
Penetration Testing with Improved Input Vector Identification

William G.J. Halfond, Shauvik Roy Choudhary, and Alessandro Orso
College of Computing

Georgia Institute of Technology
{whalfond, shauvik, orso}@cc.gatech.edu

Abstract

Penetration testing is widely used to help ensure the se-
curity of web applications. It discovers vulnerabilities by
simulating attacks from malicious users on a target appli-
cation. Identifying the input vectors of a web application
and checking the results of an attack are important parts of
penetration testing, as they indicate where an attack could
be introduced and whether an attempted attack was suc-
cessful. Current techniques for identifying input vectors
and checking attack results are typically ad-hoc and in-
complete, which can cause parts of an application to be
untested and leave vulnerabilities undiscovered. In this
paper, we propose a new approach to penetration testing
that addresses these limitations by leveraging two recently-
developed analysis techniques. The first is used to identify
a web application’s possible input vectors, and the second
is used to automatically check whether an attack resulted
in an injection. To empirically evaluate our approach, we
compare it against a state-of-the-art, alternative technique.
Our results show that our approach performs a more thor-
ough penetration testing and leads to the discovery of more
vulnerabilities.

1. Introduction

Many companies use web applications to maintain and
build relationships with their customers. These applications
often store sensitive and valuable information, such as cus-
tomer details and payment information, which has made
them the target of attacks by malicious users. The cost of
these attacks has dramatically increased the importance of
techniques for improving the security of web applications.
One such technique, penetration testing, evaluates the se-
curity of a system by simulating attacks by malicious users
and assessing whether the attacks are successful. Penetra-
tion testing can provide developers with a list of vulnerabili-
ties and security issues in the tested web applications, which
can be used to improve the security of the applications.

Penetration testing has become a widely used and inte-

gral part of quality assurance techniques for web applica-
tions. In fact, many government agencies and trade groups,
such as the Communications and Electronic Security Group
in the U.K., OWASP,1 and OSSTMM,2 accredit penetra-
tion testers and sanction penetration testing “best practices.”
Penetration testing is a useful technique for several reasons:
1) it generally produces a low rate of false positives since
it discovers vulnerabilities by exploiting them and thus pro-
ducing counter examples; 2) it tests applications in context,
which allows for the discovery of vulnerabilities that arise
from specific configuration and environment issues; and 3)
it provides a set of concrete inputs that exploit the discov-
ered vulnerabilities and that can be used to guide developers
in correcting the code.

The process of penetration testing can be broadly di-
vided into three phases: information gathering, attack gen-
eration, and response analysis. Figure 1 shows a high-level
overview of a generic penetration testing process. In the
information gatheringphase, testers use a wide variety of
techniques, such as automated scanning, web crawlers, and
social engineering, to gain information about the target ap-
plication. This information is used to drive theattack gener-
ation phase, in which testers use the identified information,
together with domain knowledge about possible vulnerabil-
ities, to generate attacks. Penetration testers typicallyuse a
range of commercial and open-source tools to automate the
generation of attacks. Finally, theresponse analysisphase
checks whether an attack has succeeded and, if so, logs in-
formation about the attack. The final result of the penetra-
tion testing process is a report that details the discovered
vulnerabilities and corresponding attacks. Developers can
use this information to eliminate the vulnerabilities and im-
prove the security of their software.

The collection of accurate high-quality information dur-
ing the information gathering phase is vital for the success
of penetration testing. Better information about an applica-
tion generally leads to more effective testing and a higher
confidence in the thoroughness of the results. Of particu-

1http://www.owasp.org/
2http://www.osstmm.org/



Attack
Generation

Response
Analysis

Report

Information
Gathering

Attacks
Information

Responses

Target
Selection

Analysis
feedback

Pen Tester

Web
Application

Figure 1. The penetration testing process.

lar importance to penetration testers is the identificationof
an application’sinput vectors(IVs)—points in an applica-
tion where an attack may be introduced, such as user-input
fields and cookie fields. Most penetration testers rely on
automated scanners, such as web crawlers, to identify IVs
in the target web application. Web crawlers traverse the
HTML content generated by a web application and analyze
each page to identify information related to IVs. Although
web crawlers are widely used, the information they gather is
generally incomplete. This incompleteness is due to the fact
that web crawlers are typically unable to visit every page in
the web application or need to interact with the web applica-
tion in some specific way in order for certain elements to be
displayed. Performing attack generation using an incom-
plete set of IVs can limit the effectiveness of penetration
testing dramatically.

In addition to accurately identifying IVs, another im-
portant aspect of penetration testing is response analysis
to determine whether an attempted attack was successful.
In most cases, this assessment is performed manually by
the tester, which can be time consuming and error prone.
Some techniques try to automate the check by using vari-
ous heuristics. In our experience, such heuristics can work
well in simple cases, but are fairly ineffective when used for
realistic applications.

In this paper, we propose a penetration testing approach
and tool that addresses the aforementioned shortcomings of
existing approaches. Toimprove the information gathering
phase, our approach leverages a static analysis technique for
discovering IVs that we previously developed [12]. Specif-
ically, our approach combines a conservative static analy-
sis that identifies all possible IVs with a dynamic penetra-
tion testing technique that effectively generates attacksfor
such IVs. Although it is common to assume that penetra-
tion testing is a black-box approach, current best practices
(e.g.,OWASP1 and OSSTMM2) recommend that penetra-

tion testers assume that attackers have access to one or more
versions of the source code of the application. By build-
ing on this and leveraging static analysis of the source code,
our approach can outperform the typical black-box-only ap-
proaches to penetration testing. Toimprove the response
analysis phase, our technique incorporates and adapts a dy-
namic analysis technique that we also developed in previous
work [11]. The technique performs automated identification
of injection attacks by leveraging dynamic tainting and al-
lows our approach to perform fully-automated detection of
successful attacks in most cases.

We implemented our approach in a prototype tool,
SDAPT, and used the tool to perform an extensive empiri-
cal evaluation of our approach. In the evaluation, we used
SDAPT to perform penetration testing on nine web appli-
cations. Our empirical results show that our approach was
able to (1) exercise the subject applications more thoroughly
and (2) discover a considerably higher number of vulnera-
bilities than a traditional penetration testing approach.

The contributions of this paper are:

• An approach for penetration testing based on im-
proved input vector identification and automated re-
sponse analysis.

• An implementation of the approach in a prototype tool.
• Four empirical studies that assess the practicality, thor-

oughness, and effectiveness of the approach on nine
web applications.

2. Motivating Example

In this section we introduce a small motivating example
to illustrate the drawbacks of traditional penetration testing.
We also use this example in Section 3 to illustrate our ap-
proach.

Figure 2 shows an excerpt from a Java-based web appli-
cation. This example is implemented as aservlet, which



1. public void service(HttpServletRequest req) {
2. String action = req.getParameter("userAction");
3. if (action.equals("createLogin")) {
4. String password = req.getParameter("password");
5. String loginName = req.getParameter("login");
6. if (isAlphaNumeric(password)) {
7. Connection conn =

new Connection("mysql://localDB");
8. Statement stmt = conn.getStatement();
9. stmt.execute("insert into UserTable "

+ "(login, password) values ("
+ loginName + ", "
+ password + ")");

10. displayAddressForm();
11. } else {
12. displayErrorPage("Bad password.");
13. }
14. } else if (action.equals("provideAddress")) {
15. String loginName = req.getParameter("login");
16. String address = req.getParameter("address");
17. Connection conn =

new Connection("mysql://localDB");
18. Statement stmt = conn.getStatement();
19. stmt.execute("update UserTable set"

+ " address =’"+address+"’"
+ " where loginName = "
+ loginName);

20. } else{
21. displayCreateLoginForm();
22. }
23. }

Figure 2. Example servlet.

is the basic implementation unit in the Java Enterprise Edi-
tion (JEE) framework for developing web applications. This
servlet allows a user to register a new login and password
by filling out a series of web forms. When a user first ac-
cesses this servlet, execution begins in functionservice,
which is the standard entry point for all servlets. At line
2, the servlet accesses an input parameter named “userAc-
tion.” In general, parameters are passed from an end-user
to a servlet as name-value pairs. To access these param-
eters, a servlet calls aparameter function, passes to it the
name of the desired parameter, and receives its correspond-
ing value. At lines 3 and 14, the servlet checks the val-
ues of parameter “userAction.” The first invocation of the
servlet is performed with an empty set of parameters, which
means that the execution continues at line 21. Function
displayCreateLoginForm generates a web form that
is sent to the user browser and allows the user to enter their
desired login name and password. This function also sets
a hidden input field called “userAction” to the value “cre-
ateLogin.”

When the user enters the data in this web form and sub-
mits it, the browser bundles the three input fields (login,
password, and the hidden field) as name-value pairs and
sends them to the servlet. On this second execution of the
servlet, the condition at line 3 is true, and the servlet re-
trieves the password and login (lines 4–5). If the password
is not alphanumeric, an error message is returned to the end
user (line 12). Otherwise, the servlet generates a query
to the database that creates the user account (lines 7–9).

The servlet then calls functiondisplayAddressForm,
which generates another web form that allows the user to
enter their address (line 10). This function also sets two
hidden input fields in the form: “userAction” is set to
“provideAddress,” and “login” is set to the user-chosen lo-
gin. When the user submits this form, the condition at line
14 is true, so the servlet retrieves the address and login fields
(lines 15–16) and updates the entry in the database with the
supplied information (lines 17–19). At this point, the regis-
tration is done.

This example servlet contains several vulnerabilities
to SQL injection attacks (SQLIA). An application can be
vulnerable to SQLIAs when it directly uses user input in
a database query. An attacker can take advantage of this
situation and insert database commands that will be directly
executed by the database. For our example servlet, if an
attacker enters the string “name, secret); drop
table UserTable -- ” as their chosen login, the
following SQL query would be executed on the database
at line 9: “insert into UserTable (login,
password) values (name, secret); drop
table UserTable -- )”. Besides creating an ac-
count with login “name” and password “secret,” this query
would execute a drop command that would delete all of the
user information in the user table. (Note that “--” is the
SQL comment operator, so the extra parenthesis after the
query would be ignored.) In general, the queries at lines 9
and 19 are vulnerable to a wide range of SQLIAs [13].

When a web crawler targets this servlet, it would
be able to discover the web form generated by
displayCreateLoginForm because this is the
default page created by the servlet. From this page,
the web crawler would then be able to identify that the
names of three IVs for this application are “userAction,”
“login,” and “password.” At this point, most web crawlers
would generate values for the identified IVs in an attempt
to access subsequent pages that may contain additional
information. However, unless the crawler could correctly
guess that “password” must be alphanumeric, the servlet
would not reveal any additional useful information, and the
penetration tester would not discover the vulnerabilitiesat
lines 9 and 19.

3. Approach and Implementation
The goal of our approach is to improve penetration test-

ing of web applications. To do this, our approach focuses
on two areas where current techniques are limited: identi-
fying the IVs of a web application and detecting the out-
come of an attempted attack. We developed a new approach
to penetration testing that leverages two recently-developed
analysis techniques. The first is a static analysis technique
for identifying potential IVs, and the second is a dynamic
analysis to automate response analysis. In the information



gathering phase, our approach leverages the static analysis
technique to analyze the code of the application and iden-
tify IVs, how they are grouped (i.e., which sets of IVs are
accessed together by a servlet), and their domain informa-
tion (i.e., IVs’ relevant values and type constraints). In the
attack generation phase, our approach targets the identified
IVs and uses the domain and grouping information to gener-
ate realistic values for the penetration test cases. Finally, in
the response analysis phase, our approach uses the dynamic
analysis technique to assess in an automated way whether
an attack was successful.

In the rest of this section, we explain the details of our
approach to penetration testing. We divide the discussion of
or approach based on the three phases of penetration testing
and explain how our approach performs each one. Where
applicable, we illustrate the advantages of our approach us-
ing the example from Section 2. We also present, in Sec-
tion 3.4, the details of our tool implementation.

3.1. Information Gathering

During the information gathering phase, testers analyze
the target application to identify information that may be
useful to generate attacks. In particular, testers are inter-
ested in gathering information about the application’s IVs—
their names, groupings, and domain information. Web
crawlers are currently one of the most popular and widely-
used techniques for discovering this type of information.
However, as we discussed in Section 2, web crawlers are
limited by their purely black-box nature and generally dis-
cover incomplete information. Conversely, our static anal-
ysis technique is complete since it performs a conservative
analysis to identify IVs. Although the conservative nature
of the analysis may lead to the identification of spurious
IVs, this does not affect the effectiveness of penetration test-
ing and, in the worst case, can only result in the generation
of additional test inputs.

The static analysis performed by our approach is based
on a technique,WAM , that was developed by two of the au-
thors [12]. We provide a high-level overview of this anal-
ysis and explain how we leveraged it for the purpose of in-
formation gathering during penetration testing. TheWAM

technique analyzes the code of a web application in two
phases and produces a listing of all of the IVs in the ap-
plication together with their groupings and domain infor-
mation. In the first phase,WAM computes domain infor-
mation for IVs in the application by identifying chains of
definitions and uses (DU chains) that start with the return
value of a parameter function. For each DU chain,WAM

checks for typecasts, value equality comparisons, and spe-
cific API calls that allow for inferring information about
the domain of the IVs accessed via that parameter func-
tion. (Note that, at this time,WAM does not account for
more complex domain constraints, such as regular expres-

sions or relational operators.) To illustrate with an example,
consider the IV accessed at line 2 of the example servlet
in Figure 2, whose value is assigned to variableaction.
Variableaction is used at lines 3 and 14. From these
uses,WAM can infer that “createLogin” and “provideAd-
dress” are relevant values for the accessed IV. Similarly, for
the IV accessed at line 4,WAM can infer from the use at
line 6 that the domain of the IV should be alphanumeric.
In its second phase, theWAM analysis groups IVs accessed
along the same path of execution and identifies the names
of the individual IVs. To avoid an expensive per-path anal-
ysis,WAM uses an iterative data-flow algorithm to compute
the groupings. To identify the names of IVs,WAM tries to
resolve the value of the parameter passed to the parameter
functions. In our example, this is always a string constant,
but the analysis can handle more complicated cases where
this is a string expression involving values defined in dif-
ferent methods. In the example servlet the second phase of
WAM would identify the following three groupings of IVs:
{“userAction”}, {“userAction,” “login,” “password”} and
{“userAction,” “login,” “address”}.

Our approach leverages theWAM analysis to produce IV
information that is then provided as input to the attack gen-
eration phase. To better tailor the analysis to penetration
testing, our approach extendsWAM with heuristics for iden-
tifying error checking patterns in the web application code,
such as checks for empty strings or null values. Our ap-
proach eliminates values associated with such checks from
the domain information because we found that they typi-
cally lead to test inputs that cause a properly handled error
and are unlikely to facilitate successful attacks.

3.2. Attack Generation

During the attack generation phase, testers use the in-
formation gathered in the previous phase to create attacks
on the target application. To do this, a tester typically tar-
gets each identified IV using a set of attack heuristics, while
supplying realistic and “harmless” input values for the other
IVs that must be part of a complete request. The identifi-
cation of suitable realistic input values for the IVs not in-
volved in an attack is a crucial part of this process. Tradi-
tionally, testers would determine such values by interacting
with the developers, using values supplied as defaults in the
web pages examined during the previous phase, or gener-
ating random strings. Although practical, these approaches
may not provide realistic values that will enable a vulnera-
bility to be exposed, as we illustrated in Section 2.

Our approach addresses this problem by using the do-
main and grouping information identified by theWAM anal-
ysis to provide relevant values for all IVs that are not being
injected with potential attacks. Our approach does not cre-
ate new attack heuristics; it provides a way to generate more
realistic and relevant values for the penetration test cases.



To illustrate with an example, we use one of the IV
groupings identified by the information gathering phase
for the example servlet in Figure 2:{“login,” “password,”
“userAction”}. During attack generation, the testers would
target each of these IVs with possible injections based on
some attack heuristics. When the first IV, “login,” is tar-
geted, both our approach and traditional approaches would
generate an attack string and use it as the value for “login.”
The difference between our approach and other approaches
is how the values for the other IVs are determined. Our
approach leverages the domain information discovered by
WAM , which would result in using an alphanumeric value
for “password” and setting “userAction” first to “createL-
ogin” and then to “provideAddress.” The use of this do-
main information allows the penetration test cases to pass
the checks at lines 3 and 6, and thus successfully exploit the
vulnerability at line 9. In contrast, approaches that do not
have this domain information would have to either involve
the developer, which would affect the practicality of the ap-
proach, or use random values, which would be unlikely to
satisfy the domain constraints on the IVs.

3.3. Response Analysis

In the response analysis phase, testers analyze each web
page that the target application returns after an attempted
attack. The purpose of the analysis is to determine if the at-
tack succeeded and extract any additional information that
was revealed in the response. Because manual checking of
web pages is extremely time consuming and error-prone,
testers typically use automatable heuristic-based tools to
check whether an attack was successful. For example, some
tools search the text in the resulting web page for exceptions
thrown by the database. Other tools compare the content
generated by a servlet in response to an attack and a legal
access and look for significant changes that would indicate
that the attack was successful. Unfortunately, the success
of these approaches is highly application specific, and it is
difficult to identify automated heuristics that are broadlyap-
plicable. In fact, our experience shows that attempts to do
so can be highly ineffective. (See Section 4.4.)

In our approach, we improve the accuracy of response
analysis by incorporating an automated injection detector
based on a technique,WASP, that was developed by two of
the authors in previous work [10, 11]. TheWASP technique
uses positive tainting to track all of the trusted strings in
an application that may be used to build a database com-
mand. At runtime,WASP uses syntax-aware evaluation to
ensure that only trusted strings are used to form the parts of
a database command that correspond to SQL keywords and
operators. If a database command violates this policy, it is
prevented from executing on the database. To useWASP in
the context of penetration testing, we extended it so that it
adds a special HTTP header to the application’s response

when it detects an attack. The header informs the response
analysis that a performed attack was successful. The re-
sponse analysis can thus correlate this information with the
information provided by the attack generator to identify and
report each vulnerable IV and the attack that was able to re-
veal the vulnerability.

To illustrate the response analysis with an example, con-
sider the SQLIA presented in Section 2 that targets line
9 of the servlet in Figure 2. Before the servlet executes,
WASPperforms positive tainting and marks all of the trusted
strings in the servlet. In the example, the trusted strings are
all of the hard-coded strings used to build database queries
at lines 9 and 19. (The other hard-coded strings are also
marked as trusted, but are not used to build database queries,
so we do not discuss them further.) At runtime,WASP tracks
the trust markings on the strings. When the servlet attempts
to execute a database query,WASP checks the string that
contains the query to be executed. In this checkWASP

parses the string using the database’s parser and verifies
that every substring that represents a keyword or operator
was generated using a trusted string. Referring back to the
example SQLIA, this check would reveal that the keyword
“DROP” was generated using a string that was not trusted.
This causesWASP to block the attack and return the special
HTTP header that flags a detected attack.

3.4. Implementation

We implemented our approach in a prototype tool called
SDAPT (Static and Dynamic Analysis based Penetration
Testing). SDAPT is implemented in Java, works on Java-
based web applications, and performs penetration testing
for discovering SQLIA vulnerabilities. The high-level ar-
chitecture ofSDAPT is shown in Figure 3.SDAPT inputs the
code of a web application (i.e., a set of servlets in bytecode
format) and produces a report with a list of the successful
SQLIAs and the corresponding vulnerable IVs. We chose
SQL injection as our attack type because there are a large
number of web applications that contain SQLIA vulnerabil-
ities.

Theinformation gatheringmodule analyzes the servlets’
code and outputs information about the IVs of each servlet.
For this module, we used the adapted implementation of the
WAM analysis described in Section 3.1.

The attack generationmodule consists of several sub-
modules. Thecontroller inputs the IV-related information
and passes the IV groups, one at a time, to theIV selec-
tor. The IV selector, in turn, iterates over each of the IVs
in a group and, for each selected IV, passes it to theattack
heuristicsmodule, which generates possible attack strings
for the IV. The injection enginegenerates penetration test
cases by combining these attack strings for the selected IV
and legitimate values for the remaining IVs in the current
IV group. To generate legitimate values, the engine lever-



Attack generation

Servlets

Information 
gathering

WAM

IV-related 
information

(IVs,
domain,
grouping)

Penetration
testing
report

Controller

IV group

IV selector

IV to be
injected

Attack 
heuristics

IV's attack
strings

Injection 
engine

Attack

Web
server

Response

Response analysis

WASP

Figure 3. High-level architecture of the SDAPT tool.

ages the IVs’ domain information. The generated attacks
are then sent to the target web application. In our imple-
mentation, thecontroller was built from scratch, whereas
to implement theIV selector, attack heuristics, and injec-
tion enginemodules, we modified parts of the code base of
SQLMAP.3 We chose to use SQLMAP as the basis for our
implementation for several reasons. First, SQLMAP is a
widely used, popular, and actively maintained penetration
testing tool for discovering SQLIA vulnerabilities. Sec-
ond, the architecture of SQLMAP is highly modular, which
made it easier to integrate it in our tool. Finally, SQLMAP

contains heuristics for performing many different types of
SQLIAs and can interact with a wide range of applications
that communicate using different HTTP based mechanisms.

The response analysismodule receives the HTML re-
sponses generated by the target web application and ana-
lyzes them to determine whether the attack was successful.
It then associates this information with the IV under test.
After all of the responses have been analyzed, the output
of this module is a report that lists all of the vulnerable IVs
with the test inputs that were able to reveal the vulnerability.
The implementation of this module is based on an extended
version ofWASP (see Section 3.3), which was developed by
two of the authors in previous work [10, 11].

4. Empirical Evaluation
The goal of our empirical evaluation is to assess the use-

fulness of our penetration testing approach, implemented in
theSDAPT tool, when compared to a traditional penetration
testing tool. To do this, we measureSDAPT’s practicality
in terms of the time and resources needed to perform the
information gathering and attack generation phases,thor-
oughnessin terms of the number of IVs and components

3http://sqlmap.sourceforge.net/

tested, andeffectivenessin terms of the number of vulnera-
bilities discovered. Our evaluation addressed the following
research questions:

RQ1: Is SDAPT practical in terms of its time and resource
requirements?

RQ2: DoesSDAPT result in more thorough testing of a web
application than a traditional approach?

RQ3: Is SDAPT’s response analysis more accurate than a
heuristic-based approach?

RQ4: DoesSDAPT’s information gathering lead to the dis-
covery of more vulnerabilities than a traditional approach?

As an instance of a traditional approach, we imple-
mented an improved version of SQLMAP,3 the penetration
testing tool we discussed in Section 3.4. The improved tool,
SQLMAP++, extends SQLMAP in two ways. First, we inte-
grated a web crawler into SQLMAP to perform information
gathering. Web crawling is one of the most widely-used
techniques for gathering information about a web applica-
tion and is thus a good representative of current approaches.
We used a web crawler based on the OWASP WebScarab1

project and modified it so that it collects IVs and any default
values for these IVs in the web pages it visits. (The default
values are used as possible values for the IVs during attack
generation.) Second, we integrated our improved response
analysis (see Sections 3.3 and 3.4) into SQLMAP.

Note that, in the implementation ofSDAPT and
SQLMAP++, we maximized the amount of code reused
wherever possible. In particular, the two tools use the same
attack heuristics from the original SQLMAP tool. Also
SQLMAP++ andSDAPTuse the same implementation of the
response analysis.



Subject LOC Classes Servlets

Bookstore 19,402 28 27
Checkers 5,415 59 32
Classifieds 10,702 18 18
Daffodil 18,706 119 70
Empl. Dir. 5,529 11 9
Events 7,164 13 12
Filelister 8,671 41 10
Office Talk 4,670 63 39
Portal 16,089 28 27

Table 1. Subject web applications.

4.1. Experiment Subjects

In our evaluation, we used the nine Java-based web ap-
plications listed in Table 1. Five of these applications
(Bookstore, Classifieds, Empl. Dir., Events, and Portal) are
commercial open-source products available from GotoCode
(http://www.gotocode.com/). Two of the subjects,
Checkers and Officetalk, are student-developed projects that
have been used in previous studies [9, 10]. Filelister and
Daffodil are open source projects available from Source-
Forge (http://sourceforge.net/).

The GotoCode and student-developed subjects contain
a wide range of security vulnerabilities. The remaining
two applications contain specific and known vulnerabili-
ties that have been reported in the Open Source Vulnera-
bility Database (http://osvdb.org/). Table 1 lists, for
each subject application, its number of lines of code (LOC),
classes (Classes), and classes that are servlets (Servlets)

4.2. RQ1: Practicality

To evaluate the practicality of our approach, we com-
pared the analysis time ofSDAPT andSQLMAP++, and the
number of test cases they generated during penetration test-
ing. For the analysis time ofSQLMAP++, we measured
the time needed to crawl and analyze an application’s web
pages. ForSDAPT, we measured the time to statically ana-
lyze each application. The results of this study are shown
in Table 2. The table lists, for each subject and each of the
two tools, theanalysis timeand thenumber of test cases
generated.

The results in the table show that both analysis time
and number of test cases are higher forSDAPT than for
SQLMAP++. The analysis time ofSQLMAP++ ranges from
five to 79 seconds, with an average of about 24 seconds.
The analysis time ofSDAPT ranges from two to almost 39
minutes, with an average of about 16 minutes. Despite be-
ing higher thanSQLMAP++’s analysis time,SDAPT’s anal-
ysis time is still clearly practical. Moreover, this time cost
is typically incurred only once per application because the

Analysis time (s) Number of test cases
Subject SQLMAP++ SDAPT SQLMAP++ SDAPT

Bookstore 40 2,322 802 14,711
Checkers 5 146 5 492
Classifieds 79 1,797 544 8,557
Daffodil 13 1,271 442 20,698
Empl. Dir. 15 449 223 3,237
Events 11 853 106 3,746
Filelister 6 862 45 4,465
Office Talk 5 477 18 208
Portal 45 726 393 9,266

Table 2. Practicality results.

IV information is computed once and then simply reused
during attack generation.

In terms of number of test cases generated,SDAPT con-
sistently generated at least an order of magnitude more test
cases thanSQLMAP++. This result is somehow expected,
given SDAPT’s more complete identification of IV-related
information; richer IV information is likely to result in more
test cases being generated. Although a higher number of
test cases results in more testing time, the maximum testing
time for the subject considered was below ten hours, which
would not prevent the test cases from being run overnight.
Moreover, as our results for RQ2 and RQ4 show, the addi-
tional test cases always result in a more thorough penetra-
tion testing and in the discovery of more vulnerabilities.

4.3. RQ2: Thoroughness

To evaluate the thoroughness of our approach, we mea-
sured the number of IVs and components tested bySDAPT

andSQLMAP++. In general, a higher number of tested IVs
and components indicates that more points in the applica-
tion are being exercised to assess whether they contain vul-
nerabilities. To determine the number of IVs tested, we an-
alyzed the attacks generated by the two tools and counted
the number of unique IV names targeted for each servlet of
each subject application. Similarly, to determine the num-
ber of components tested, we counted the number of unique
components targeted in each application. Table 3 shows the
results of this analysis. For each subject and each tool, the
table lists the number of unique IVs (Number of IVs) and
the number of unique components (Number of Comp.) ex-
ercised during the penetration testing.

As the results in the table show,SDAPT resulted in a con-
sistently higher number of tested IVs and components than
SQLMAP++. On average,SDAPT tested 111 IVs and 20
components per application, compared to the 56 IVs and
eight components per application tested bySQLMAP++.

To better understand the reason forSDAPT’s perfor-
mance, we manually inspected the code of several servlets
in the subject applications. We found thatSQLMAP++



Number of IVs Number of Comp.
Subject SQLMAP++ SDAPT SQLMAP++ SDAPT

Bookstore 104 189 15 27
Checkers 5 69 2 20
Classifieds 61 118 10 18
Daffodil 107 165 7 39
Empl. Dir. 36 66 6 9
Events 44 79 8 12
Filelister 12 46 1 9
Office Talk 16 58 5 20
Portal 123 211 20 27
Average 56 111 8 20

Table 3. Evaluation of thoroughness.

tested less components mainly because many of the web
pages in the web applications are not linked to each other.
Therefore, the crawler was not able to reach all of the pages
in an application, and the attack generation based on the
information collected by the crawler never targeted the un-
reachable pages. These unreachable pages also partly ex-
plain why SDAPT was able to test a higher number of IVs.
However, this was not the only reason for this difference,
as our inspection also revealed two other reasons. The first
reason is that several components require the crawler to pro-
vide specific IV values in order to display subsequent web
forms (as in our example in Figure 2). Because the crawler
was not able to guess these values, it could not reach these
subsequent web forms and missed their IV information. The
second reason is that several components have IVs that do
not have a corresponding web form—they were “hidden”
IVs. These IVs may have been developer errors or IVs
intended only for use by other components without going
through a web form.

Overall, the higher number of tested IVs and components
provides evidence that our penetration testing approach can
result in a more thorough testing of a web application.

4.4. RQ3: Response Analysis Effectiveness

We evaluated the effectiveness of our technique for re-
sponse analysis independently from the effects of the im-
proved information gathering approach. To do this, we
also implemented a version ofSQLMAP++ that did not in-
clude our response analysis technique and used the standard
heuristic-based response analysis provided by SQLMAP.
We call this versionSQLMAP++NORA. We then measured
the number of vulnerabilities discovered bySQLMAP++
andSQLMAP++NORA when run on all subject applications.
The results of this study are shown in Table 4 under the
columns titledSQLMAP++NORA andSQLMAP++.

As the results in the table show,SQLMAP++NORA was
unable to recognize any vulnerabilities in the subject appli-
cations. In contrast, using the improved response analysis,

Number of Vulnerabilities
Subject SQLMAP++NORA SQLMAP++ SDAPT

Bookstore 0 7 11
Checkers 0 0 2
Classifieds 0 4 14
Daffodil 0 6 11
Empl. Dir. 0 1 11
Events 0 4 11
Filelister 0 1 1
Office Talk 0 2 12
Portal 0 11 17
Total 0 36 90

Table 4. Evaluation of effectiveness.

SQLMAP++ discovered a total of 36 vulnerabilities. This re-
sult indicates that, although SQLMAP may be able to gener-
ate inputs that cause SQLIAs, its response analysis is totally
ineffective. Our manual inspection of the generated attacks
and results revealed that, in most cases, an attempted at-
tack did not have any observable effect on the HTML re-
sponse from the attacked servlet. In the few cases where
there was a change in the HTML response, the change was
subtle enough that the heuristic-based analysis was not able
to determine whether it was a normal variation in output or
the result of a successful attack. For example, one case in-
volved a page that listed results extracted from a table. A
successful attack caused the page to list a specific set of re-
sults, but nothing about these results clearly indicated the
effect of an attack (i.e., the same results might have been
generated by a successful query). Therefore, a heuristic that
simply checks differences between HTML responses would
be unable to determine if the variation in the listed results
was due to an attack. Manual inspection of the results might
have been able to recognize the attack, but manually check-
ing each attempted attack is, in general, impractical and er-
ror prone.

Overall, these results motivate the need for improved re-
sponse analysis and indicate that our proposed technique for
response analysis is effective and is an important part of our
approach for penetration testing.

4.5. RQ4: Information Gathering Effective-
ness

To evaluate the effectiveness of our technique for infor-
mation gathering, we measured the number of vulnerabili-
ties discovered bySQLMAP++ andSDAPT. As with RQ3,
we ran both tools against each of the subject applications.
Table 4 shows the results of this study. For each applica-
tion, we list the number of vulnerable IVs discovered by
SQLMAP++ andSDAPT.



The results in the table show thatSDAPTwas able to dis-
cover considerably more vulnerabilities thanSQLMAP++.
SDAPT discovered a total of 90 vulnerable IVs as compared
to 36 found bySQLMAP++. Of particular interest are the
results for the applications with known vulnerabilities. For
Filelister, both tools were able to discover the single known
vulnerable IV. For Daffodil, there were two known vulnera-
ble IVs. SQLMAP++ discovered an additional 4, andSDAPT

discovered an additional 9.
In addition to discovering more vulnerabilities, our ap-

proach also had a very low false positive rate. We manually
inspected each reported vulnerability in order to determine
if it was a real vulnerability or a false positive. We found
that SQLMAP++ reported three false positives andSDAPT

reported two false positives. These were not included in
the vulnerability totals in Table 4. For both approaches, the
false positives were caused by limitations in the implemen-
tation of WASP, and could be eliminated with further engi-
neering.

Overall, our results show that, at least for the sub-
jects considered, our approach can outperform more tradi-
tional penetration testing techniques and that our informa-
tion gathering technique plays an important role in the ef-
fectiveness of our approach.

4.6. Threats to Validity

In this section, we outline the possible threats to validity
of our empirical evaluation and explain how we addressed
each threat.

Construct Validity: Construct validity is straightfor-
ward in our empirical evaluation, as we use typical metrics
for evaluating the thoroughness, effectiveness, and practi-
cality of our approach. For thoroughness, the number of
IVs and components tested is a common measure for both
penetration and regular testing. For effectiveness of pene-
tration testing, the number of vulnerabilities is by far the
most commonly accepted metric. Similarly, for practical-
ity, analysis time and used resources are generally accepted
metrics.

Internal Validity: For internal validity, we must ensure
that variances in the dependent variable (measure of thor-
oughness, effectiveness, and practicality) can be attributed
to variances in the independent variable (the information
gathering and response analysis). To ensure this, we used
the same attack heuristics in both tools. The tools differed
only in the information gathering, use of the gathered infor-
mation, and response analysis. We also deployed the subject
applications with the same configuration when testing them
with the two approaches.

External Validity: The primary concern is whether the
results could generalize to more web applications and au-
tomated penetration testing tools. Our set of subject appli-
cations consisted of nine subjects that came from several

different sources: commercial open-source, auto-generated
code, and student-developed projects. More subjects would
obviously enhance the validity of the studies, but we feel
that the range in size, source, and type of application pro-
vides us with a reasonably representative set of subjects.
SQLMAP is a widely used penetration testing tool that has
an architecture and approach similar to many other penetra-
tion testing tools. In particular, it uses widely-recognized
attack heuristics for discovering vulnerabilities to SQLIAs
in web applications.

5. Related Work
A technique by Miller, Fredricksen, and So [17], called

fuzzing, was an early influential work that led to the devel-
opment of many subsequent penetration testing techniques.
In their work, Miller and colleagues submitted byte streams
of random data to common UNIX utilities to assess whether
they could crash them. This technique was later adopted
and expanded by many testers to discover bugs and secu-
rity vulnerabilities [20]. Although the concepts and princi-
ples behind penetration testing have been known for quite
some time, it was not until recently that penetration test-
ing began to receive significant attention [21]. Geer and
Harthorne provided an early definition of the goals and tech-
niques of penetration testers [8]. Subsequent work has mo-
tivated the need for penetration testing and proposed ways
to incorporate the technique into software engineering pro-
cesses [2, 3].

In the area of information gathering techniques to sup-
port penetration testing, there has been very limited re-
search work. Most of the work in the area has been com-
mercially oriented and focused on improving web crawl-
ing techniques, such as OWASP’s WebScarab web crawler,1

or on developing new vulnerability scanners, such as Nes-
sus4 and Nikto.5 Notable research contributions in this area
include the development of an advanced web crawler by
Huang and colleagues [14], and a technique by Elbaum and
colleagues [5] that interacts with a web application at run-
time to identify IVs and possible domain information. Since
these techniques are both dynamic techniques based on web
crawling, they cannot provide guarantees of completeness
and have limitations similar to those of other web crawling
techniques. However, as compared to our static approach,
these types of technique would be advantageous in situa-
tions where the source code is unavailable or cannot be stat-
ically analyzed due to resource constraints.

Our information gathering technique more broadly re-
lates to techniques that address the problem of interface
identification in web applications. In this area, there has
been a fair amount of work. Early techniques relied on
developer-provided specifications [1, 15, 18], which does

4http://www.nessus.org/
5http://www.cirt.net/nikto2



not fit well into the usage scenario of penetration testing,
where oftentimes the vulnerabilities are found in IVs that
are unknown or untested by the developers. Several tech-
niques [6, 7, 16, 19] use session data and user logs to iden-
tify relevant information about the monitored web applica-
tions. These techniques have limitations similar to those as-
sociated with web crawlers, as they can only analyze parts
of a web application that have been visited.

The technique most closely related to our information
gathering technique is the one proposed by Deng, Frankl,
and Wang [4]. Their technique scans the code of an appli-
cation and identifies the names of all IVs. However, unlike
our technique, it does not group them based on paths of ex-
ecution or determine possible relevant values for each IV,
which reduces the effectiveness of the technique for pene-
tration testing.

6. Conclusion
In this paper we proposed an approach and tool for pen-

etration testing that addresses two of the shortcomings of
existing penetration testing techniques. First, our approach
identifies the input vectors of a web application in a conser-
vative way and improves on traditional, purely black-box
approaches. Second, our approach uses an automated tech-
nique to assess whether an attempted attack was success-
ful, which results in the identification of a higher number
of attacks and, ultimately, in the discovery of a higher num-
ber of vulnerabilities. We created a prototype tool,SDAPT,
that implements our penetration testing approach. In our
empirical evaluation, we comparedSDAPT against a state-
of-the-art penetration testing tool in terms of practicality,
thoroughness, and effectiveness in testing nine web appli-
cations. The results of our evaluation show thatSDAPT can
perform a more thorough testing and discover more vulnera-
bilities than a traditional tool. Therefore, the results provide
evidence that our penetration testing approach is, at leastfor
the applications considered, practical and effective.

Acknowledgements
This work was supported in part by NSF awards CCF-

0725202 and CCF-0541080 to Georgia Tech.

References
[1] A. A. Andrews, J. Offutt, and R. T. Alexander. Testing Web

Applications by Modeling with FSMs. InSoftware Systems
and Modeling, pages 326–345, July 2005.

[2] B. Arkin, S. Stender, and G. McGraw. Software penetration
testing.IEEE Security & Privacy, 3(1):84 – 87, 2005.

[3] M. Bishop. About Penetration Testing.IEEE Security &
Privacy, 5(6):84–87, 2007.

[4] Y. Deng, P. Frankl, and J. Wang. Testing Web Database Ap-
plications.SIGSOFT Software Engineering Notes, 29(5):1–
10, 2004.

[5] S. Elbaum, K.-R. Chilakamarri, M. F. II, and G. Rother-
mel. Web Application Characterization Through Directed
Requests. InInternational Workshop on Dynamic Analysis,
May 2006.

[6] S. Elbaum, S. Karre, and G. Rothermel. Improving Web Ap-
plication Testing with User Session Data. InInternational
Conference on Software Engineering, November 2003.

[7] S. Elbaum, G. Rothermel, S. Karre, and M. F. II. Leverag-
ing User-Session Data to Support Web Application Testing.
IEEE Transactions On Software Engineering, 31(3):187–
202, March 2005.

[8] D. Geer and J. Harthorne. Penetration testing: a duet. In
Proceedings of the 18th Annual Computer Security Applica-
tions Conference., December 2002.

[9] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dy-
namically Generated Queries in Database Applications. In
Proc. of the 26th International Conference on Software En-
gineering, May 2004.

[10] W. Halfond, A. Orso, and P. Manolios. Using Positive Taint-
ing and Syntax-Aware Evaluation to Counter SQL Injec-
tion Attacks. InProceedings of the ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, Novem-
ber 2006.

[11] W. Halfond, A. Orso, and P. Manolios. WASP: Protect-
ing Web Applications Using Positive Tainting and Syntax-
Aware Evaluation. IEEE Transactions on Software Engi-
neering, 34(1):65–81, 2008.

[12] W. G. Halfond and A. Orso. Improving Test Case Genera-
tion for Web Applications Using Automated Interface Dis-
covery. InProceedings of the ESEC/SIGSOFT Symposium
on the Foundations of Software Engineering, Sep. 2007.

[13] W. G. Halfond, J. Viegas, and A. Orso. A Classification of
SQL-Injection Attacks and Countermeasures. InProc. of the
Intl. Symp. on Secure Software Engineering, Mar. 2006.

[14] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application
Security Assessment by Fault Injection and Behavior Mon-
itoring. In Proc. of the 12th International World Wide Web
Conference, May 2003.

[15] X. Jia and H. Liu. Rigorous and Automatic Testing of Web
Applications. In6th IASTED International Conference on
Software Engineering and Applications, November 2002.

[16] C. Kallepalli and J. Tian. Measuring and Modeling Usage
and Reliability for Statistical Web Testing.IEEE Transac-
tions on Software Engineering, 27(11):1023–1036, 2001.

[17] B. P. Miller, L. Fredriksen, and B. So. An empirical study
of the reliability of UNIX utilities. Communications of the
ACM, 33(12), 1990.

[18] F. Ricca and P. Tonella. Analysis and Testing of Web Appli-
cations. InInternational Conference on Software Engineer-
ing, May 2001.

[19] J. Sant, A. Souter, and L. Greenwald. An Exploration of Sta-
tistical Models for Automated Test Case Generation. InPro-
ceedings of the International Workshop on Dynamic Analy-
sis, May 2005.

[20] M. Sutton, A. Greene, and P. Amini.Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley, 2007.

[21] H. H. Thompson. Application penetration testing.IEEE
Security & Privacy, 3(1):66 – 69, 2005.


