Penetration Testing with Improved Input Vector Identification

William G.J. Halfond, Shauvik Roy Choudhary, and AlessandrecO
College of Computing
Georgia Institute of Technology
{whalfond, shauvik, orsg@cc.gatech.edu

Abstract gral part of quality assurance techniques for web applica-
) o tions. In fact, many government agencies and trade groups,
Penetration testing is widely used to help ensure the se-g,cy a5 the Communications and Electronic Security Group
curity of web applications. It discovers vulnerabilitieg b, the U.K., OWASP: and OSSTMM accredit penetra-
simulating attacks from malicious users on a target appli- tjon testers and sanction penetration testing “best meti
cation. Identifying the input vectors of a web application penetration testing is a useful technique for several reaso
and checking the results of an attack are important parts of 1 jt generally produces a low rate of false positives since
penetration testing, as they indicate where an attack couldjt giscovers vulnerabilities by exploiting them and thus-pr
be introduced and whether an attempted attack was SUC-qycing counter examples; 2) it tests applications in cantex
cessful. Current techniques for identifying input vectors \yhich allows for the discovery of vulnerabilities that aris
and checking attack results are typically ad-hoc and in- fom specific configuration and environment issues; and 3)
complete, which can cause parts of an application 10 be jt hrovides a set of concrete inputs that exploit the discov-
untested and leave vulnerabilities undiscovered. In this greq yyinerabilities and that can be used to guide devedoper
paper, we propose a new approach to penetration testingin correcting the code.
that addresses these limitations by leveraging two regentl The process of penetration testing can be broadly di-
developed analysis techniques. The first is used to identify, jjeq into three phases: information gathering, attack gen
a web application’s possible input vectors, and the second g 4tion, and response analysis. Figure 1 shows a high-level
is used to automatically check whether an attack resulted yeryiew of a generic penetration testing process. In the
in an injection. To empirically evaluate our approach, wWe ihtormation gatheringphase, testers use a wide variety of

compare it against a state-of-the-art, alternative tefud. ochnjiques, such as automated scanning, web crawlers, and
Our results show that our approach performs a more thor- gqia| engineering, to gain information about the target ap
ough penetration testing and leads to the discovery of morepjication, This information is used to drive thetack gener-
vulnerabilities. ation phase, in which testers use the identified information,
together with domain knowledge about possible vulnerabil-

. ities, to generate attacks. Penetration testers typicakya
1. Introduction range of commercial and open-source tools to automate the
generation of attacks. Finally, thesponse analysighase
checks whether an attack has succeeded and, if so, logs in-
formation about the attack. The final result of the penetra-
tion testing process is a report that details the discovered

Many companies use web applications to maintain and

build relationships with their customers. These applareti
often store sensitive and valuable information, such as cus
tomer details and payment information, which has made .
them the target of attacks by malicious users. The cost ofvumer."jlb.IIItIeS aqd corre;ppndlng attacks. ngelopers_ ca
these attacks has dramatically increased the importance of'S€ this |nformgtlon to el'|m|nate the vulnerabilities and i
techniques for improving the security of web applications. prove the secgrlty of their softvx_/are. L .
One such technique, penetration testing, evaluates the se- The (;ollect|or1 of accurgte hlgh-qu.allty information dur-
curity of a system by simulating attacks by malicious users ing the qurmatlon gathering .phase IS vital for the SUceess
and assessing whether the attacks are successful. Penetr8]f penetration testing. Better |nforn_1at|on a_bout an a“’?"c
tion testing can provide developers with a list of vulneliabi tion _general_ly leads to more effective testing and a hlg_her
ties and security issues in the tested web applicationswhi confidence in the thoroughness of the results. Of particu-
can be used to improve the security of the applications. Iht t p: / / waw. owasp. or g/

Penetration testing has become a widely used and inte- 2http://ww. osst nm or g/

Target

Selection f i Attacks
Information Information Attack
=) Gathering) Generation
Pen Tester e
Analysis
feedback I
]
[0 sanm
Report Response
{ Analysis Web
n Responses L
Application

Figure 1. The penetration testing process.

lar importance to penetration testers is the identificatibn tion testers assume that attackers have access to one or more

an application’snput vectors(IVs)—points in an applica- versions of the source code of the application. By build-

tion where an attack may be introduced, such as user-inpuing on this and leveraging static analysis of the source,code

fields and cookie fields. Most penetration testers rely on our approach can outperform the typical black-box-only ap-

automated scanners, such as web crawlers, to identify IVsproaches to penetration testing. ifoprove the response

in the target web application. Web crawlers traverse the analysis phaseour technique incorporates and adapts a dy-

HTML content generated by a web application and analyze namic analysis technique that we also developed in previous

each page to identify information related to IVs. Although work [11]. The technique performs automated identification

web crawlers are widely used, the information they gather is of injection attacks by leveraging dynamic tainting and al-

generally incomplete. This incompleteness is due to the fac lows our approach to perform fully-automated detection of

that web crawlers are typically unable to visit every page in successful attacks in most cases.

the web application or need to interact with the web applica- We implemented our approach in a prototype tool,

tion in some specific way in order for certain elements to be spAPT, and used the tool to perform an extensive empiri-

displayed. Performing attack generation using an incom- cal evaluation of our approach. In the evaluation, we used

plete set of IVs can limit the effectiveness of penetration SDAPT to perform penetration testing on nine web appli-

testing dramatically. cations. Our empirical results show that our approach was
In addition to accurately identifying IVs, another im- able to (1)_ exercise the s_ubject app_lications more thorigugh

portant aspect of penetration testing is response analysi€nd (2) discover a considerably higher number of vulnera-

to determine whether an attempted attack was successfulPilities than a traditional penetration testing approach.

In most cases, this assessment is performed manually byrhe contributions of this paper are:

the tester, which can be time consuming and error prone. e An approach for penetration testing based on im-

Some techniques try to automate the check by using vari- proved input vector identification and automated re-

ous heuristics. In our experience, such heuristics can work sponse analysis.

welllin.simpleT cases, but are fairly ineffective when usedfo 4 Animplementation of the approach in a prototype tool.

realistic applications. e Four empirical studies that assess the practicality, thor-
In this paper, we propose a penetration testing approach oughness, and effectiveness of the approach on nine

and tool that addresses the aforementioned shortcomings of ~ web applications.

existing approaches. Timprove the information gathering

phaseour approach leverages a static analysis technique for. Sati

discovering 1Vs that we previously developed [12]. Specif- 2. Motivating Example

ically, our approach combines a conservative static analy- In this section we introduce a small motivating example

sis that identifies all possible 1Vs with a dynamic penetra- to illustrate the drawbacks of traditional penetratioriites

tion testing technique that effectively generates attdoks We also use this example in Section 3 to illustrate our ap-

such IVs. Although it is common to assume that penetra- proach.

tion testing is a black-box approach, current best pragtice Figure 2 shows an excerpt from a Java-based web appli-

(e.g., OWASP and OSSTMM) recommend that penetra- cation. This example is implemented aservlet which

2 Pt rg st om e e wret or C* eer Act our) The servet then calls functiodi spl ayAddr essFor m
3. if (action. equals("createLogin’)) {) which generates another web form that allows the user to
A= R A SR b oot e enter their address (line 10). This function also sets two
6. if (isAl phaNuneric(password)) { hidden input fields in the form: “userAction” is set to
. e Gonmeet L on(" nysdl </ /1 ocal DB') - “provideAddress,” and “login” is set to the user-chosen lo-
g. i at egt;gtcms;?tl = conn. g?:)st@te?g:glt ((9) ; gin. When the user submits this form, the condition at line
' ' "(1 ogi " 14istrue, so the servletretrieves the address and logiisfiel
; I gg?glhlgﬁepisf\,w'r' P valves { (lines 15-16) and updates the entry in the databasegyv!i;th the
10, i spl ayaddressrorntye)) supplied information (lines 17-19). At this point, the 1gi
11} else{ . . tration is done.
12 } di spl ayEr ror Page("Bad password. ") This example servlet contains several vulnerabilities
14. } else if (action.equal s("provideAddress")) { to SQL injection attacks (SQLIA). An application can be
Lo e e e e amarer O+ S s) vulnerable to SQLIAs when it directly uses user input in-
17. Connection conn =) a database query. An attacker can take advantage of this
18 Statoment o oo e bt oot O, situation and insert database commands that will be dyrectl
19. stnt.execute("update UserTable set” executed by the database. For our example servlet, if an
e e ogi e 2 attacker enters the stringname, secret); drop
+ | ogi nNarre) ; tabl e UserTable -- " as their chosen login, the
2 el ayoreat eLogi nFor () : following SQL query would be executed on the database
22. 1} at line 9: ‘insert into UserTable (Iogin,
2.} password) val ues (nane, secret); drop
. table UserTable --)”. Besides creating an ac-
Figure 2. Example servlet. count with login “name” and password “secret,” this query

would execute a drop command that would delete all of the
user information in the user table. (Note that” is the
SQL comment operator, so the extra parenthesis after the
qguery would be ignored.) In general, the queries at lines 9
and 19 are vulnerable to a wide range of SQLIAs [13].

is the basic implementation unit in the Java Enterprise Edi-
tion (JEE) framework for developing web applications. This
servlet allows a user to register a new login and password

by filling out a series of web forms. When a user first ac- When a web crawler targets this servlet, it would

e e T e U le o tscovr e b form generted by
yp ' di spl ayCr eat eLogi nForm because this is the

2, the servlet accesses an input parameter named “userAc;,

- default page created by the servlet. From this page,
tion.” In general, parameters are passed from an end-use[he web crawler would then be able to identify that the
to a servlet as name-value pairs. To access these para

cters. a serviet calls sarameter functionbasses 1o it the Mhames of three IVs for this application are “userAction,”
' pa np ‘login,” and “password.” At this point, most web crawlers

name of the de§|red parameter, and receives its correspondv-vould generate values for the identified IVs in an attempt
ing value. At lines 3 and 14, the servlet checks the val-

f ter * Action” The first | i f th to access subsequent pages that may contain additional
Ues of parameter “USerAction. € firstinvocation otIne o mation. However, unless the crawler could correctly
servlet is performed with an empty set of parameters, whlchguess that “password” must be alphanumeric, the servlet
Lnief&s;;g gj; :i?);lijtlr?gofcr)r?gt;gggrsatitsl:an\(/avezblforlr:nuphc;tonwomd not reveal any additional useful information, and the

) .Ipenetration tester would not discover the vulnerabilies
is sent to the user browser and allows the user to enter their.

) . . . lines 9 and 19.
desired login name and password. This function also sets

a hidden input field called “userAction” to the value “cre- .
ateLogin.” 3. Approach and Implementation

When the user enters the data in this web form and sub- The goal of our approach is to improve penetration test-
mits it, the browser bundles the three input fields (login, ing of web applications. To do this, our approach focuses
password, and the hidden field) as name-value pairs andn two areas where current techniques are limited: identi-
sends them to the servlet. On this second execution of thefying the IVs of a web application and detecting the out-
servlet, the condition at line 3 is true, and the servlet re- come of an attempted attack. We developed a new approach
trieves the password and login (lines 4-5). If the passwordto penetration testing that leverages two recently-d@ezlo
is not alphanumeric, an error message is returned to the enénalysis techniques. The first is a static analysis tecleniqu
user (line 12). Otherwise, the servlet generates a queryfor identifying potential IVs, and the second is a dynamic
to the database that creates the user account (lines 7-9analysis to automate response analysis. In the information

gathering phase, our approach leverages the static amalysisions or relational operators.) To illustrate with an exemp
technique to analyze the code of the application and iden-consider the IV accessed at line 2 of the example servlet
tify 1Vs, how they are grouped.é., which sets of IVs are in Figure 2, whose value is assigned to variadtg i on.
accessed together by a servlet), and their domain informa-Variable act i on is used at lines 3 and 14. From these
tion (i.e., IVs’ relevant values and type constraints). In the uses,wAM can infer that “createLogin” and “provideAd-
attack generation phase, our approach targets the idéntifie dress” are relevant values for the accessed IV. Similaoty, f
IVs and uses the domain and grouping information to gener-the 1V accessed at line 4yam can infer from the use at
ate realistic values for the penetration test cases. kjnall line 6 that the domain of the IV should be alphanumeric.
the response analysis phase, our approach uses the dynamin its second phase, tveam analysis groups IVs accessed
analysis technigue to assess in an automated way whethealong the same path of execution and identifies the names
an attack was successful. of the individual IVs. To avoid an expensive per-path anal-
In the rest of this section, we explain the details of our ysis,wAM uses an iterative data-flow algorithm to compute
approach to penetration testing. We divide the discusdion o the groupings. To identify the names of IMs8AM tries to
or approach based on the three phases of penetration testingesolve the value of the parameter passed to the parameter
and explain how our approach performs each one. Wherefunctions. In our example, this is always a string constant,
applicable, we illustrate the advantages of our approach us but the analysis can handle more complicated cases where
ing the example from Section 2. We also present, in Sec-this is a string expression involving values defined in dif-

tion 3.4, the details of our tool implementation. ferent methods. In the example servlet the second phase of
wAM would identify the following three groupings of IVs:
3.1. Information Gathering {“userAction”}, {“userAction,” “login,” “password} and

{“userAction,” “login,” “address’}.

Our approach leverages them analysis to produce IV
information that is then provided as input to the attack gen-
eration phase. To better tailor the analysis to penetration

During the information gathering phase, testers analyze
the target application to identify information that may be
useful to generate attacks. In particular, testers are-inte

ested in gathering information about the application'sHvs testing, our approach extenaam with heuristics for iden-

their names, groupings, and domain information. _Web tifying error checking patterns in the web application code
crawlers are currently one of t_he mqst popular_and W'd.ely' such as checks for empty strings or null values. Our ap-
used techniques for discovering this type of information. proach eliminates values associated with such checks from
€he domain information because we found that they typi-
cally lead to test inputs that cause a properly handled error
and are unlikely to facilitate successful attacks.

limited by their purely black-box nature and generally dis-
cover incomplete information. Conversely, our static anal
ysis technique is complete since it performs a conservative
analysis to identify IVs. Although the conservative nature

of the analysis may lead to the identification of spurious 8.2. Attack Generation

IVs, this does not affect the effectiveness of penetratisti t During the attack generation phase, testers use the in-
ing and, in the worst case, can only result in the generationformation gathered in the previous phase to create attacks
of additional test inputs. on the target application. To do this, a tester typically tar

The static analysis performed by our approach is basedgets each identified IV using a set of attack heuristics,avhil
on a techniquewAM, that was developed by two of the au- supplying realistic and “harmless” input values for theasth
thors [12]. We provide a high-level overview of this anal- 1Vs that must be part of a complete request. The identifi-
ysis and explain how we leveraged it for the purpose of in- cation of suitable realistic input values for the 1Vs not in-
formation gathering during penetration testing. Tem volved in an attack is a crucial part of this process. Tradi-
technique analyzes the code of a web application in two tionally, testers would determine such values by intenacti
phases and produces a listing of all of the Vs in the ap- with the developers, using values supplied as defaultsin th
plication together with their groupings and domain infor- web pages examined during the previous phase, or gener-
mation. In the first phasewAM computes domain infor- ating random strings. Although practical, these approsiche
mation for Vs in the application by identifying chains of may not provide realistic values that will enable a vulnera-
definitions and usedDU chaing that start with the return bility to be exposed, as we illustrated in Section 2.
value of a parameter function. For each DU chaimMm Our approach addresses this problem by using the do-
checks for typecasts, value equality comparisons, and spemain and grouping information identified by thvam anal-
cific API calls that allow for inferring information about ysis to provide relevant values for all IVs that are not being
the domain of the IVs accessed via that parameter func-injected with potential attacks. Our approach does not cre-
tion. (Note that, at this timewAM does not account for ate new attack heuristics; it provides a way to generate more
more complex domain constraints, such as regular expres+ealistic and relevant values for the penetration testase

To illustrate with an example, we use one of the IV when it detects an attack. The header informs the response
groupings identified by the information gathering phase analysis that a performed attack was successful. The re-
for the example servlet in Figure Z*login,” “password,” sponse analysis can thus correlate this information wigh th
“userAction”}. During attack generation, the testers would information provided by the attack generator to identifdan
target each of these Vs with possible injections based onreport each vulnerable IV and the attack that was able to re-
some attack heuristics. When the first IV, “login,” is tar- veal the vulnerability.
geted, both our approach and traditional approaches would To illustrate the response analysis with an example, con-
generate an attack string and use it as the value for “login.” sider the SQLIA presented in Section 2 that targets line
The difference between our approach and other approache8 of the servlet in Figure 2. Before the servlet executes,
is how the values for the other IVs are determined. Our wAsPperforms positive tainting and marks all of the trusted
approach leverages the domain information discovered bystrings in the servlet. In the example, the trusted strimgs a
wAM, which would result in using an alphanumeric value all of the hard-coded strings used to build database queries
for “password” and setting “userAction” first to “createL- at lines 9 and 19. (The other hard-coded strings are also
ogin” and then to “provideAddress.” The use of this do- marked as trusted, but are not used to build database queries
main information allows the penetration test cases to passso we do not discuss them further.) At runtimesptracks
the checks at lines 3 and 6, and thus successfully exploit thethe trust markings on the strings. When the servlet attempts
vulnerability at line 9. In contrast, approaches that do not to execute a database quewasP checks the string that
have this domain information would have to either involve contains the query to be executed. In this chegksp
the developer, which would affect the practicality of the ap parses the string using the database’s parser and verifies
proach, or use random values, which would be unlikely to that every substring that represents a keyword or operator

satisfy the domain constraints on the IVs. was generated using a trusted string. Referring back to the
example SQLIA, this check would reveal that the keyword
3.3. Response Analysis “DROP” was generated using a string that was not trusted.

In the response analysis phase, testers analyze each w
page that the target application returns after an attempte
attack. The purpose of the analysis is to determine if the at-
tack succeeded and extract any additional information that
was revealed in the response. Because manual checking of We implemented our approach in a prototype tool called
web pages is extremely time consuming and error-prone,SDAPT (Static and Dynamic Analysis based Penetration
testers typically use automatable heuristic-based tapls t Testing). SDAPT is implemented in Java, works on Java-
check whether an attack was successful. For example, sombased web applications, and performs penetration testing
tools search the text in the resulting web page for excegption for discovering SQLIA vulnerabilities. The high-level ar-
thrown by the database. Other tools compare the contenthitecture ofSDAPTIis shown in Figure 3sDAPTinputs the
generated by a servlet in response to an attack and a legatode of a web application.€., a set of servlets in bytecode
access and look for significant changes that would indicateformat) and produces a report with a list of the successful
that the attack was successful. Unfortunately, the succesSQLIAs and the corresponding vulnerable 1Vs. We chose
of these approaches is highly application specific, and it is SQL injection as our attack type because there are a large
difficult to identify automated heuristics that are broaaiby number of web applications that contain SQLIA vulnerabil-
plicable. In fact, our experience shows that attempts to doities.
so can be highly ineffective. (See Section 4.4.) Theinformation gatheringnodule analyzes the servlets’

In our approach, we improve the accuracy of responsecode and outputs information about the Vs of each servlet.
analysis by incorporating an automated injection detector For this module, we used the adapted implementation of the
based on a technigueasp, that was developed by two of wAM analysis described in Section 3.1.
the authors in previous work [10, 11]. Thessptechnique The attack generatiormodule consists of several sub-
uses positive tainting to track all of the trusted strings in modules. Thecontroller inputs the IV-related information
an application that may be used to build a database com-and passes the IV groups, one at a time, toltheselec-
mand. At runtime WASP uses syntax-aware evaluation to tor. ThelV selector in turn, iterates over each of the Vs
ensure that only trusted strings are used to form the parts ofin a group and, for each selected IV, passes it toatieck
a database command that correspond to SQL keywords antheuristicsmodule, which generates possible attack strings
operators. If a database command violates this policy, it isfor the IV. Theinjection enginegenerates penetration test
prevented from executing on the database. TowsgpP in cases by combining these attack strings for the selected IV
the context of penetration testing, we extended it so that itand legitimate values for the remaining IVs in the current
adds a special HTTP header to the application’s responsdV group. To generate legitimate values, the engine lever-

his causesvasPto block the attack and return the special
TTP header that flags a detected attack.

3.4. Implementation

Information \ Attack generation Response analysis
gathering N
- IV-related -
information
Servlets (s, E:> Attack C
domain,
grouping) ﬁ Web
—_— server

—

<
«Q
=
o
[
©

|
N -—
engine Penetration
testing
ﬁ report
IV's attack B
strings

Attack
injected heuristics

Figure 3. High-level architecture of the spapTtool.

@e@
i |

ages the Vs’ domain information. The generated attackstested, ane@ffectivenesm terms of the number of vulnera-

are then sent to the target web application. In our imple- bilities discovered. Our evaluation addressed the folhgwi

mentation, thecontroller was built from scratch, whereas research questions:

to implement thdV selector attack heuristicsandinjec- o o

tion enginemodules, we modified parts of the code base of RQll: Is SDAPT practical in terms of its time and resource

SQLMAP.3 We chose to use SQMAP as the basis for our ~ Féquirements?

implementation for several reasons. First, S@\p is a

widely used, popular, and actively maintained penetration

testing tool for discovering SQLIA vulnerabilities. Sec-

ond, the architecture of SQUAP is highly modular, which RQ3: Is spaPTS response analysis more accurate than a

made it easier to integrate it in our tool. Finally, SQAP heuristic-based approach?

contains heuristics for performing many different types of

SQLIAs and can interact with a wide range of applications RQ4: DoessDAPTSs information gathering lead to the dis-

that communicate using different HTTP based mechanisms.covery of more vulnerabilities than a traditional apprdach
The response analysimodule receives the HTML re-) -)

sponses generated by the target web application and ana- AS an instance of a traditional approach, we imple-

lyzes them to determine whether the attack was successfulMented an improved version of S@&p,® the penetration

It then associates this information with the IV under test. t€Sting tool we discussed in Section 3.4. The improved tool,

After all of the responses have been analyzed, the outpuSQLMAP++, extends SQUAP in two ways. First, we inte-

of this module is a report that lists all of the vulnerable Ivs 9rated aweb crawler into SQIAP to perform information

with the test inputs that were able to reveal the vulnergpili ~ 9athering. Web crawling is one of the most widely-used

The implementation of this module is based on an extended€chniques for gathering information about a web applica-

version ofwAsP (see Section 3.3), which was developed by tion and is thus a good representative of current approaches
two of the authors in previous work [10, 11]. We used a web crawler based on the OWASP WebStarab

project and modified it so that it collects 1Vs and any default
.. . values for these IVs in the web pages it visits. (The default
4. Empirical Evaluation values are used as possible values for the IVs during attack
The goal of our empirical evaluation is to assess the use-generation.) Second, we integrated our improved response
fulness of our penetration testing approach, implememted i analysis (see Sections 3.3 and 3.4) into 3Qk.
:het‘.C’DAthlo 0_||1 wgertlhc_ompared to asfnr)adlgonal p(ta_ne;[_rtatmn Note that, in the implementation ofDAPT and
.estmg Oof.th Ot' 0 |s,dwe measu APdsdp:ac 'Ci'y th SQLMAP++, we maximized the amount of code reused
In terms ot e ime and resources needed 1o pertorm e, o ey ey possible. In particular, the two tools use the same
information gathering and attack generation phaties-

h Nt f1h ber of IV q ¢ attack heuristics from the original S@aP tool. Also
oughnessn terms of the number of 1VS and components SQLMAP++ andsSDAPTuse the same implementation of the

3http: //sql map. sour cef or ge. net/ response analysis.

RQ2: DoesspAPTresultin more thorough testing of a web
application than a traditional approach?

| Subject [LOC | Classes| Servlets| Analysis time (s) Number of test caseq
Bookstore | 19,402 28 >7 Subject SQLMAP++ | SDAPT | SQLMAP++ | SDAPT
Checkers 5’415 59 32 Bookstore 40 2,322 802 14,711
Classifieds| 10,702 18 18 gre‘:',‘f‘?rz 759 11;137 524 845?52>7

- assitieds , ,
Eaﬁ?dg. 1:572096 11119 790 Daffodil 13 1,271 442 20,698
mpl. DIr. | 9, Empl. Dir. 15 449 223 3,237
Events 7164 | 13 12 Events 11 853 106 3,746
Filelister | 8,671 | 41 10 Filelister 6 862 45 4,465
Office Talk | 4,670 63 39 Office Talk 5 477 18 208
Portal 16,089| 28 27 Portal 45 726 393 9,266
Table 1. Subject web applications. Table 2. Practicality results.
4.1. Experiment Subjects IV information is computed once and then simply reused

i i during attack generation.
In our evaluation, we used the nine Java-based web ap- | tarms of number of test cases generasmhPT con-

plications listed |r_1_TabIe L. Flye of these applications sistently generated at least an order of magnitude more test
(Bookstor_e, Classifieds, Empl. Dir., Ev_ents, and Porta@) ar . qas tharsQLMAP++. This result is somehow expected,
commercial open-source products available from G.otoCodegiven SDAPTS more complete identification of IV-related
(ht tp: //wwy. got ocode. conf). Two of the subjects, jacarmation: richer IV information is likely to result in ne
Checkers and Offl'cetalk,'are stude.nt—developed.prc')Jeats M test cases being generated. Although a higher number of
have b_een used in previous S.tUd'eS [9.’| 1b?]. fFHEI'Ster andyeqt cases results in more testing time, the maximum testing
Datfodil are. open source projects available from Source- jime for the subject considered was below ten hours, which
Forge fittp: // sourceforge. net/). , _would not prevent the test cases from being run overnight.
The GotoCode and student-developed subjects contain\iqreqver, as our results for RQ2 and RQ4 show, the addi-
a wide range of security vulnerabilities. The remaining onq) test cases always result in a more thorough penetra-

two applications contain specific and known vulnerabili- {5 testing and in the discovery of more vulnerabilities.
ties that have been reported in the Open Source Vulnera-

bility Database ft t p: / / osvdb. or g/). Table 1 lists, for 4.3. RQ2: Thoroughness
each subject application, its number of lines of cdde),

sured the number of IVs and components testedbyPT
4.2. RQ1: Practicality andsQLMAP++. In general, a higher number of tested IVs

and components indicates that more points in the applica-
To evaluate the practicality of our approach, we com- tion are being exercised to assess whether they contain vul-
pared the analysis time DAPT andSQLMAP++, and the nerabilities. To determine the number of IVs tested, we an-
number of test cases they generated during penetration testalyzed the attacks generated by the two tools and counted
ing. For the analysis time ofQLMAP++, we measured the number of unique IV names targeted for each servlet of
the time needed to crawl and analyze an application’s webeach subject application. Similarly, to determine the num-
pages. FOBDAPT, we measured the time to statically ana- ber of components tested, we counted the number of unique
lyze each application. The results of this study are showncomponents targeted in each application. Table 3 shows the
in Table 2. The table lists, for each subject and each of theresults of this analysis. For each subject and each tool, the
two tools, theanalysis timeand thenumber of test cases table lists the number of unique IV&lgmber of IV and

generated. the number of unique componentsumber of Comp.ex-
The results in the table show that both analysis time ercised during the penetration testing.
and number of test cases are higher $mapPT than for As the results in the table shospAPTresulted in a con-

SQLMAP++. The analysis time adfQLMAP++ ranges from sistently higher number of tested Vs and components than
five to 79 seconds, with an average of about 24 secondssQLMAP++. On averagesDAPT tested 111 Vs and 20
The analysis time o§DAPT ranges from two to almost 39 components per application, compared to the 56 IVs and
minutes, with an average of about 16 minutes. Despite be-eight components per application testedsty. MAP++.

ing higher tharsQLMAP++’s analysis timesDAPTs anal- To better understand the reason fepApTs perfor-

ysis time is still clearly practical. Moreover, this timesto mance, we manually inspected the code of several servlets
is typically incurred only once per application because the in the subject applications. We found thaQLMAP++

Number of IVs Number of Comp. Number of Vulnerabilities
Subject SQLMAP++ l SDAPT | SQLMAP++ l SDAPT Sub]ect SQLMAP++NORA ‘ SQLMAP++ ‘ SDAPT
Bookstore 104 189 15 27 Bookstore 0 7 11
Checlfgrs 5 69 2 20 Checkers 0 0 >
Classﬁ.leds 61 118 10 18 Classifieds 0 a 14
Daffodil 107 165 7 39 -
Empl. Drr. 36 66 6 9 Daffodil 0 6 11
Events 44 79 8 12 Empl. Dir. 0 1 11
Filelister 12 46 1 9 Events 0 4 11
Office Talk 16 58 5 20 Filelister 0 1 1
Portal 123 211 20 27 Office Talk 0 2 12
Average 56 111 8 20 Portal 0 11 17
Total 0 36 90

Table 3. Evaluation of thoroughness.
Table 4. Evaluation of effectiveness.

tested less components mainly because many of the web
pages in the web applications are not linked to each other.sq map++ discovered a total of 36 vulnerabilities. This re-
Therefore, the crawler was not able to reach all of the pagesgylt indicates that, although SQ@IaP may be able to gener-
in an application, and the attack generation based on theyte inputs that cause SQLIAs, its response analysis igytotal
information collected by the crawler never targeted the un- ineffective. Our manual inspection of the generated attack
reachable pages. These unreachable pages also partly exnd results revealed that, in most cases, an attempted at-
plain why sDAPT was able to test a higher number of IVs. tack did not have any observable effect on the HTML re-
However, this was not the only reason for this difference, sponse from the attacked servlet. In the few cases where
as our inspection also revealed two other reasons. The firSthere was a change in the HTML response, the change was
reason is that several components require the crawler to prosyptle enough that the heuristic-based analysis was net abl
vide specific IV values in order to display subsequent web tg determine whether it was a normal variation in output or
forms (as in our example in Figure 2). Because the crawlerthe result of a successful attack. For example, one case in-
was not able to guess these values, it could not reach thesgolved a page that listed results extracted from a table. A
Subsequent web forms and missed their IV information. The successful attack caused the page to list a Specific set of re-
second reason is that several components have IVs that d@yuits, but nothing about these results clearly indicated th
not have a corresponding web form—they were “hidden” effect of an attacki(e., the same results might have been
IVs. These IVs may have been developer errors or IVs generated by a successful query). Therefore, a heuristic th
intended only for use by other components without going simply checks differences between HTML responses would
through a web form. be unable to determine if the variation in the listed results
Overall, the higher number of tested IVs and componentsyas due to an attack. Manual inspection of the results might
provides evidence that our penetration testing approath ca have been able to recognize the attack, but manually check-
resultin a more thorough testing of a web application. ing each attempted attack is, in general, impractical and er
ror prone.
Overall, these results motivate the need for improved re-
We evaluated the effectiveness of our technique for re- sponse analysis and indicate that our proposed technique fo
sponse analysis independently from the effects of the im-response analysis is effective and is an important partiof ou
proved information gathering approach. To do this, we approach for penetration testing.
also implemented a version sLMAP++ that did not in-
clude our response analysis technique and used the standargl 5, RQ4: Information Gathering Effective-
heuristic-based response analysis provided by @H. ness
We call this versiorsQLMAP++y0r4. We then measured
the number of vulnerabilities discovered IsQLMAP++ To evaluate the effectiveness of our technique for infor-
andsQLMAP++xno g4 When run on all subject applications. mation gathering, we measured the number of vulnerabili-
The results of this study are shown in Table 4 under the ties discovered bgQLMAP++ andsSDAPT. As with RQ3,
columns titledsQLMAP++ o Rr4 @NdSQLMAP++. we ran both tools against each of the subject applications.
As the results in the table sho®QLMAP++xoRr4 WaS Table 4 shows the results of this study. For each applica-
unable to recognize any vulnerabilities in the subjectiappl tion, we list the number of vulnerable IVs discovered by
cations. In contrast, using the improved response analysiSSQLMAP++ andSDAPT.

4.4. RQ3: Response Analysis Effectiveness

The results in the table show trebAPTwas able to dis- different sources: commercial open-source, auto-geserat
cover considerably more vulnerabilities thapLMAP++. code, and student-developed projects. More subjects would
sbAPTdiscovered a total of 90 vulnerable Vs as compared obviously enhance the validity of the studies, but we feel
to 36 found bysQLmapP++. Of particular interest are the that the range in size, source, and type of application pro-
results for the applications with known vulnerabilitierF vides us with a reasonably representative set of subjects.
Filelister, both tools were able to discover the single know SQLMAP is a widely used penetration testing tool that has
vulnerable IV. For Daffodil, there were two known vulnera- an architecture and approach similar to many other penetra-
ble IVs. sQLMAP++ discovered an additional 4, asdAPT tion testing tools. In particular, it uses widely-recogrdz
discovered an additional 9. attack heuristics for discovering vulnerabilities to S@&I

In addition to discovering more vulnerabilities, our ap- in web applications.
proach also had a very low false positive rate. We manually
inspected each reported vulnerability in order to deteemin 5§ Related Work

if it was a real vulnerability or a false po_s?tive. We found A technique by Miller, Fredricksen, and So [17], called
that sQLMAP++ reported three false positives a80APT f,75ing was an early influential work that led to the devel-
reported tWO_ .false pogltlves. These were not included in opment of many subsequent penetration testing techniques.
the vulnerability totals in Table 4. For both approaches, th |, yheir work, Miller and colleagues submitted byte streams
false positives were caused by limitations in the implemen- ¢ .o 4om data to common UNIX utilities to assess whether
tation of wasp, and could be eliminated with further engi- they could crash them. This technique was later adopted
neering. and expanded by many testers to discover bugs and secu-
_ Overall, our results show that, at least for the sub- v, \yinerabilities [20]. Although the concepts and piinc
jects considered, our approach can outperform more tradipjeg pehind penetration testing have been known for quite
tional penetration testing techniques and that our inferma ¢ time, it was not until recently that penetration test-
tion gathering technique plays an important role in the ef- i,y pegan to receive significant attention [21]. Geer and

fectiveness of our approach. Harthorne provided an early definition of the goals and tech-
. nigues of penetration testers [8]. Subsequent work has mo-
4.6. Threats to Validity tivated the need for penetration testing and proposed ways

In this section, we outline the possible threats to validity t0 incorporate the technique into software engineering pro

of our empirical evaluation and explain how we addressed cesses [2, 3]. _ _ _ _
each threat. In the area of information gathering techniques to sup-

Construct Validity: Construct validity is straightfor- POrt penetration testing, there has been very limited re-
ward in our empirical evaluation, as we use typical metrics Search work. Most of the work in the area has been com-
for evaluating the thoroughness, effectiveness, andipract mercially oriented and focused on improving web crawl-
cality of our approach. For thoroughness, the number of ing techniques, such as OWASP'’s WebScarab web crawler,
IVs and components tested is a common measure for bottPr on developing new vulnerability scanners, such as Nes-
penetration and regular testing. For effectiveness of pene sug and Nikto® Notable research contributions in this area
tration testing, the number of vulnerabilities is by far the include the development of an advanced web crawler by
most commonly accepted metric. Similarly, for practical- Huang and colleagues [14], and a technique by Elbaum and

ity, analysis time and used resources are generally acteptecolleagues [5] that interacts with a web application at run-
metrics. time to identify IVs and possible domain information. Since

Internal Validity: For internal validity, we must ensure these techniques are both dynamic techniques based on web
that variances in the dependent variable (measure of thorCrawling, they cannot provide guarantees of completeness
oughness, effectiveness, and practicality) can be atéribu and have limitations similar to those of other web crawling
to variances in the independent variable (the information t€chniques. However, as compared to our static approach,
gathering and response analysis). To ensure this, we use@_hese types of technique W9U|d be qdvantageous In situa-
the same attack heuristics in both tools. The tools differed tions where the source code is unavailable or cannot be stat-
only in the information gathering, use of the gathered infor ically analyzed due to resource constraints.
mation, and response analysis. We also deployed the subject Our information gathering technique more broadly re-
applications with the same configuration when testing them ates to techniques that address the problem of interface
with the two approaches. identification in web applications. In this area, there has

External Validity: The primary concern is whether the Deen a fair amount of work. Early techniques relied on
results could generalize to more web applications and au-developer-provided specifications [1, 15, 18], which does
tomated penetration testing tools. Our set of subject appli 4n¢ ¢ p: // ww. nessus. or g/
cations consisted of nine subjects that came from several Shttp://wwv cirt.net/nikto2

not fit well into the usage scenario of penetration testing, [5] S. Elbaum, K.-R. Chilakamarri, M. F. I, and G. Rother-

where oftentimes the vulnerabilities are found in IVs that mel. Web Application Characterization Through Directed
are unknown or untested by the developers. Several tech- ~ Requests. Ifnternational Workshop on Dynamic Analysis
niques [6, 7, 16, 19] use session data and user logs to iden- _ May 2006.

] S. Elbaum, S. Karre, and G. Rothermel. Improving Web Ap-
plication Testing with User Session Data. Ihternational
Conference on Software Engineeridd¢pvember 2003.

S. Elbaum, G. Rothermel, S. Karre, and M. F. Il. Leverag-

tify relevant information about the monitored web applica-
tions. These techniques have limitations similar to these a
sociated with web crawlers, as they can only analyze parts 7]

of a web application that have been visited. ing User-Session Data to Support Web Application Testing.
The technique most closely related to our information IEEE Transactions On Software Engineerirgl(3):187—

gathering technique is the one proposed by Deng, Frankl, 202, March 2005.

and Wang [4]. Their technigue scans the code of an appli- [8] D. Geer and J. Harthorne. Penetration testing: a duet. In

cation and identifies the names of all IVs. However, unlike Proceedings of the 18th Annual Computer Security Applica-

our technique, it does not group them based on paths of ex- _ tions ConferenceDecember 2002.

9] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dy-
namically Generated Queries in Database Applications. In
Proc. of the 26th International Conference on Software En-
gineering May 2004.

[10] W. Halfond, A. Orso, and P. Manolios. Using Positive Taint-
6. Conclusion ing and Syntax-Aware Evaluation to Counter SQL Injec-

In this paper we proposed an approach and tool for pen- ti_on Attacks. InProce_edings of the ACM SI_GSO_FT Sympo-
etration testing that addresses two of the shortcomings of ~ Slum on the Foundations of Software EngineeyiNgvem-
o ber 2006.
existing penetration testing techniques. First, our apgino

. e . NSRS [11] W. Halfond, A. Orso, and P. Manolios. WASP: Protect-
identifies the input vectors of a web application in a conser- ing Web Applications Using Positive Tainting and Syntax-

vative way and improves on traditional, purely black-box Aware Evaluation. IEEE Transactions on Software Engi-
approaches. Second, our approach uses an automated tech- neering 34(1):65-81, 2008.

nigue to assess whether an attempted attack was succes$12] W. G. Halfond and A. Orso. Improving Test Case Genera-

ecution or determine possible relevant values for each 1V,
which reduces the effectiveness of the technique for pene-
tration testing.

ful, which results in the identification of a higher number tion for Web Applications Using Automated Interface Dis-
of attacks and, ultimately, in the discovery of a higher num- covery. InProceedings of the ESEC/SIGSOFT Symposium
ber of vulnerabilities. We created a prototype t@&DAPT, on the Foundations of Software Engineerigp. 2007.

r [13] W. G. Halfond, J. Viegas, and A. Orso. A Classification of
SQL-Injection Attacks and CountermeasuresPtac. of the
Intl. Symp. on Secure Software Engineeriltar. 2006.

that implements our penetration testing approach. In ou
empirical evaluation, we comparebAPT against a state-

of-the-art penetration tes_ting tool_in ter_ms of practigali " [14] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application
thoroughness, and effectiveness in testing nine web appli- Security Assessment by Fault Injection and Behavior Mon-
cations. The results of our evaluation show thapPTcan itoring. In Proc. of the 12th International World Wide Web
perform a more thorough testing and discover more vulnera- Conference May 2003.

bilities than a traditional tool. Therefore, the results\pde [15] X. Jia and H. Liu. Rigorous and Automatic Testing of Web
evidence that our penetration testing approach is, atfieast Applications. In6th IASTED International Conference on
the applications considered, practical and effective. Software Engineering and Applicatigrisovember 2002.

[16] C. Kallepalli and J. Tian. Measuring and Modeling Usage
and Reliability for Statistical Web TestindEEE Transac-

Acknowledgements tions on Software Engineering7(11):1023-1036, 2001.
This work was supported in part by NSF awards CCF- [17] B. P. Miller, L. Fredriksen, and B. So. An empirical study
0725202 and CCF-0541080 to Georgia Tech. of the reliability of UNIX utilities. Communications of the

ACM, 33(12), 1990.
[18] F. Ricca and P. Tonella. Analysis and Testing of Web Appli-

References cations. Ininternational Conference on Software Engineer-

[1] A. A. Andrews, J. Offutt, and R. T. Alexander. Testing Web ing, May 2001.
Applications by Modeling with FSMs. I8oftware Systems [19] J. Sant, A. Souter, and L. Greenwald. An Exploration of Sta-
and Modeling pages 326-345, July 2005. tistical Models for Automated Test Case GeneratiorPrior

[2] B. Arkin, S. Stender, and G. McGraw. Software penetration ceedings of the International Workshop on Dynamic Analy-
testing.IEEE Security & Privacy3(1):84 — 87, 2005. sis May 2005.

[3] M. Bishop. About Penetration TestingEEE Security & [20] M. Sutton, A. Greene, and P. Aminkuzzing: Brute Force
Privacy, 5(6):84-87, 2007. Vulnerability Discovery Addison-Wesley, 2007.

[4] Y. Deng, P. Frankl, and J. Wang. Testing Web Database Ap- [21] H. H. Thompson. Application penetration testingEEE
plications. SIGSOFT Software Engineering Nqt&8(5):1— Security & Privacy 3(1):66 — 69, 2005.

10, 2004.

