
Have things changed now? An Empirical Study on
Input Validation Vulnerabilities in Web Applications

Theodoor Scholtea,∗, Davide Balzarottib, Engin Kirdac

aSAP Research Security & Trust, Sophia-Antipolis, France
bNetworking and Security Department, Institute Eurecom, Sophia-Antipolis, France

cCollege of Computer and Information Science, Northeastern University, Boston MA, USA

Abstract

Web applications have become important services in our daily lives. Millions
of users use web applications to obtain information, perform financial transac-
tions, have fun, socialize, and communicate. Unfortunately, web applications
are also frequently targeted by attackers. Recent data from SANS institute
estimates that up to 60% of Internet attacks target web applications.

In this paper, we perform an empirical analysis of a large number of web
vulnerability reports with the aim of understanding how input validation flaws
have evolved in the last decade. In particular, we are interested in finding out
if developers are more aware of web security problems today than they used to
be in the past. Our results suggest that the complexity of the attacks have not
changed significantly and that many web problems are still simple in nature.
Hence, despite awareness programs provided by organizations such as MITRE,
SANS Institute and OWASP, application developers seem to be either not aware
of these classes of vulnerabilities, or unable to implement effective countermea-
sures. Therefore, we believe that there is a growing need for languages and
application platforms that attack the root of the problem and secure applica-
tions by design.

Keywords: Security, Software Engineering, Web Security, Vulnerability
Study, Input Validation, Web Application

1. Introduction

The web has become part of daily life, and web applications now support
us in many of our daily activities. Unfortunately, web applications are prone to
various classes of vulnerabilities. Hence, much effort has been spent on making
web applications more secure in the past decade (e.g., [1][2][3]).

IThis document is a collaborative effort.
∗Corresponding author
Email addresses: theodoor.scholte@sap.com (Theodoor Scholte),

balzarotti@eurecom.fr (Davide Balzarotti), ek@ccs.neu.edu (Engin Kirda)

Preprint submitted to Computers & Security January 17, 2012

Organizations such as MITRE [2], SANS Institute [1] and OWASP [3] have
emphasized the importance of improving the security education and awareness
among programmers, software customers, software managers and chief infor-
mation officers. These organizations do this by means of regularly publishing
lists with the most common programming errors. Also, the security research
community has worked on tools and techniques to improve the security of web
applications. These techniques include static code analysis [4, 5, 6, 7, 8], dy-
namic tainting [9, 10, 11], combination of dynamic tainting and static analy-
sis [12], prevention by construction or by design [13, 14, 15, 16] and enforcement
mechanisms executing within the browser [17, 18, 19, 20]. Some of these tech-
niques have been commercialized and can be found in today’s development tool
sets. An example is Microsoft’s FxCop [21], which can be integrated into some
editions of Microsoft Visual Studio.

Although a considerable amount of effort has been spent by many different
stake-holders on making web applications more secure, we lack quantitative
evidence that this attention has improved the security of web applications over
time. In particular, we are interested in finding out and understanding how two
common classes of vulnerabilities, namely SQL injection and cross-site scripting,
have evolved in the last decade.

We chose to focus our study on SQL injection and cross-site scripting vul-
nerabilities as these classes of web application vulnerabilities have the same root
cause: improper sanitization of user-supplied input that results from invalid as-
sumptions made by the developer on the input of the application. Moreover,
these classes of vulnerabilities are prevalent, well-known and have been well-
studied in the past decade. Thus, it is likely that there is a sufficient number of
vulnerability reports available to allow an empirical analysis. In this paper, we
extend the work presented in [22] in which we conducted an automated analysis
with the aim of answering the following questions:

1. Do attacks become more sophisticated over time?
We automatically analyzed over 2600 vulnerabilities and found out that
the vast majority of them was not associated with any sophisticated attack
techniques. Our results suggest that the exploits do not intend to evade
any input validation, escaping or encoding defense mechanisms. More-
over, we do not observe any particular increasing trend with respect to
complexity.

2. Do well-known and popular applications become less vulnerable over time?
Our results show that an increasing number of applications have exactly
one vulnerability. Furthermore, we observe a shift from popular applica-
tions to non-popular applications with respect to SQL injection vulnera-
bilities, a trend that is, unfortunately, not true for cross-site scripting.

3. Do the most affected applications become more secure over time?
We studied in detail the ten most affected open source applications re-
sulting in two top ten lists – one for cross-site scripting and one for SQL
injection. In total, 197 vulnerabilities were associated with these applica-
tions. We investigated the difference between foundational and non foun-
dational vulnerabilities and found that the first class is decreasing over

2

time. Moreover, an average time of 4.33 years between the initial software
release and the vulnerability disclosure date suggests that many of today’s
reported cross-site scripting vulnerabilities were actually introduced into
the applications many years ago.

This paper elaborates on the work published in [22] in the following way:

1. Do the requirements for an attack become more complex?
We performed an automated analysis on a large number of cross-site script-
ing and SQL injection vulnerability reports to understand whether an at-
tacker nowadays has to meet certain criteria before performing the actual
attack – for example, whether an attacker has to be authenticated in order
to conduct an attack. Although we did observe an increase in the number
of vulnerabilities that required an attacker to fulfill some prerequisites,
this increase is not significant.

2. Do SQL injection vulnerabilities in an application come together with
cross-site scripting vulnerabilities?
We computed the correlation between applications affected by cross-site
scripting and applications affected by SQL injection vulnerabilities over
time. Interestingly, we observed a strong negative correlation which is
increasing over time.

3. Do applications become more secure with time?
We examined the reporting rates of cross-site scripting and SQL injec-
tion found in web applications. We found out that the majority of reports
about an application are reported within 2 months of each other. Further-
more, the reporting rate of cross-site scripting and SQL injection decreases
slightly when comparing the period 2006-2007 with the period 2008-2009.
This might suggest that the situation is improving.

4. Are there any long term effects of input validation vulnerabilities in web
applications?
We studied the disclosure duration of foundational and non-foundational
vulnerabilities. Our results show that the disclosure duration of founda-
tional cross-site scripting vulnerabilities is large compared to the disclosure
duration of foundational SQL injection and non foundational cross-site
scripting vulnerabilities. By measuring the average disclosure duration
over the years, we show that with time, the disclosure duration of founda-
tional cross-site scripting vulnerabilities is increasing. This suggests that
nowadays we still see the effects of cross-site scripting vulnerabilities that
were introduced many years ago.

The rest of the paper is organized as follows: The next section describes our
methodology and data gathering technique. Section 3 presents an analysis of
the SQL injection and cross-site scripting reports and their associated exploits.
In Section 4, we present the related work and then briefly conclude the paper
in Section 5.

3

2. Methodology

To be able to answer how cross-site scripting and SQL injection vulnerabili-
ties have evolved over time, it is necessary to have access to significant amounts
of vulnerability data. Hence, we had to collect and classify a large number of
vulnerability reports. Furthermore, automated processing is needed to be able
to extract the exploit descriptions from the reports. In the next sections, we
explain the process we applied to collect and classify vulnerability reports and
exploit descriptions.

2.1. Data Gathering

One major source of information for security vulnerabilities is the CVE
dataset, which is hosted by MITRE [23]. According to MITRE’s FAQ [24],
CVE is not a vulnerability database but a vulnerability identification system
that ‘aims to provide common names for publicly known problems’ such that
it allows ‘vulnerability databases and other capabilities to be linked together’.
Each CVE entry has a unique CVE identifier, a status (‘entry’ or ‘candidate’),
a general description, and a number of references to one or more external infor-
mation sources of the vulnerability. These references include a source identifier
and a well-defined identifier for searching on the source’s website. Vulnerabil-
ity information is provided to MITRE in the form of vulnerability submissions.
MITRE assigns a CVE identifier and a candidate status. After the CVE Edi-
torial Board has reviewed the candidate entry, the entry may be assigned the
‘Accept’ status.

For our study, we used the CVE data from the National Vulnerability Database
(NVD) [25] which is provided by the National Institute of Standards and Tech-
nology (NIST). In addition to CVE data, the NVD database includes the fol-
lowing information:

• Vulnerability type according to the Common Weakness Enumeration (CWE)
classification system [26].

• The name of the affected application, version numbers, and the vendor
of the application represented by Common Platform Enumeration (CPE)
identifiers [27].

• The impact and severity of the vulnerability according to the Common
Vulnerability Scoring System (CVSS) standard [28].

The NIST publishes the NVD database as a set of XML files, in the form:
nvdcve-2.0-year.xml, where year is a number from 2002 until 2010. The
first file, nvdcve-2.0-2002.xml contains CVE entries from 1998 until 2002. In
order to build timelines during the analysis, we needed to know the discovery
date, disclosure date, or the publishing date of a CVE entry. Since CVE entries
originate from different external sources, the timing information provided in the
CVE and NVD data feeds proved to be insufficient. For this reason, we fetched

4

this information by using the disclosure date from the corresponding entry in
the Open Source Vulnerability Database (OSVDB) [29].

For each candidate and accepted CVE entry, we extracted and stored the
identifier, the description, the disclosure date from OSVDB, the CWE vulner-
ability classification, the CVSS scoring, the affected vendor/product/version
information, and the references to external sources. Then, we used the refer-
ences of each CVE entry to retrieve the vulnerability information originating
from the various external sources. We stored this website data along with the
CVE information for further analysis.

2.2. Vulnerability Classification

Since our study focuses particularly on cross-site scripting and SQL injection
vulnerabilities, it is essential to classify the vulnerability reports. As mentioned
in the previous section, the CVE entries in the NVD database are classified
according to the Common Weakness Enumeration classification system. CWE
aims to be a dictionary of software weaknesses. NVD uses only a small subset
of 19 CWEs for mapping CVEs to CWEs, among those are cross-site scripting
(CWE-79) and SQL injection (CWE-89).

Although NVD provides a mapping between CVEs and CWEs, this map-
ping is not complete and many CVE entries do not have any classification at all.
For this reason, we chose to perform a classification which is based on both the
CWE classification and on the description of the CVE entry. In general, we ob-
served that a CVE description is formatted according to the following pattern:
{description of vulnerability} {location description of the vulnerability} allows
{description of attacker} {impact description}. Thus, the CVE description in-
cludes the vulnerability type.

For fetching the cross-site scripting related CVEs out of the CVE data, we
selected the CVEs associated with CWE identifier ‘CWE-79’. Then, we added
the CVEs having the text ‘cross-site scripting’ in their description by performing
a case-insensitive query. Similarly, we classified the SQL injection related CVEs
by using the CWE identifier ‘CWE-89’ and the keyword ‘SQL injection’.

2.3. The Exploit Data Set

To acquire a general view on the security of web applications, we are not only
interested in the vulnerability information, but also in the way each vulnerability
can be exploited. Some external sources of CVEs that provide information con-
cerning cross-site scripting or SQL injection-related vulnerabilities also provide
exploit details. Often, this information is represented by a script or an attack
string.

An attack string is a well-defined reference to a location in the vulnerable
web application where code can be injected. The reference is often a complete
URL that includes the name of the vulnerable script, the HTTP parameters,
and some characters to represent the placeholders for the injected code. In
addition to using placeholders, sometimes, real examples of SQL or Javascript
code may also be used. Two examples of attack strings are:

5

0

1000

2000

3000

4000

5000

6000

7000

8000

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

Total Number of Vulnerabili!es Number of SQL Injec!on CVEs

Number of XSS CVEs Number of Buffer Overflow CVEs

(a) Vulnerability trends in numbers

0

5

10

15

20

25

30

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

Percentage of SQL Injec!on CVEs Percentage of XSS CVEs

Percentage of Buffer Overflow CVEs

(b) Vulnerability trends in percentages

Figure 1: Buffer overflow, cross-site scripting and SQL injection vulnerabilities
over time

http://[victim]/index.php?act=delete&dir=&file=[XSS]

http://[victim]/index.php?module=subjects&func=viewpage&pageid=[SQL]

At the end of each line, note the placeholders that can be substituted with
arbitrary code by the attacker.

The similar structure of attack strings allows our tool to automatically ex-
tract, store and analyze the exploit format. Hence, we extracted and stored all
the attack strings associated with both cross-site scripting and the SQL injection
CVEs.

3. Analysis of the Vulnerabilities Trends

The first question we wish to address in this paper is whether the num-
ber of SQL injection and cross-site scripting vulnerabilities reported in web
applications has been decreasing in recent years. To answer this question, we
automatically analyzed the 39,081 entries in the NVD database from 1998 to
20091. We had to exclude 1,301 CVE entries because they did not have a cor-
responding match in the OSVDB database and, as a consequence, did not have
a disclosure date associated with them. For this reason, these CVE entries are
not taken into account for the rest of our study. Of the remaining vulnerabil-
ity reports, we identified a total of 5349 buffer overflow entries, 5413 cross-site
scripting entries and 4825 SQL injection entries.

Figure 1a shows the number of vulnerability reports over time and figure 1b
shows the percentage of reported vulnerabilities over the total CVE entries.

Our first expectation based on intuition was to observe that the number
of reported vulnerabilities follow a classical bell shape, beginning with a slow

1At the time of our study, a full vulnerability dataset of 2010 was not available. Hence,
our study does not cover 2010.

6

0

10

20

30

40

50

60

70

2004 2005 2006 2007 2008 2009

Remote Authen!cated A"acker

The User has to be tricked into doing

something

(a) cross-site scripting

0

1

2

3

4

5

6

7

8

2004 2005 2006 2007 2008 2009

Remote Authen!cated A"acker

PHP's Magic Quotes Func!onality

Disabled

(b) SQL injection

Figure 2: Prerequisites for successful attacks (in percentages)

start when the vulnerabilities are still relatively unknown, then a steep increase
corresponding to the period in which the attacks are disclosed and studied,
and finally a decreasing phase when the developers start adopting the required
countermeasures. In fact, the graphs show an initial phase (2002-2004) with
very few reports about cross-site scripting and SQL injection vulnerabilities and
many reports about buffer overflow vulnerabilities. This phase is followed by a
steep increase in input validation vulnerability reports in the years 2004, 2005
and 2006 and overtakes the number of Buffer Overflow vulnerability reports.
Note that this trend is consistent with historical developments. Web security
started increasing in importance after 2004, and the first XSS-based worm was
discovered in 2005 (i.e., “Samy Worm” [30]). Hence, web security threats such
as cross-site scripting and SQL injection started receiving more focus after 2004
and, in the meantime, these threats have overtaken buffer overflow problems.
Unfortunately, the number of reported cross-site scripting and SQL injection
vulnerabilities has not significantly decreased since 2006. In other words, the
number of cross-site scripting and SQL injection vulnerabilities found in 2009
is comparable with the number reported in 2006. In the rest of this section, we
will formulate and verify a number of hypotheses to explain the possible reasons
behind this phenomenon.

3.1. Attack Sophistication

Hypothesis 1. Simple, easy-to-find vulnerabilities have now been replaced by
complex vulnerabilities that require more sophisticated attacks.

The first hypothesis we wish to verify is whether the overall number of vul-
nerabilities is not decreasing because the simple vulnerabilities discovered in
the early years have now been replaced by new ones that involve more complex
attack scenarios. In particular, we are interested in finding out whether the
prerequisites for an attack have changed over time. We were inspired by bug

7

0%

20%

40%

60%

80%

100%

2005 2006 2007 2008 2009

Percentage of XSS CVEs with simple a!ack strings

Percentage of XSS CVEs with complex a!ack strings

(a) cross-site scripting

0%

20%

40%

60%

80%

100%

2005 2006 2007 2008 2009

Percentage of SQLI CVEs with simple a!ack strings

Percentage of SQLI CVEs with complex a!ack strings

(b) SQL injection

Figure 3: Exploit complexity over time

reports corresponding to the vulnerabilities to look at the prerequisites for at-
tacks. By investigating the bug reports of web applications, we found out that
in some of these cases, software developers are aware of a vulnerability but are
unwilling to fix it because the vulnerability is only exploitable in certain scenar-
ios and the risk is minimal. One example of such a scenario is a vulnerability
in the administration interface of a web application which is only expoitable by
an administrator. Moreover, some vulnerabilities are only exploitable when the
user is tricked into performing some action via a phishing attack, for example.
Software developers may also decide not to fix SQL injection vulnerabilities if
certain configuration settings can prevent them.

To determine the prerequisites for successful attacks, we searched for par-
ticular phrases in the descriptions of the CVE entries. For cross-site scripting
vulnerabilities, we looked at the occurrence of the following phrases:

• ‘remote authenticated’ to identify whether the attacker needs to be au-
thenticated.

• ‘trick’, ‘tricked’, ‘tricking’, ‘crafted link’, ‘crafted url’, ‘malicious url’, ‘ma-
licious link’, ‘malicious website’, ‘crafted website’, ‘malicious email’, ‘mali-
cious e-mail’, ‘crafted email’, ‘crafted e-mail’, ‘malicious message’, ‘crafted
message’ to identify whether the attacker needs to deceive the victim into
performing some action.

For SQL injection vulnerabilities, we looked for occurrence of the following
keywords:

• ‘remote authenticated’ to identify whether the attacker needs to be au-
thenticated.

• ‘without magic quotes gpc enabled’, ‘magic quotes gpc is disabled’ to de-
termine whether disabling PHP’s magic quotes functionality allows a SQL
injection attack.

8

Figures 2a and 2b plot the percentage of vulnerabilities requiring the given
prerequisite over the total number of cross-site scripting or SQL injection vul-
nerabilities in the given year, respectively. Figure 2a suggests that at least 50
percent of the cross-site scripting vulnerabilities require some involvement from
the victim. We observe that since 2005, there has been a slight increase of
SQL injection vulnerabilities that can only be exploited when the controversial
magic quotes feature is disabled. This trend is consistent with PHP’s devel-
opment roadmap, which intends to deprecate the feature in PHP version 5.3.0
and remove it in version 6.0. Another trend we observed is a slight increase in
vulnerabilities that require an attacker to be authenticated. Although the trend
is not significant, it may suggest that developers have started to pay attention
to the security of functionality accessible by everyone but fail to secure the
functionality used by (website) administrators. Since the trends on prerequi-
sites are not significant, we do not consider them as being the reason behind the
steadily increasing input validation vulnerabilities trends. We are also interested
in discovering whether the complexity of exploits has increased. Our purpose
in doing this is to identify those cases in which the application developers were
aware of threats but implemented insufficient, easy-to-evade sanitization rou-
tines. In these cases, an attacker has to craft the malicious input more carefully
or has to perform certain input transformations (e.g., uppercase or character
replacement).

One way to determine the “complexity” of an exploit is to analyze the attack
string and to look for evidence of possible evasion techniques. As mentioned in
Section 2.3, we automatically extract the exploit code from the data provided by
external vulnerability information sources. Sometimes, these external sources
do not provide exploit information for every reported cross-site scripting or SQL
injection vulnerability, do not provide exploit information in a parsable format,
or do not provide any exploit information at all. As a consequence, not all CVE
entries can be associated with an attack string. On the other hand, in some cases,
there exist several ways of exploiting a vulnerability, and, therefore, many attack
strings may be associated with a single vulnerability report. In our experiments,
we collected attack strings for a total of 2632 distinct vulnerabilities.

To determine the exploit complexity, we looked at several characteristics
that may indicate an attempt from the attacker to evade some form of input
sanitization. The selection of the characteristics is inspired by so-called injection
cheat sheets that are available on the Internet [31][32].

In particular, we classify a cross-site scripting attack string as complex (in
contrast to simple) if it contains one or more of the following characteristics:

• Different cases are used within the script tags (e.g., ScRiPt).

• The script tags contain one or more spaces (e.g., < script>)

• The attack string contains ‘landingspace-code’ which is the set of at-
tributes of HTML-tags (e.g., onmouseover, or onclick)

• The string contains encoded characters (e.g.,))

9

• The string is split over multiple lines

For SQL injection attack strings, we looked at the following characteristics:

• The use of comment specifiers (e.g., /**/) to break a keyword

• The use of encoded single quotes (e.g., ‘%27’, ‘'’; ‘'’, ‘Jw==’)

• The use of encoded double quotes (e.g., ‘%22’, ‘"’, ‘"’, ‘Ig==’)

If none of the previous characteristics is present, we classify the exploit as
“simple”. Figures 3a and 3b show the percentage of CVEs having one or more
complex attack strings2. The graphs show that the majority of the available
exploits are, according to our definition, not sophisticated. In fact, in most of
the cases, the attacks were performed by injecting the simplest possible string,
without requiring any tricks to evade input validation.

Interestingly, while we observe a slight increase in the number of SQL in-
jection vulnerabilities with sophisticated attack strings, we do not observe any
significant increase in cross-site scripting attack strings. This may be a first
indication that developers are now adopting (unfortunately insufficient) defense
mechanisms to prevent SQL injection, but that they are still failing to sanitize
the user input to prevent cross-site scripting vulnerabilities.

To conclude, the available empirical data suggests that increased attack com-
plexity is not the reason behind the steadily increasing number of vulnerability
reports.

3.2. Application Popularity

Since complexity does not seem to explain the increasing number of reported
vulnerabilities, we decided to focus on the type of applications. We started by
extracting vulnerable application and vendor names from a total of 8854 SQL
injection and cross-site scripting vulnerability reports in the NVD database that
are associated to one or more CPE identifiers. Figures 4a and 4b plot the number
of applications and vendors that are affected by a certain number of vulnera-
bilities over time. Both graphs clearly show how the increase in the number of
vulnerabilities is a direct consequence of the increasing number of vulnerable
applications and their vendors. In fact, the number of web applications with
more than one vulnerability report over the whole time frame is quite low, and
it has been slightly decreasing since 2006.

Since cross-site scripting and SQL injection vulnerabilities have the same
root cause, it is interesting to investigate whether there is a relationship between
the occurrence of the two types of vulnerabilities in web applications. This gives
an answer to the question whether a developer who fails to implement counter-
measures against SQL injection also fails to implement countermeasures against

2The graph starts from 2005 because there were less than 100 vulnerabilities having exploit
samples available before that year. Hence, results before 2005 are statistically less significant.

10

0

200

400

600

800

1000

1200

1400

2002 2003 2004 2005 2006 2007 2008 2009

XSS vulnerability reports

Applica!ons with 1 XSS vulnerability report

Applica!ons with 2 XSS vulnerability reports

Applica!ons with 3 or more XSS vulnerability reports

Vendors with 1 or more XSS vulnerability reports

(a) cross-site scripting affected applications

0

200

400

600

800

1000

1200

1400

1600

2002 2003 2004 2005 2006 2007 2008 2009

SQLI vulnerability reports

Applica!ons with 1 SQLI vulnerability report

Applica!ons with 2 SQLI vulnerability reports

Applica!ons with 3 or more SQLI vulnerability reports

Vendors with 1 or more SQLI vulnerability reports

(b) SQL injection affected applications

Figure 4: The number of affected applications over time

cross-site scripting. In order to answer this question, we measured the corre-
lation between cross-site scripting and SQL injection vulnerabilities. Although
correlation cannot be used to infer a causal relationship between SQL injection
and cross-site scripting vulnerabilities, it can indicate the potential existence of
this causal relationship. Figure 5 shows the correlation between applications
affected by both cross-site scripting and SQL injection vulnerabilities. More
specifically, we measured the number of applications affected by both types of
vulnerabilities (Figure 5a) and the correlation coefficient over time (Figure 5b).
Figure 5b plots ρ(X,Y) with X = 0 or 1 indicating whether the application was
affected by a cross-site scripting vulnerability and Y = 0 or 1 indicating whether
the application was affected by an SQL injection vulnerability. The graph shows
a strong negative correlation, meaning that the occurrence of cross-site scripting
vulnerabilities is correlated with an absence of SQL injection vulnerabilities in
an application. As Figure 5b shows, the negative correlation tends to become
stronger over time. This might indicate that developers are aware of imple-
menting countermeasures against SQL injection but fail to do so for cross-site
scripting vulnerabilities.

Based on these findings, we formulated our second hypothesis:

Hypothesis 2. Popular applications are now more secure while new vulnera-
bilities are discovered in new, less popular, applications.

The idea behind this hypothesis is to test whether more vulnerabilities were
reported about well-known, popular applications in the past than are today.
That is, do vulnerability reports nowadays tend to concentrate on less popular,
or recently developed applications?

11

0

200

400

600

800

1000

1200

2004 2005 2006 2007 2008 2009

Number of applica!ons having 1 or more SQLI vulnerabili!es

Number of applica!ons having 1 or more XSS vulnerabili!es

Number of applica!ons having both types of vulnerabili!es disclosed

in the given year

(a) The number of applications over time

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

2004 2005 2006 2007 2008 2009

Correla on between XSS affected applica ons and SQLI affected

applica ons

(b) Correlation coefficient over time

Figure 5: Applications having cross-site scripting and SQL injection Vulnera-
bilities over time

The first step in exploring this hypothesis consists of determining the pop-
ularity of these applications in order to be able to understand if it is true that
popular products are more aware of (and therefore less vulnerable to) cross-site
scripting and SQL injection attacks.

We determined the popularity of applications through the following process:

1. Using Google Search, we performed a search on the vendor and application
names within the Wikipedia domain.

2. When one of the returned URLs contained the name of the vendor or the
name of the application, we flagged the application as being ‘popular’.
Otherwise, the application was classified as being ‘unpopular’.

3. Finally, we manually double-checked the list of popular applications in
order to make sure that the corresponding Wikipedia entries described
software products and not something else (e.g., when the product name
also corresponded to a common English word).

After the classification, we were able to identify 676 popular and 2573 unpop-
ular applications as being vulnerable to cross-site scripting. For SQL injection,
we found 328 popular and 2693 unpopular vulnerable applications. Figure 6
shows the percentages of popular applications associated with one or more vul-
nerability reports. The trends support the hypothesis that SQL injection vul-
nerabilities are indeed moving toward less popular applications – maybe as a
consequence of the fact that well-known products are more security-aware. Un-
fortunately, according to Figure 6a, the same hypothesis is not true for cross-site
scripting: in fact, the ratio of well-known applications vulnerable to cross-site
scripting has been relatively constant in the past six years.

12

0%

20%

40%

60%

80%

100%

2004 2005 2006 2007 2008 2009

Percentage of Vulnerable Applica!ons being Not Popular

Percentage of Vulnerable Popular Applica!ons being Popular

(a) cross-site scripting

0%

20%

40%

60%

80%

100%

2004 2005 2006 2007 2008 2009

Percentage of Vulnerable Applica!ons being Not Popular

Percentage of Vulnerable Applica!ons being Popular

(b) SQL injection

Figure 6: Vulnerable applications and their popularity over time

Even though the empirical evidence also does not support our second hy-
pothesis, we noticed one characteristic that is common to both types of vulner-
abilities: as shown in Figures shown in Figures 7a and 7b, popular applications
typically have a higher number of reported vulnerabilities. There may be many
possible reasons to explain this. For example, one possible explanation might
be that popular applications are more frequently targeted by attackers, as the
application has more impact on potential victims and thus more vulnerabili-
ties are being reported. Another possible explanation could be that developers
of popular applications are more security aware or that these applications are
better analyzed. Hence, the application meets higher security standards.

The results, shown in Figures 7a and 7b, suggest that it would be useful to
investigate how these vulnerabilities have evolved in the lifetime of the applica-
tions.

3.3. Application and Vulnerability lifetime

So far, we determined that a constant, large number of simple, easy-to-
exploit vulnerabilities are still found in many web applications today. Also, we
determined that the high number of reports is driven by an increasing number
of vulnerable applications and not by a small number of popular applications.
Based on these findings, we formulate our third hypothesis:

Hypothesis 3. Even though the number of reported vulnerable applications is
growing, each application is becoming more secure over time.

This hypothesis is important, because, if true, it would mean that web ap-
plications (the well-known products in particular) are becoming more secure.
To verify this hypothesis, we studied the frequency of vulnerability reports of
applications affected by cross-site scripting and SQL injection vulnerabilities.

13

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 or

more

Popular Applica!ons Not Popular Applica!ons

(a) cross-site scripting

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 or

more

Popular Applica!ons Not Popular Applica!ons

(b) SQL injection

Figure 7: Popularity of applications across the distribution of the number of
vulnerability reports

One way to examine the security of an application is to measure the rate at
which vulnerabilities are being reported. The frequency of vulnerability reports
about an application can be estimated by measuring the time between them.
We applied an analogous metric from reliability engineering, the time between-
failures (TBF), by defining a vulnerability report as a failure. Figures 8a and
Figure 8b plot the reporting rates of cross-site scripting vulnerabilities and SQL
injection vulnerabilities, respectively. The graphs clearly show a steep increase
in the reporting rates between 2002 and 2007 and a slight decrease after 2007.
In order to verify the hypothesis more precisely, it is also necessary to look at
the duration or lifetime of cross-site scripting and SQL injection vulnerabilities.
We studied the lifetimes of cross-site scripting and SQL injection vulnerabili-
ties in the ten most-affected open source applications according to the NIST
NVD database. By analyzing the change logs for each application, we extracted
the version in which a vulnerability was introduced and the version in which a
vulnerability was fixed. In order to obtain reliable insights into the vulnerabil-
ity’s lifetime, we excluded vulnerability reports that were not confirmed by the
respective vendor. For our analysis, we used the CPE identifiers in the NVD
database, the external vulnerability sources, the vulnerability information pro-
vided by the vendor. We also extracted information from the version control
systems (CVS, or SVN) of the different products.

Table 1a and Table 1b show a total of 147 cross-site scripting and 52 SQL
injection vulnerabilities in the most affected applications. The tables distin-
guish between foundational and non-foundational vulnerabilities. Foundational
vulnerabilities are vulnerabilities that were present in the first version of an ap-
plication, while non-foundational vulnerabilities were introduced after the initial
release.

14

0

50

100

150

200

250

300

350

0 - 60 61 -

120

121 -

180

181 -

240

241 -

300

301 -

360

361 -

420

421 -

480

481 -

540

541 -

600

601 -

660

661 -

720

Number of Reports in 2002 - 2003 Number of Reports in 2004 - 2005

Number of Reports in 2006 - 2007 Number of Reports in 2008 - 2009

days elapsed since

last vulnerability

disclosure

(a) cross-site scripting

0

20

40

60

80

100

120

140

160

180

0 - 60 61 -

120

121 -

180

181 -

240

241 -

300

301 -

360

361 -

420

421 -

480

481 -

540

541 -

600

601 -

660

661 -

720

Number of Reports in 2003-2004 Number of Reports in 2004-2005

Number of Reports in 2006-2007 Number of Reports in 2008-2009

days elapsed since last

vulnerability

disclosure

(b) SQL injection

Figure 8: Reporting rate of vulnerabilities

We observed that 39% of the cross-site scripting vulnerabilities are founda-
tional and 61% are non-foundational. For SQL injection, these percentages are
42% and 58%. These results suggest that most of the vulnerabilities are intro-
duced by new functionality that is built into new versions of a web application.

Finally, we investigated how long it took to discover the vulnerabilities. Fig-
ure 9a and Figure 9b plot the number of vulnerabilities that were disclosed after
a certain amount of time had elapsed after the initial release of the applications.
The graphs show that most SQL injection vulnerabilities are usually discovered
in the first few years after the release of the product. For cross-site scripting
vulnerabilities, the result is quite different. Many foundational vulnerabilities
are disclosed even 10 years after the code was initially released. This observation
suggests that it is very problematic to find foundational cross-site scripting vul-
nerabilities compared to SQL injection vulnerabilities. This is supported by the
fact that the average elapsed time between the software release and the disclo-
sure of foundational vulnerabilities is 2 years for SQL injection vulnerabilities,

15

Foundational Non-Foundational

bugzilla 4 7
drupal 0 22
joomla 5 4

mediawiki 3 21
mybb 9 2

phorum 3 5
phpbb 4 2

phpmyadmin 14 13
squirrelmail 10 4
wordpress 6 9

Total 58 89

(a) cross-site scripting

Foundational Non-Foundational

bugzilla 1 8
coppermine 1 3

e107 0 3
joomla 4 0
moodle 0 3
mybb 9 3

phorum 0 4
phpbb 3 0
punbb 4 2

wordpress 0 4

Total 22 30

(b) SQL injection

Table 1: Foundational and non-foundational vulnerabilities in the ten most af-
fected open source web applications

Vulnerable applications reporting about scripts: 1871
Vulnerable scripts: 2499
Average (vulnerable scripts / applications): 1.34

Vulnerable applications reporting about parameters: 1905
Vulnerable parameters: 9304
Average (vulnerable parameters / applications): 4.88

(a) cross-site scripting

Vulnerable applications reporting about scripts: 2759
Vulnerable scripts: 3548
Average (vulnerable scripts / applications): 1.29

Vulnerable applications reporting about parameters: 1902
Vulnerable parameters: 6556
Average (vulnerable parameters / applications): 3.45

(b) SQL injection

Table 2: The attack surface

while for cross-site scripting this value is 4.33 years.
Figures 10a and 10b plot the average elapsed time between software release

and the disclosure of vulnerabilities over time. These results show that cross-site
scripting vulnerabilities are indeed harder to find than SQL injection vulnera-
bilities and that foundational cross-site scripting vulnerabilities become even
more difficult to find over time. Also note, that there are no foundational SQL
injection vulnerabilities reported in 2009.

We believe that difference between cross-site scripting and SQL injection
vulnerabilities concerning the lifetime is caused by the fact that the attack
surface for SQL injection attacks is much smaller when compared with cross-
site scripting attacks. Therefore, it is interesting to further investigate the size
of the attack surface of vulnerable applications.

From the CVE descriptions, we extracted the scripts and parameters that
are vulnerable to cross-site scripting or SQL injection and we counted them.

16

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Disclosure Dura!on of Founda!onal XSS Vulnerabili!es

Disclosure Dura!on of Non-Founda!onal XSS Vulnerabili!es

(a) cross-site scripting

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Disclosure Dura!on of Founda!onal SQLI Vulnerabili!es

Disclosure Dura!on of Non-Founda!onal SQLI

Vulnerabili!es

(b) SQL injection

Figure 9: Time elapsed between software release and vulnerability disclosure in
years.

By measuring the average number of vulnerable scripts and parameters per ap-
plication for both cross-site scripting and SQL injection vulnerabilities, we get
insights into the size of the attack surface. Tables 2a and 2b show the number
of applications that are associated with vulnerabilities related to the affected
scripts and/or parameters for cross-site scripting and SQL injection vulnerabil-
ities, respectively. In addition, the number of affected scripts and parameters
is shown. We observe that the average number of vulnerable scripts and pa-
rameters per application is indeed larger for cross-site scripting vulnerabilities
than for SQL injection vulnerabilities. Thus, the results confirm the intuition
that the difference in vulnerability lifetime between cross-site scripting and SQL
injection vulnerabilities is caused by the size of the attack surface. We believe
that the attack surface of SQL injection vulnerabilities is smaller because it is
easier for developers to identify (and protect) all the sensitive entry points in
the code (e.g. code concerning database access) of the web application than for
cross-site scripting vulnerabilities.

4. Threats to Validity

The vulnerability classification and analysis on vulnerability complexity is
based on static lexical matching. Identifying and analyzing vulnerabilities by
searching for combinations of keywords can be difficult because of the possibility
of having vulnerability reports containing semantically equivalent but lexically
divergent expressions for the same concepts. Moreover, languages do change
over time. Neologisms may be accepted and after a period of time these are
succeeded by other terms. Both phenomena skew data and might impact the
results of our analysis.

In order to get a better understanding of the impact on our analysis, we
measured the number of cross-site scripting and SQL injection vulnerabilities

17

0

2

4

6

8

10

2004 2005 2006 2007 2008 2009

Average disclosure dura!on of founda!onal XSS

vulnerabili!es

Average disclosure dura!on of non-founda!onal XSS

vulnerabili!es

(a) cross-site scripting

0

0,5

1

1,5

2

2,5

3

3,5

4

2004 2005 2006 2007 2008 2009

Average disclosure dura!on of founda!onal SQLI

vulnerabili!es

Average disclosure dura!on of non-founda!onal SQLI

vulnerabili!es

(b) SQL injection

Figure 10: Average duration of vulnerability disclosure in years over time

that are incorrectly classified as cross-site scripting or SQL injection vulnera-
bilities (false positive rate). The false positive rate was measured by manually
analyzing a sample of 50 vulnerabilities for each year between 2002 and 2009.
In total, we manually analyzed 358 cross-site scripting vulnerabilities and 324
SQL injection vulnerabilities. This sample represents 6.6 % and 6.7 % of the
cross-site scripting and SQL injection classified vulnerabilities, respectively.

In the sample, we found 10 false positives for cross-site scripting vulnerabil-
ities (2,8 %) and 7 false positives for SQL injection (2,2 %). While manually
analyzing the vulnerabilities, we did not find any evidence that the keywords we
searched for in the vulnerability complexity analysis were used in other contexts
than in the contexts we were looking for. Thus, our vulnerability classification
and complexity analysis did not result in a significant number of false positives.

Since the NVD dataset is a large dataset, we were unable to perform a
manual analysis to measure the false negative rate – that is, the number of
vulnerabilities that could not be classified as cross-site scripting or SQL injection
vulnerability. Some of the main causes are the lexically divergent expressions
for the same concepts and/or language evolution. We expect that the false
positives are likely to occur more often in earlier years than in recent years,
as the language to describe cross-site scripting and SQL injection vulnerability
reports becomes more regular over the years.

5. Related Work

Our work is not the first study of vulnerability trends based on CVE data.
In [33], Christey et al. present an analysis of CVE data covering the period
2001 - 2006. The work is based on manual classification of CVE entries using
the CWE classification system. In contrast, [34] uses an unsupervised learn-
ing technique on CVE text descriptions and introduces a classification system

18

called ‘topic model’. While the works of Christey et al. and Neuhaus et al. fo-
cus on analysing general trends in vulnerability databases, our work specifically
focuses on web application vulnerabilities, and, in particular, cross-site scripting
and SQL injection. We have investigated the reasons behind the trends.

Clark et al. present in [35] a vulnerability study with a focus on the early
existence of a software product. The work demonstrates that re-use of legacy
code is a major contributor to the rate of vulnerability discovery and the number
of vulnerabilities found. In contrast to our work, the paper does not focus
on web applications, and it does not distinguish between particular types of
vulnerabilities.

Another large-scale vulnerability analysis study was conducted by Frei et
al. [36]. The work focuses on zero-day exploits and shows that there has been a
dramatic increase in such vulnerabilities. Also, the work shows that there is a
faster availability of exploits than of patches.

In [37], Li et al. present a study on how the number of software defects
evolve over time. The data set of the study consists of bug reports of two Open
Source software products that are stored in the Bugzilla database. The authors
show that security-related bugs are becoming increasingly important over time
in terms of absolute numbers and relative percentages. However, they do not
consider web applications.

Ozment et al. [38] studied how the number of security issues relate to the
number of code changes in OpenBSD. The study shows that 62 percent of the
vulnerabilities are foundational ; they were introduced prior to the release of the
initial version and have not been altered since. The rate at which foundational
vulnerabilities are reported is decreasing, somehow suggesting that the security
of the same code is increasing. In contrast to our study, Ozment el al.’s study
does not consider the security of web applications.

To the best of our knowledge, we present the first vulnerability study that
takes a closer, detailed look at how two popular classes of web vulnerabilities
have evolved over the last decade.

6. Discussion and Conclusion

Our findings in this study show that the complexity of cross-site scripting
and SQL injection attacks related to the vulnerabilities in the NVD database
has not been increasing. Neither the prerequisites to attacks nor the complex-
ity of exploits have changed significantly. Hence, this finding suggests that the
majority of vulnerabilities are not due to sanitization failure, but rather due
to the absence of input validation. Despite awareness programs provided by
MITRE [23], SANS Institute [1] and OWASP [3], application developers are
still not implementing effective countermeasures. Furthermore, our study sug-
gests that a major reason why the number of web vulnerability reports has not
been decreasing is because many more applications of different vendors are now
vulnerable to flaws such as cross-site scripting and SQL injection. Although
cross-site scripting and SQL injection vulnerabilities share the same root cause,

19

we could not find any significant correlation between applications affected by
cross-site scripting and by SQL injection vulnerabilities. In fact, the small neg-
ative correlation tends to become stronger. By measuring the popularity of the
applications, we observed a trend that SQL injection vulnerabilities occur more
often in an increasing number of unpopular applications.

Finally, when analyzing the most affected applications, we observe that years
after the initial release of an application, cross-site scripting vulnerabilities con-
cerning the initial release are still being reported. Note that this is in contrast
to SQL injection vulnerabilities. By measuring the attack surface of cross-site
scripting and SQL injection vulnerabilities, we found out that the attack sur-
face of SQL injection vulnerabilities is much smaller than for cross-site scripting
vulnerabilities. Hence, SQL injection problems may be easier to find because
only a relatively small part of the application’s code is used for database access.

The empirical data we collected and analyzed for this paper supports the
general intuition that web developers consistently fail to secure their applica-
tions. The traditional practice of writing applications and then testing them for
security problems (e.g., static analysis, blackbox testing, etc.) does not seem
be working well in practice. Hence, we believe that more research is needed in
securing applications by design. That is, the developers should not be concerned
with problems such as cross-site scripting or SQL injection. Rather, the pro-
gramming language or the platform should make sure that the problems do not
occur when developers produce code (e.g., similar to solutions such as in [15] or
managed languages such as C# or Java that prevent buffer overflow problems).

References

[1] R. Dhamankar, M. Dausin, M. Eisenbarth, J. King, The top cyber security
risks, http://www.sans.org/top-cyber-security-risks/ (2009).

[2] B. Martin, M. Brown, A. Paller, D. Kirby, 2010 cwe/sans top 25 most
dangerous software errors, http://cwe.mitre.org/top25/ (2010).

[3] OWASP, Owasp top 10 - 2010, the ten most critical web application security
risks (2010).

[4] N. Jovanovic, C. Kruegel, E. Kirda, Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper), in: SP ’06:
Proceedings of the 2006 IEEE Symposium on Security and Privacy,
IEEE Computer Society, Washington, DC, USA, 2006, pp. 258–263.
doi:http://dx.doi.org/10.1109/SP.2006.29.

[5] V. B. Livshits, M. S. Lam, Finding security errors in Java programs with
static analysis, in: Proceedings of the 14th Usenix Security Symposium,
2005, pp. 271–286.

[6] G. Wassermann, Z. Su, Sound and Precise Analysis of Web Applications
for Injection Vulnerabilities, in: Proceedings of the ACM SIGPLAN 2007

20

Conference on Programming Language Design and Implementation, ACM
Press New York, NY, USA, San Diego, CA, 2007.

[7] G. Wassermann, Z. Su, Static Detection of Cross-Site Scripting Vulnera-
bilities, in: Proceedings of the 30th International Conference on Software
Engineering, ACM Press New York, NY, USA, Leipzig, Germany, 2008.

[8] Y. Xie, A. Aiken, Static detection of security vulnerabilities in scripting lan-
guages, in: USENIX-SS’06: Proceedings of the 15th conference on USENIX
Security Symposium, USENIX Association, Berkeley, CA, USA, 2006.

[9] J. Newsome, D. X. Song, Dynamic taint analysis for automatic detection,
analysis, and signaturegeneration of exploits on commodity software, in:
NDSS, The Internet Society, 2005.

[10] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, D. Evans, Auto-
matically hardening web applications using precise tainting, in: R. Sasaki,
S. Qing, E. Okamoto, H. Yoshiura (Eds.), SEC, Springer, 2005, pp. 295–
308.

[11] T. Pietraszek, C. V. Berghe, Defending against injection attacks through
context-sensitive string evaluation, in: A. Valdes, D. Zamboni (Eds.),
RAID, Vol. 3858 of Lecture Notes in Computer Science, Springer, 2005,
pp. 124–145.

[12] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda, G. Vigna, Cross
site scripting prevention with dynamic data tainting and static analysis, in:
In Proceedings of 14th Annual Network and Distributed System Security
Symposium (NDSS 2007), 2007.

[13] M. Johns, C. Beyerlein, R. Giesecke, J. Posegga, Secure code generation
for web applications, in: F. Massacci, D. S. Wallach, N. Zannone (Eds.),
ESSoS, Vol. 5965 of Lecture Notes in Computer Science, Springer, 2010,
pp. 96–113.

[14] B. Livshits, U. Erlingsson, Using web application construction frame-
works to protect against code injection attacks, in: PLAS ’07: Pro-
ceedings of the 2007 workshop on Programming languages and anal-
ysis for security, ACM, New York, NY, USA, 2007, pp. 95–104.
doi:http://doi.acm.org/10.1145/1255329.1255346.

[15] W. Robertson, G. Vigna, Static enforcement of web application integrity
through strong typing, in: Proceedings of the 18th conference on USENIX
security symposium, USENIX Association, 2009, pp. 283–298.

[16] D. Yu, A. Chander, H. Inamura, I. Serikov, Better abstractions for secure
server-side scripting, in: WWW ’08: Proceeding of the 17th international
conference on World Wide Web, ACM, New York, NY, USA, 2008, pp.
507–516. doi:http://doi.acm.org/10.1145/1367497.1367566.

21

[17] D. Bates, A. Barth, C. Jackson, Regular expressions considered harmful in
client-side xss filters, in: WWW ’10: Proceedings of the 19th international
conference on World wide web, ACM, New York, NY, USA, 2010, pp. 91–
100. doi:http://doi.acm.org/10.1145/1772690.1772701.

[18] T. Jim, N. Swamy, M. Hicks, Defeating script injection attacks with
browser-enforced embedded policies, in: WWW ’07: Proceedings of the
16th international conference on World Wide Web, ACM, New York, NY,
USA, 2007, pp. 601–610. doi:http://doi.acm.org/10.1145/1242572.1242654.

[19] E. Kirda, C. Kruegel, G. Vigna, N. Jovanovic, Noxes: a client-side solution
for mitigating cross-site scripting attacks, in: SAC ’06: Proceedings of the
2006 ACM symposium on Applied computing, ACM, New York, NY, USA,
2006, pp. 330–337. doi:http://doi.acm.org/10.1145/1141277.1141357.

[20] K. Vikram, A. Prateek, B. Livshits, Ripley: automatically secur-
ing web 2.0 applications through replicated execution, in: CCS ’09:
Proceedings of the 16th ACM conference on Computer and commu-
nications security, ACM, New York, NY, USA, 2009, pp. 173–186.
doi:http://doi.acm.org/10.1145/1653662.1653685.

[21] Microsoft, Msdn code analysis team blog,
http://blogs.msdn.com/b/codeanalysis/ (2010).

[22] T. Scholte, D. Balzarotti, E. Kirda, Quo vadis? a study of the evolution of
input validation vulnerabilities in web applications, in: Fifteenth Interna-
tional Conference on Financial Cryptography and Data Security, 2011.

[23] MITRE, Common vulnerabilities and exposures (cve),
http://cve.mitre.org/ (2010).

[24] MITRE, Mitre faqs, http://cve.mitre.org/about/faqs.html (2010).

[25] NIST, National vulnerability database version 2.2, http://nvd.nist.gov/
(2010).

[26] MITRE, Common weakness enumeration (cwe), http://cwe.mitre.org/
(2010).

[27] MITRE, Common platform enumeration (cpe), http://cpe.mitre.org/
(2010).

[28] P. Mell, K. Scarfone, S. Romanosky, A complete guide to the common
vulnerability scoring system version 2.0, http://www.first.org/cvss/cvss-
guide.html (2007).

[29] J. Kouns, K. Todd, B. Martin, D. Shettler, S. Tornio, C. Ingram, P. Mc-
Donald, The open source vulnerability database, http://osvdb.org/ (2010).

22

[30] N. Mook, Cross-site scripting worm hits myspace,
http://betanews.com/2005/10/13/cross-site-scripting-worm-hits-
myspace/ (October 2005).

[31] F. Mavituna, Sql injection cheat sheet, http://ferruh.mavituna.com/sql-
injection-cheatsheet-oku/ (2009).

[32] RSnake, Xss (cross site scripting) cheat sheet esp: for filter evasion,
http://ha.ckers.org/xss.html (2009).

[33] S. M. Christey, R. A. Martin, Vulnerability type distributions in cve,
http://cwe.mitre.org/documents/vuln-trends/index.html (2007).
URL http://cwe.mitre.org/documents/vuln-trends/index.html

[34] S. Neuhaus, T. Zimmermann, Security trend analysis with cve topic models,
in: Proceedings of the 21st IEEE International Symposium on Software
Reliability Engineering, 2010.

[35] S. Clark, S. Frei, M. Blaze, J. Smith, Familiarity breeds contempt: The
honeymoon effect and the role of legacy code in zero-day vulnerabilities,
in: Annual Computer Security Applications Conference, 2010.

[36] S. Frei, M. May, U. Fiedler, B. Plattner, Large-scale vulnerability anal-
ysis, in: LSAD ’06: Proceedings of the 2006 SIGCOMM workshop on
Large-scale attack defense, ACM, New York, NY, USA, 2006, pp. 131–138.
doi:http://doi.acm.org/10.1145/1162666.1162671.

[37] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, C. Zhai, Have things changed now?:
an empirical study of bug characteristics in modern open source software,
in: ASID ’06: Proceedings of the 1st workshop on Architectural and system
support for improving software dependability, ACM, New York, NY, USA,
2006, pp. 25–33. doi:http://doi.acm.org/10.1145/1181309.1181314.

[38] A. Ozment, S. E. Schechter, Milk or wine: does software security im-
prove with age?, in: USENIX-SS’06: Proceedings of the 15th conference on
USENIX Security Symposium, USENIX Association, Berkeley, CA, USA,
2006.

23

