
 Writes sz bytes of data in buf to fd at current file offset
 Advance file offset by sz

 int close(int fd)

 int dup2 (int oldfd, int newfd)
 makes newfd an exact copy of oldfd
 closes newfd if it was open
 two file descriptors will share same offset

14

Process communication: pipe

 int pipe(int fds[2])
 Creates a one way communication channel

 fds[2] is used to return two file descriptors

 Bytes written to fds[1] will be read from fds[0]

 Often used together with fork() to create a
channel between parent and child

15

xv6 shell

 sh.c

16

Outline

 OS definitions and functionalities

 OS abstractions/concepts

 OS structure

 OS evolution

17

OS structure

 OS structure: what goes into the kernel?
 Kernel: most interesting part of OS

• Privileged; can do everything must be careful

• Manages other parts of OS

 Different structures lead to different
 Performance, functionality, ease of use, security,

reliability, portability, extensibility, cost, …

 Tradeoffs depend on technology and workload

18

Monolithic

 Most traditional functionality in kernel

Unix System Architecture

19

Microkernel

 Move functionality out of kernel

Minix 3 System Architecture

20

Virtual machine

 Export a fake hardware interface so that
multiple OS can run on top

Non-virtual Machine Virtual Machine

21

Outline

 OS definitions and functionalities

 OS abstractions/concepts

 OS structure

 OS evolution

22

OS evolution

 Many outside factors affect OS

 User needs + technology changes OS must
evolve
 New/better abstractions to users

 New/better algorithms to implement abstractions

 New/better low-level implementations (hw change)

 Current OS: evolution of these things

23

Major trend in History

 Hardware: cheaper and cheaper

 Computers/user: increases

 Timeline
 70s: mainframe, 1 / organization

 80s: minicomputer, 1 / group

 90s: PC, 1 / user

24

70s: mainframe

 Hardware:
 Huge, $$$, slow

 IO: punch card, line printer

 OS
 simple library of device drivers (no resource coordination)

 Human = OS: single programmer/operator programs, runs,
debugs

 One job at a time

 Problem: poor performance (utilization / throughput)
Machine $$$, but idle most of the time because

programmer slow

25

Batch Processing

 Batch: submit group of jobs together to machine
 Operator collects, orders, runs (resource coordinator)

 Why good? can better optimize given more jobs
 Cover setup overhead

 Operator quite skilled at using machine

 Machine busy more (programmers debugging offline)

 Why bad?
 Must wait for results for long time

 Result: utilization increases, interactivity drops

26

Spooling

 Problem: slow I/O ties up fast CPU
 Input Compute Output
 Slow punch card reader and line printer

 Idea: overlap one job’s IO with other jobs’ compute

 OS functionality
 buffering, DMA, interrupts

 Good: better utilization/throughput
 Bad: still not interactive

27

Multiprogramming

 Spooling multiple jobs
 Multiprogramming

 keep multiple jobs in memory, OS
chooses which to run

 When job waits for I/O, switch

 OS functionality
 job scheduling, mechanism/policies
 Memory management/protection

 Good: better throughput
 Bad: still not interactive

28

80s: minicomputer

 Hardware gets cheaper. 1 / group

 Need better interactivity, short response time

 Concept: timesharing
 Fast switch between jobs to give impression of dedicated

machine

 OS functionality:
 More complex scheduling, memory management

 Concurrency control, synchronization

 Good: immediate feedback to users

29

90s: PC

 Even cheaper. 1 / user

 Goal: easy of use, more responsive

 Do not need a lot of stuff

 Example: DOS
 No time-sharing, multiprogramming, protection, VM

 One job at a time

 OS is subroutine again

 Users + Hardware OS functionality

30

Current trends?

 Large
 Users want more features
 More devices
 Parallel hardware
 Result: large system, millions of lines of code

 Reliability, Security
 Few errors in code, can recover from failures
 At odds with previous trend

 Small: e.g. handheld device
 New user interface
 Energy: battery life
 One job at a time. OS is subroutine again

31

Next lecture

 PC hardware and x86 programming

32

