
What is keeping my phone awake?
Characterizing and Detecting No-Sleep Energy Bugs in

Smartphone Apps

Abhinav Pathak
Purdue University

pathaka@purdue.edu

Abhilash Jindal
Purdue University

jindal0@purdue.edu

Y. Charlie Hu
Purdue University

ychu@purdue.edu

Samuel P. Midkiff
Purdue University

smidkiff@ecn.purdue.edu

ABSTRACT
Despite their immense popularity in recent years, smartphones are
and will remain severely limited by their battery life. Preserv-
ing this critical resource has driven smartphone OSes to undergo
a paradigm shift in power management: by default every compo-
nent, including the CPU, stays off or in an idle state, unless the app
explicitly instructs the OS to keep it on! Such a policy encumbers
app developers to explicitly juggle power control APIs exported
by the OS to keep the components on, during their active use by
the app and off otherwise. The resulting power-encumbered pro-
gramming unavoidably gives rise to a new class of software energy
bugs on smartphones called no-sleep bugs, which arise from mis-
handling power control APIs by apps or the framework and result
in significant and unexpected battery drainage.

This paper makes the first advances towards understanding and
automatically detecting software energy bugs on smartphones. It
makes the following three contributions: (1) we present the first
comprehensive study of real world no-sleep energy bug character-
istics; (2) we propose the first automatic solution to detect these
bugs based on the classic reaching definitions dataflow analysis al-
gorithm; (3) we provide experimental data showing that our tool
accurately detected all 14 known instances of no-sleep bugs and
found 30 new bugs in the 86 apps examined.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Design, Experimentation, Measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’12, June 25–29, 2012, Low Wood Bay, Lake District, UK.
Copyright 2012 ACM 978-1-4503-1301-8/12/06 ...$10.00.

Keywords
Smartphones, Mobile, Energy, Energy-Bug, No-Sleep-Bug.

1. INTRODUCTION

1.1 Motivation
Smartphones have surpassed desktop machines in sales in 2011

to become the most prevalent computing platforms [1]. To enrich
the user experience, modern day smartphones come with a host of
hardware I/O components embedded in them. The list of compo-
nents broadly fall into two categories: traditional components such
as CPU, WiFi NIC, 3G radio, memory, screen and storage that are
also found in desktop and laptop machines, and exotic components
such as GPS, camera and various sensors. And they differ from
their desktop/laptop counterparts in that power consumed by indi-
vidual I/O components is often comparable to, or higher than, the
power consumed by the CPU.

This, along with the fact that smartphones have limited battery
life, dictates that energy has become the most critical resource of
smartphones. Preserving this crucial resource has driven smart-
phone OSes to resort to a paradigm shift in component power man-
agement. On desktop machines, where the CPU accounts for a
majority of the energy consumption, the default energy manage-
ment policy is that the CPU stays on (or runs at a high frequency)
unless an extended period of low load has been observed. The pol-
icy is consistent with the historical notion that energy management
is a second class citizen since machines are plugged into a power
source [2]. Smart phones, in sharp contrast, make power manage-
ment policy a first class citizen. In fact, the power management
policy on smartphones has gone to the other extreme: the default
power management policy is that every component, including the
CPU, stays off or in an idle state, unless the app explicitly instructs
the OS to keep it on!

In particular, all smartphone OSes, e.g., Android, IOS, and Win-
dows Mobile, employ an aggressive sleeping policy which put the
components of the phone to sleep, i.e., puts them into an idle state
immediately following a brief period of user inactivity. In the idle
state, the smartphone as a whole draws near zero power, since
nearly all the components, including CPU, are put to sleep. Such
a sleeping policy is largely responsible for prolonged smartphone
standby times – smartphones can last dozens of hours when idle.

The aggressive sleeping policy, however, severely impacts smart-

267

phone apps, since an app may be performing critical tasks by inter-
mittently interacting with the external world using various sensors.
For example, an app syncing with a remote server over the network
may appear to perform no activity when waiting for the server to
send its reply, and the system may be put to sleep by the aggres-
sive sleeping policy, leaving the remote server with a view of lost
connectivity.

To avoid such disruptions due to the aggressive sleeping policy,
smartphone OSes provide a set of mechanisms for app developers
to explicitly notify the OS of their intention to continue using each
component. In particular, the OS exports explicit power manage-
ment handles and APIs, typically in the form of power wakelocks
and acquire and release APIs [3], for use by the app developer to
specify when a particular component needs to stay on, or awake,
until it is explicitly released from duty.

We argue such explicit management of smartphone components
by app developers has presented to the app developer a profound
paradigm shift in smartphone programming that we call as power-
encumbered programming. This new programming paradigm
places a significant burden on developers to explicitly manipulate
the power control APIs (§4.1 details one such example of the bur-
den placed on developer due to power encumbrance). This ma-
nipulation is required to ensure the correct operation of the apps.
Consequently, power-encumbered programming unavoidably gives
rise to a new class of software energy bugs on smartphones, called
no-sleep bugs. No-sleep bugs are defined as energy bugs resulting
from mis-handling power control APIs in an app or framework,1

resulting in the smartphone components staying on for an unneces-
sarily long period of time. No-sleep bugs form one important cat-
egory of the family of smartphone energy bugs which are defined
in [4] as errors in the smartphone system (an app or the framework,
the OS, or the hardware) that cause an unexpectedly high energy
consumption by the system as a whole.

Discussions of energy bugs on numerous Internet forums have
narrowed the causes to mis-handling of power control APIs by apps
and the framework on smartphones OSes, including Android, IOS,
and Windows Mobile. Our recent survey [4] has found that 70%
of all energy problems in apps and frameworks reported by mobile
users were due to no-sleep energy bugs. These and other types of
energy bugs have caused a great deal of user frustrations. Despite
their severity, i.e., high battery drain, to the best of our knowledge
there has been no study of any kind of smart phone energy bugs,
much less no-sleep energy bugs. Drawing parallels with research
on traditional software bugs (e.g., concurrency bugs in concurrent
programs [5]), a comprehensive treatment of energy bugs on smart-
phones will require (1) a good understanding of real world energy
bug characteristics, learned from common mistakes programmers
make in writing smartphone apps, to lead to effective debugging
techniques; and (2) developing multi-faceted approaches to elim-
inating energy bugs, including avoiding energy bugs during app
development (e.g., by providing better programming language sup-
port for power management) and compile and runtime detection.

1.2 Our Contributions
This paper takes the first steps towards understanding and auto-

matically detecting software energy bugs on smartphones. Specifi-
cally, our paper makes three concrete contributions:

(1) The first characterization study of no-sleep energy bugs in
smartphone apps: We present the first comprehensive real world
no-sleep energy bug characterization study. Our study is based on
no-sleep energy bugs in real world apps and the Android frame-

1In this paper, we use the term framework to refer to both the ser-
vices in and the apps that are bundled with, the Android framework.

work, including popular apps (e.g., Facebook) and built-in (i.e.,
shipped with) apps and services (e.g., the Android email app). The
bugs are collected by crawling Internet mobile forums, bug repos-
itories, commit logs of open source Android apps and by running
our no-sleep bug detector developed in this paper. For each bug,
we carefully examine its reported symptoms, corresponding source
code and related patches (when available), and developer’s discus-
sions (when available), or the analysis performed by our bug de-
tector. Our study reveals a taxonomy of three major causes of no-
sleep energy bugs, which provide useful guidelines and hints to
designing effective detection techniques. Our study also confirms
the significant burden power-encumbered programming places on
app developers. For example, making a single outgoing or incom-
ing phone call in Android involves about 40 invocations of power
control APIs in the Dialer app and the framework’s Radio Inter-
face Layer services to dynamically manage the power control of
the CPU, screen, and other sensors!

(2) The first solution to automatically detect no-sleep energy
bugs: We make the key observation that power control APIs are
explicitly embedded in the app source code by the app developers,
and two out of the three causes for no-sleep energy bugs from our
characterization study are because a turn-on API call is missing a
matching turn-off API call before the end of the program execu-
tion. We thus propose a compile-time solution based on the classic
reaching definitions dataflow analysis problem [6] to automatically
infer the possibility of a no-sleep bug in a given app. Our solution
detects no-sleep bugs in single-threaded and multi-threaded apps,
as well as event-based apps which have multiple entry points. Like
all static analysis based tools, our detection tool can suffer false
positives but has the tremendous advantage of no runtime overhead
and no false negatives (to the best of our abilities of establishing
the ground truth).

We further present the complete implementation of our static
analysis detection tool for apps written for Android. The tool is
capable of running directly on the app installers (.apk files) and
hence source code is not required. Our implementation handles
the specifics of event-driven mobile programming and of the Java
language such as runtime null pointer exceptions and object refer-
ences.

(3) Detecting new no-sleep bugs in Android apps and framework:
We have run our no-sleep bug detection tool on 86 Android apps
and the framework collected from the Android market. Experimen-
tal evaluation shows that our tool accurately detected all reported
instances of no-sleep bugs, as well as 30 instances of new previ-
ously unreported no-sleep bugs. These include no-sleep bugs in
many popular apps, e.g., the default Android Email app. Our no-
sleep bug detection incurred false positives in 13 out of the 55 apps
it reported to contain a bug.

2. POWER ENCUMBERED
PROGRAMMING

In this section, we first describe the energy management APIs
and their semantics that are exposed to the developers in the An-
droid smartphone OS, and discuss the burden they impose on the
app developers. We first discuss programming APIs for traditional
components (e.g., screen, CPU) and then for exotic components
(e.g., GPS, Camera). We also discuss the issues arising from event
based programming model of smartphone apps. We then introduce
the prominent class of energy bugs studied in this paper: no-sleep
bugs.

268

Table 1: Summary of power operations exported by Android APIs.

Component lock/manager name Component(s) Battery Drain Comments
(API to start/stop) up to (%/hr)

Traditional Components
PARTIAL_WAKE_LOCK (acquire/release) CPU 5% CPU runs despite any timers

SCREEN_DIM_WAKE_LOCK (acquire/release) CPU and Screen (DIM) 12% No illumination if shutdown, else
illuminates till lock release (Flag
ACQUIRE_CAUSES_WAKEUP
forces illumination in all cases)

SCREEN_BRIGHT_WAKE_LOCK (acquire/release) CPU and Screen (bright) 25%
FULL_WAKE_LOCK (acquire/release) CPU, Screen (bright) and Key-

board backlight
25%

Exotic Components
PROXIMITY_SCREEN_OFF_WAKE_LOCK (acquire/release) Screen, Proximity Sensor 25% Screen shuts if sensor activates

LocationManager (requestLocationUpdate/removeUpdates) GPS 15% Tracks user location
SensorManager (registerListener/unregisterListener) Accelerometer, Gyro, Proximity Sensormanager class controls

Magnetic Field, etc. [8] 10% various sensors on phone
MediaRecorder (start/stop) Mic/Camera (for video) 20% Usually stores media on sdcard

Camera (startPreview/stopPreview) Camera (for still pictures) 20% One app at a time registers camera

Listing 1: An example power wakelock usage.

1 PowerManager.WakeLock wl = pm.newWakeLock(PowerManager.
PARTIAL_WAKE_LOCK);

2 wl.acquire(); //CPU should not go to sleep
3 net_sync(); //Perform critical task here
4 wl.release(); //CPU is free to sleep

2.1 Managing Traditional Components
The Android framework exports wakelock functionality through

PowerManager.Wakelock 2 class, with 4 different options and
associated APIs for managing several traditional components: CPU,
screen, and the keyboard backlight. A wakelock is an instance
(object in Java) of the wakelock class, instantiated using one of
4 options, and each option has a different effect on the hardware
component, as summarized in Table 1. For example, option FULL
_WAKE_LOCK instantiates a lock that when acquired both keeps the
CPU and screen on at full brightness and turns on the keyboard
backlight.

Listing 1 illustrates a basic wakelock usage: how to ensure that
the CPU does not sleep during some critical phase. The app de-
clares a wakelock (pm is an instance of PowerManager) and then
acquires it, which instructs the OS not to put the CPU to sleep,
irrespective of user activity, since it intends to perform some criti-
cal task. Once the critical task (in this case a remote network sync
net_sync()) is completed the app releases the wakelock, indi-
cating to the OS that CPU can now sleep according to its sleeping
policies.
Semantics: The above simple usage of a wakelock is just like a
conventional mutual exclusion lock, i.e., an app explicitly acquires
and releases it to instruct the OS to switch the component on and
off, respectively. Like an object a wakelock can be shared among
several threads of a process. The semantics of wakelocks, how-
ever, are quite different from those of conventional mutual exclu-
sion locks.

First, as shown in Table 1, a single wakelock (instantiated with
one of the four options) controls one or more components. Sec-
ond, the power control effect of a single wakelock depends on the
configuration of that wakelock: a wakelock can be configured to be
reference counted [9]. In an almost peculiar sense, it is more like
a condition variable when configured not to be reference counted,
and a semaphore when configured to be reference counted.

We first consider non-reference counted wakelocks. An
acquire() on a released or fresh instance of wakelock wakes up

2Apps need android.permission.WAKE_LOCK permission from
users to use this class.

the corresponding component (the ACQUIRE_CAUSES_WAKEUP flag
wakes up the screen), or keeps the component awake if it is already
so. In other words, an acquire() called on an already acquired
wakelock is treated as a nop. Similarly, a release() called on
an acquired wakelock sets the component free to sleep as far as the
perspective of this wakelock is concerned, irrespective of the num-
ber of times an acquire() has been called on the lock. In this
sense, a non-reference counted wakelock is like a condition vari-
able.

In contrast, reference counted wakelocks are like semaphores.
Each acquire() of a wakelock increments the internal counter as-
sociated with the (instance of) wakelock, and a release() decre-
ments the internal counter. It only lets the component sleep (from
the perspective of this wakelock) if the internal counter value reaches
0. A release is a nop3 in other cases.

To make matters even more complicated, an acquire can also
be called with a timer [10], which instructs the system to release it
automatically once the timeout interval expires.

Third, the above power control semantics are from the perspec-
tive of one wakelock. Unlike traditional mutual exclusion locks,
different wakelocks (even instantiated with different options) on the
same component can be held by multiple entities (e.g., processes
and threads) in the system at the same time. Even a single entity
may hold multiple (instances of) wakelocks on the same compo-
nent. The power control effect on a component must take into ac-
count the state of all wakelocks. The component is switched on
when the first wakelock is held. Only when all the wakelocks from
all the entities for the component are released, taking into account
the reference counting semantics for each, can the component go
to sleep, subject to higher level sleeping policies (administered by
framework processes), e.g., sleep after 5 seconds of user inactivity.

This demonstrates the new programming burden inflicted on app
developers: power management is no longer just a transparent OS
or driver task; the developers now need to perform explicit power
management in the app layer.

2.2 Managing Exotic Components
In addition to traditional components, modern smartphones come

with several “exotic” components embedded in them. These in-
clude GPS, camera, several sensors such as an accelerometer, prox-
imity sensor, and gyroscope. Some of these components are the
biggest energy consumers in smartphones, e.g., GPS and camera,
and drain the battery at a high rate [11, 12, 13].
3Newer Android APIs throw an exception when release() is called
on an unacquired wakelock. Hence, a release is usually called after
testing if the lock is currently held (using API wakelock.isHeld()).

269

Unlike some of the traditional components, e.g., WiFi NIC, the
new exotic components are used in an explicit on-off fashion. For
example, the GPS is explicitly turned on, using the OS exported
API, to acquire the smartphone location and in this state it con-
sumes battery at a high rate. Once the location is determined, the
component is explicitly turned off, triggering the component to re-
turn to a low power state.

Like wakelocks, the explicit power management of exotic com-
ponents places a significant programming burden on app develop-
ers. An incorrect or inefficient use of these APIs can easily lead
to poor utilization of these components, wasting significant battery
energy (see §2.4).
Semantics: Table 1 lists the APIs exported by Android for access-
ing the exotic components. Their semantics of power control of
these components is similar to the plain wakelocks in §2.1, i.e., no
reference counting or timer-based release.

In summary, the developers are burdened with explicitly manip-
ulating power control APIs for both traditional and exotic smart-
phone components to ensure the correct operations of the apps.
We call this new smartphone programming paradigm as power-
encumbered programming.

2.3 Issues from Event-based Programming
The complexity of power-encumbered programming is exacer-

bated by the event-based nature of smartphone apps. Compared
to programming in desktop/server environments, smartphone pro-
gramming is event-oriented because of the inherit interactive nature
of phone apps. A typical user-facing smartphone app is written as
a set of event handlers with events being user or external activities.
The developer needs to keep track of each possible event and when
it may be triggered, and manipulate the wakelocks accordingly.

We illustrate how the level of complexity introduced by power-
encumbered programming is exacerbated by event-based program-
ming through a concrete example from the Dialer app [14] that
comes with the Android framework.

The Dialer app implements the dialing functionality of the
phone. The app is triggered when the user receives an incoming
call or when the user clicks the phone icon to make an outgo-
ing call. To implement its functionality, the app explicitly main-
tains three wakelocks: FULL_WAKE_LOCK for keeping the screen on
(e.g., in situations like when the user is dialing the numbers to call),
PARTIAL_WAKE_LOCK for keeping the CPU on (e.g., in case of an
incoming call when the phone is switched off), and PROXIMITY
_SCREEN_OFF_WAKE_LOCK which switches the proximity sensor
on and off (to detect user’s proximity to the phone).

To manage the three wakelocks, the app explicitly maintains a
state machine where the states represent the lock behavior, i.e.,
which lock needs to be acquired and which needs to be released,
and the “condition” of the phone represents the state transitions.
The conditions are diverse and include events such as (a) if the
phone gets a call, (b) if the phone is pressed against the user’s ear
in which case the proximity sensor triggers the screen to go off,
(c) if the call ends, (d) if a wired or bluetooth headset is plugged
in (e.g., in the middle of a call), (e) if the phone speaker is turned
on, (f) if the phone slider is opened in between calls, and (g) if the
user clicked home button in the middle of a call. For each of these
triggering events, the phone changes the state of wakelock state
machine, acquiring one and releasing another.

In addition to wakelocks in the Dialer app, the Radio Interface
Layer (RIL) in Android maintains additional 5 wakelocks to han-
dle incoming and outgoing calls. Using explicit component access
tracing through an instrumented Android framework running on a
Google Nexus One handset, we observed that performing a single

outgoing or incoming call in Android resulted in 30-40 distinct in-
stances of wakelock acquires and releases!

2.4 No-Sleep Bugs
The new burden of explicit component power manipulation from

power-encumbered programming, combined with the complexity
of handling events in the app behavior, can easily overwhelm de-
velopers and lead to programming mistakes in manipulating the
power control APIs. Incorrect or inefficient usage of such APIs can
lead to an unexpected drain of the phone battery, known as no-sleep
bugs [4].

A “no-sleep bug” is a condition where at least one component of
the phone is woken up and is not put to sleep due to a mistake in
manipulating power control APIs in an app. The component that
is woken up continues to drain the battery for a prolonged period
of time, resulting in severe and unexpected battery drain. Typically
the battery drain continues until the app is forcefully killed4 or the
system is rebooted.

No-sleep bugs form one of the most important categories of soft-
ware energy bugs in smartphone apps [4]. Unlike regular software
bugs in apps, energy bugs do not lead to an app crash or OS blue
screen of death [4]. An app hit by an energy bug continues to pro-
vide the intended functionality, with a single difference: the phone
suffers a severe, unexpected battery drain. The severity of the en-
ergy drain due to the bug depends on the component that is not
put to sleep. As shown in Table 1, for each of the 3 components
(GPS, Screen with full or low brightness and camera), the impact
of a no-sleep bug can be severe with the battery draining at a rate
of 10-25% every hour5 without any user interaction.

For other components, e.g., the CPU and proximity sensor, the
battery drains at a relatively low rate - up to 5% every hour. When
a CPU wakelock (PARTIAL_WAKE_LOCK) is held, it prevents the
CPU from ‘freezing’, a state where it would consume zero power
(IDLE state). In a wakelock held state, the CPU draws minimal
power (depending on the CPU specifications of the handset). How-
ever, as the CPU remains on, other activities continue to run, e.g.,
WiFi NIC chatters, background periodic OS processes, hardware
interrupts handling by OS, etc. These activities together consume,
as measured on Google Nexus One, about 5% of the battery every
hour. Any additional user activity is not accounted for in this. As
a result, over a long period of time, say 12 hours, an only-CPU
wakelock bug can drain about 50-60% of the battery without any
user interaction or performing necessary activities.

3. METHODOLOGY
To characterize the root cause of no-sleep bugs observed in cur-

rent mobile apps, we collected no-sleep bugs in smartphone apps
in four ways. (a) Mobile forums: We crawled 4 popular mobile
Internet forums (the same as in [4]): one general forum with dis-
cussions covering all mobile devices and OSes, and three OS/com-
pany specific mobile forums. In total we crawled 1.2M posts, from
which we filtered out posts related to no-sleep bugs in smartphone
apps. For each app reported by the user to contain a no-sleep bug,
we downloaded the binary installers of the version of the app that
was reported to contain the bug and the first version which had the
problem solved. We then decompiled the app from binary installers

4In Android, apps (esp. background services) are not killed; they
run in background once a user stops interacting with them. They
are usually killed by the system only in case of memory pressure.
5These rates were calculated using HTC nexus and magic handsets
running Android. A fully charged battery holds between 1100mAH
to 1500mAH of charge.

270

to Java source code using ded6 [16]. For apps that were suc-
cessfully decompiled (e.g., FaceBook), we studied the root cause
of no-sleep bugs. (b) Bug lists: We crawled mobile bug repos-
itories of open source mobile frameworks like Android [17] and
Maemo [18]. We extracted bugs reported with no-sleep conditions
and extracted the source code (open source) of the versions that
actually contained the bugs (e.g., no-sleep bug in Android SIP Ser-
vice [19]) and its patch (if available). (c) Open source code repos-
itories: We scraped the commit logs of open-source Android apps
hosted on online code repositories like github [20]. We extracted
the commit logs of no-sleep bug fixes and downloaded the versions
both before and after the fix. (d) Running our no-sleep bug de-
tection tool: Finally, we ran our solution of automatically detecting
no-sleep bugs developed in this paper on 86 Android apps and the
stock framework and discovered 42 apps with no-sleep code-paths
as detailed in §6, §7 and §9 (labeled with “*” in Table 2). These
apps are used in the characterization study in §4.

4. CHARACTERIZING NO-SLEEP BUGS
Using the bug-collection methodology described above, we now

present a case-study of no-sleep bugs observed in smartphone apps.
We characterize the root cause and impact of the bugs. Table 2
gives a summary of the three general categories of no-sleep bugs
we have identified and their impact. Drain time shows the amount
of time it will take to drain a fully charged battery under typical
usage.7 Without the bugs, it takes about 15 hours to drain a fully
charged battery. The bug references in Table 2 refer to both the
bug fix commit logs and user complaints about specific apps on
Android bug repositories, all of which indicate the real impact and
user frustration caused by the no-sleep bugs. The first two cate-
gories, No-Sleep Code Paths and No-Sleep Race Condition, exhibit
typical symptoms of no-sleep bugs where a component is not put to
sleep at all, whereas the third category, no-sleep dilation, represents
the scenario where a component was held on much longer than the
programmer’s intention (on the order of hours). Below we present
an in-depth analysis of these three categories of no-sleep bugs.

4.1 No-Sleep Code Path
The root cause for most of the observed no-sleep bugs in a sin-

gle threaded activity was the existence of a code path in the app
that wakes up a component, e.g., by acquiring the wakelock for
the component, but does not put the component back to sleep, e.g.,
there is no release of the lock. This category captures a majority of
the no-sleep bugs we have observed in our bug collection.

We observed three causes for the existence of a code path where
the component was switched on but not put to sleep.

The first cause is that the programmer simply forgot to release
the wakelock throughout the code, or the programmer released the
lock in the if branch of a condition but not in the else branch.
Although it seems like a simple mistake, this does happen in real
apps. For example, a version of the Agenda widget [21] contained
such a no-sleep bug.

The second cause is that the programmer did put code that re-
leases the component wakelock on many code paths, but the code
took an unanticipated code path during execution along which the
component was not put to sleep. Listing 2 shows a code-snippet

6Not all app binaries could be transformed into (meaningful)
source code, especially the ones that have been obfuscated dur-
ing compilation (using tools like proguard [15]), e.g., the NYTimes
Android app.
7Typical usage assumes that the phone is used actively by a user for
20% of the total time. Drain times are calculated using the energy
drain rate in the bug state measured on the HTC Nexus phone.

Listing 2: No-sleep bug: different code paths.

1 try{
2 wl.acquire(); //CPU should not sleep
3 net_sync(); //Throws Exception(s)
4 wl.release(); //CPU is free to sleep
5 } catch(Exception e) {
6 System.out.println(e); //Print the error
7 } finally {
8 } //End try-catch block

that represents a typical template of a no-sleep bug where an app
takes a different, somewhat unanticipated code path after waking
up a component and therefore does not put it back to sleep. As in
Listing 1, the critical task in the app, net_sync(), is protected
by acquiring and releasing the CPU wakelock instructing the CPU
not to sleep during the remote syncing phase. However, routine
net_sync() may throw exceptions [41], a Java language mech-
anism for notifying apps of some failure conditions, such as a con-
nect to a remote end host failed, a string could not be parsed to
integer, or a specific file to be opened does not exist. A thrown
exception is explicitly caught by the try’s catch block which
simply prints the exception for debugging purposes. Now the no-
sleep bug can manifest itself in the following code path. First the
try block executes and acquires the wakelock. Next a call is is-
sued to the critical task, net_sync(). If an exception is raised
inside net_sync(), the control directly jumps to the catch block,
the debug output is printed, and the code exits the try catch block.
Consequently, the code-path followed does not release the wake-
lock, keeping the CPU on indefinitely. To fix this problem, the
wakelock should be released in the finally block so that it is
always executed.

A large number of no-sleep bugs are caused by this second rea-
son. These include popular apps such as FaceBook [22], Agenda
widget [21] (another version), MyTrack [25] (no sleep of GPS),
BabbleSink [26], CommonsWare and apps [27], as well as ser-
vices that come with the Android framework, such as Android Tele-
phony [28], Android Exchange [29, 30], and WifiService [31]. For
example, in SIP service [19], the wakelock was not released since
the objects containing the wakelocks were deleted and so the lock
handlers were deleted along with them.

The third cause for a no-sleep code path is that a higher level
condition (like an app level deadlock) prevented the execution from
reaching the point where the wakelock was to be released. This is
likely to happen in smartphone programming because event-based
programming of smartphones can lead to many possible code branches
(as in the example of the Android Email app) that makes it diffi-
cult for the programmer to anticipate all the possible code paths
and keep track of the wakelock state. LocationListener [33,
34] in the Android framework contained such a no-sleep bug. The
developer did release the wakelock, however, a higher level app
deadlock prevented the code from entering the release phase of the
app.

Finally, the most common pattern of no-sleep code-path bug is
a result of the fact that developers do not properly understand the
life-cycle of Android processes. In Android, an app activity once
started is always alive. When the user exits any app, Android saves
the state of the app and passes it back to the app if the user returns
to it. The app is only completely killed when the phone is critically
low on RAM or when the app kills itself. This methodology is used
to reduce the startup time of the app and to maintain its state.

This essentially means that the app may not actually be destroyed
for very long periods of time. But many app developers only re-
lease the wakelock in the onDestroy() call-back, instead of in

271

Table 2: No-sleep bug case study. Entries with (F) represent bugs in the Android framework, and with (*) represent new bugs found by our technique.

App Description Bug Description Drain Ref.

No-Sleep Code Paths

Agenda Widget Popular Android widget
managing news/calendar

Two bugs were reported in difference versions (a) not all branches release wakelocks in
AlarmService; (b) programmer forgot to call wakelock release after acquiring it.

9 hrs [21]

FaceBook The default FaceBook
App v 1.3.0

facebook.katana.HomeActivity, the central Activity, acquires wakelock to
run FaceBookService. Not all possible branches in the service release wakelocks.

9 hrs [22]

k9mail One of the most popular
email client for Android

Per-thread wakelock maintained. Wakelock acquired when IMAP DONE was sent, but
was not released in MessagingControllerPushReceiver during IDLE stat

9 hrs [23]

CheckinMaps Visual stories on maps GPS remains on, even when user closes the app (calling the onPause() handler). 5 hrs [24]

(*) MyTrack Track User Path online GPS remains on, even after user navigates away from the app draining battery. 5 hrs [25]

BabbleSink Find phone’s location A NullPointerException causes the thread to exit without releasing wakelock. 9 hrs [26]

CommonsWare Android Training Book Wakelock released without finalize. 9 hrs [27]

Sip Service (F) Std. voice protocol im-
plementation in Android

A Sip handler (object) was deleted which had wakelocks acquired before releasing the
wakelock. The deleted handlers can not perform release() to release the wakelocks.

9 hrs [19]

Telephony (F) Telephony Handler: RIL
service in Android code

Android telephony does not release the partial wakelock right away if there is an error in
sending the RIL request, preventing the phone to go in power collapse draining battery.

9 hrs [28]

(*) Android Ex-
change (F)

The default email app in
Android framework

During background syncing of mailboxes in an exchange account, the app acquires
wakelock and does not release in all failure conditions, specifically in IOExceptions.

9 hrs [29]
[30]

WifiService (F) Android WiFi Handlers CPU does not go to sleep during a message removal and wakelock was held forever. 9 hrs [31]

PowerManager(F) PowerService Android Two instances of wakelocks are not released inPowerManagerService in Android. 9 hrs [32]

LocationListener
(F)

GPS handling library in
Android framework

A deadlock in LocationManagerService for releasing wakelocks after client no-
tifications have been received prevented the release of the wakelocks draining battery.

9 hrs [33]
[34]

No-Sleep Race Condition

(*) Android Email
app (F)

Default Android email
app performing sync

Race condition between email synchronizing thread and the main thread which kills the
synchronizing thread resulted in a shared wakelock to remain in acquired state after exit.

9 hrs [35]
[36]

No-Sleep Dilation

MyTrack Track User Path online Wakelock acquired and released much before and after the required functionality in app. 9 hrs [25]

GoogleBackup (F) Cloud backup [37] Wakelock reported to be held for a long duration of time (up to an hour) in poor network. 11 hrs [38]

GPS Driver (F) Android GPS handler Wakelocks are being held for longer than needed in low level GPS driver code. 15 hrs [39]

Google Maps Android Google maps App was reported to hold wakelock for several hours even when it was not used. 10 hrs [40]

Listing 3: Wakelock Complexity

1 @Override protected void finalize(){
2 /**
3 * It is understood that This finializer is not
4 * guaranteed to be called and the release lock
5 * call is here just in case there is some path
6 * that doesn’t call onDisconnect and or
7 * onConnectedInOrOut.
8 */
9 if (mPartialWakeLock.isHeld()) {

10 Log.e(LOG_TAG, "[CdmaConn] UNEXPECTED; mPartialWakeLock
is held when finalizing.");

11 }
12 releaseWakeLock();
13 }

onPause(). onDestroy() is only called when the app com-
ponent is about to be destroyed. As a result, once an app with this
bug is started, the phone will only sleep when it is running critically
low on memory (which may take a long period of time).

Manually tracking all possible code paths for wakelock ac-
quire/release appears to be a daunting task for app developers.
Listing 3 shows an example of the complexity involved in power-
encumbered programming. This is a code-snippet from the An-

droid framework’s class CdmaConnection. This class uses a
PARTIAL_WAKE_LOCK for managing the connection and re-
leases the wakelock when the connection is disconnected. How-
ever, there are many different possible program paths arising
from different patterns of user interactions, hardware states de-
pendent on the external environment, etc. The developer included
releaseWakeLock in finalize as an additional safety mea-
sure, even though finalize is not guaranteed to be called. This
example shows the need for an automated tool that can aid devel-
opers in checking all possible program paths for no-sleep bugs.

4.2 No-Sleep Race Condition
The second category of no-sleep bugs we observed was cause by

race conditions in multi-threaded apps. Specifically, we observed
that the power management of a particular component was carried
out (i.e., switched on and off) by different threads in the app. In the
common case, one thread switches the component on, and some
time later another thread switches the component off, resulting in
the normal behavior of component utilization. However, in a corner
case condition, it can happen that the thread that switches on the
component gets scheduled to run after the thread that switches the
component off, resulting in a no-sleep bug with the component left

272

Listing 4: No-sleep bug: race condition.

1 public void Main_Thread(){
2 mKill = false; //Unset kill flag
3 wl.acquire(); //CPU should not sleep
4 start(worker_thread); //Start worker
5 //....Do Something
6 mKill = true; //Set kill flag
7 stop(worker_thread); //Signal worker
8 wl.release(); //CPU can sleep now
9 } //End Main_Thread();

10 public void Worker_Thread(){
11 while(true){
12 if(mKill) break; //Break if flagged
13 net_sync(); //Critical task
14 wl.release(); //Rel. wl before sleep
15 sleep(180000);//Sleep for 3 minutes
16 wl.acquire(); //CPU should not sleep
17 } //End while loop;
18 } //End Worker_Thread();

on. Effectively there is a race condition between the manipulation
of the wakelock by the two threads.

Listing 4 shows a code snippet of a no-sleep bug caused by a race
condition. Main_Thread runs first, acquiring a wakelock (waking
up a component, e.g., the CPU), and then fires Worker_Thread

which periodically executes a critical task, e.g., syncing stock up-
dates. After every synch Worker_Thread gives up the lock, sleeps8

for 3 minutes (allowing the CPU to sleep), and re-acquires the lock
after waking up. This process is repeated in an infinite loop un-
til Worker_Thread is notified by Main_Thread using the mKill
flag to break out of the loop. To initiate the termination of the app,
Main_Thread sets the mKill flag, and calls the API stop to sig-
nal Worker_Thread to initiate the halt which wakes Main_Thread
up if it is in sleep state. Main_Thread releases the wakelock after
calling stop.

In the normal scheme of things, the code in Listing 4 exe-
cutes without any energy bug. However, consider the follow-
ing sequence of events. Main_Thread sets the mKill flag, sig-
nals Worker_Thread to stop, and releases the wakelock. Then
Worker_Thread wakes up, acquires the lock and exits the loop
because of the mKill flag. As a result, the wakelock remains held
by the app and is never released. A key point to note here is that
the semantics of the stop() API called by Main_Thread does
not guarantee that the return from the call will be synchronized,
i.e., only after Worker_Thread exits. Had that been the case, there
would have been no race condition and hence no no-sleep bug in
the app.

Tracing no-sleep bugs in app source code caused by race condi-
tions is particularly hard since it requires enumerating all the pos-
sible execution orderings of the threads. However, using our auto-
matic techniques for detecting no-sleep bugs presented in §7, we
were able to detect an instance of a no-sleep bug caused by a race
condition in the Android Email App [35, 36, 42], which had a sim-
ilar pattern as shown in Listing 4.

4.3 No-Sleep Dilation
This category of no-sleep bugs differs from the first two cate-

gories in a single aspect: the component woken up by the app is
ultimately put to sleep by the app, but only after a substantially
longer period of time than expected or necessary. For example,
consider the code in Listing 1. Suppose routine net_sync() usu-
ally finishes in a few seconds, but during a particular run it hangs

8We assume that the sleep API call used in Listing 4 registers a
wakeup timer with the CPU, which in case the phone freezes during
the app sleep, wakes up the CPU at the end of the timeout.

for an unexpected length of time before it returns, the the battery is
drained for that prolonged period of time.

While it is arguable that keeping the system on during the execu-
tion of a critical task, no matter how long it takes, was indeed the
intention by the app developer, we characterize such situations as
the third category of no-sleep energy bugs, no-sleep dilation. These
are considered no-sleep energy bugs for the following reasons: (a)
such instances of prolonged component wakeup are usually unex-
pected, even by the app developer, as we found by reading the log
of code commits; (b) the mobile programming API documentation
strictly warn developers not to keep the components awake for pro-
longed periods of time unless it is actually required, e.g., in the
Skype app, where a user performing a video call requires the com-
ponents (screen, CPU) to be switched on from the start till the end
of the call irrespective of how long the call persists; (c) instances of
no-sleep bugs in this category were observed to cause severe frus-
tration among smartphone users since the energy drain was both
severe and unexpected; and (d) the root cause of such prolonged
completion time of critical tasks was usually because of a higher
level bug (i.e., programming mistake) in the code, which signifi-
cantly inflated the running time of critical task.

We found two causes for no-sleep dilation in smartphone apps:
app delay and app optimizations. We first discuss the dilation
caused by app delay in the GPS driver [39] in Android. The driver
held wakelocks for longer than needed. In some circumstances, af-
ter holding the wakelock, the driver issued a wait, waiting for an
event. However, after being signaled, a second wait was issued
causing another wait until the driver was signaled again. All this
was done while holding a wakelock. As a result, a higher level
bug in handling signals extended the time period the wakelock was
being held.

Another cause of no-sleep dilation observed in the apps we stud-
ied results from poor placement of component wakeup code in the
app. For example, consider the code in Listing 1. The dilation
could happen if the app developer, instead of just protecting the
critical part net_sync(), wrapped a large piece of code in wake-
locks. We observed such a bug in the MyTrack app [25] where
the developer acquired the CPU wakelock the moment the app was
turned on and released it when the app completed. However, the
critical part of the code was only the period where the user clicked
the track button for location tracking.

5. DEBUGGING NO-SLEEP BUGS
Two general approaches exist to understanding program be-

havior: those done at compile-time and those done at run-time.
Compile-time approaches incur no run-time overhead. While a
run-time approach can gather perfect, or near perfect information
about a given run, a compile-time approach will (conservatively)
determine facts that may be true on any run. Because of the run-
time overhead, compile-time approaches are preferred when they
are sufficiently accurate, as is the case with our problem. In this
paper, we present a static, compile-time solution for detecting no-
sleep energy bugs in smartphone apps.

Our solution treats the acquire and release of a wakelock l as
a definition of (assignment to) the variable vl corresponding to l.
A definition d of a variable vl is said to reach some point p in a
program if there exists a path from d to p that does not redefine
vl. Therefore, if a definition of vl corresponding to acquiring a
wakelock reaches the end of some code region there exists a no-
sleep code path in the region. Thus, detecting no-sleep code paths
corresponds exactly to the reaching definitions (RD) dataflow prob-
lem [6], which can be solved by a standard compile-time dataflow
analysis.

273

We first present, in §6, our solution when only a single thread
is being analyzed, and then, in §7, show how to apply the problem
to multi-threaded smartphone apps to detect no-sleep bugs arising
from races. We leave detecting and debugging no-sleep dilation
bugs as future work.

6. NO-SLEEP CODE PATHS
We first give an overview of dataflow analysis, and then describe

our solution as a dataflow analysis problem.

6.1 Dataflow Analysis: An Overview
Dataflow analysis refers to a set of techniques that ascertain facts

about program properties by analyzing the effects of statements
along different paths of a control flow graph (CFG) on those prop-
erties. There exist many useful dataflow analysis, e.g., RD (dis-
cussed above), live variable analysis (which variable values are
used after a block), and available expressions (which subexpres-
sions have already been computed and are unchanged yet).

Each node in a CFG is a basic block of statements, i.e., the block
has exactly one entry point and one exit point. There exist a di-
rected edge (Bi, Bj) in the CFG connecting every pair of blocks
Bi, Bj such that block Bj can execute immediately after block Bi.
There is also an edge from every exception to every catch that
might catch it. Figure 1 shows an example of a dataflow graph.
Two special blocks are added to the CFG: ENTER and EXIT. There
exists an edge from ENTER to every block Bi �= ENTER with no
predecessor, and an edge from EXIT to every block Bj �= EXIT
with no successor. A forward dataflow analysis propagates facts
about the program from the ENTER to the EXIT node while a back-
ward analysis propagates information backwards through the graph
from the EXIT to the ENTER node.

Each node in the CFG is annotated with two sets: GEN and KILL.
The KILL set contains facts in the analysis that become false in this
node, and the GEN set contains facts that become true. Each node
also has an IN and an OUT set. The sets associated with a block
B can be denoted as IN[B], OUT[B], GEN[B], and KILL[B]. For
a forward (backward) analysis the IN (OUT) set will contain facts
that are true immediately before the node is visited, and the OUT
(IN) set will contain facts that are true immediately after the node
is visited. The transfer function describes how the OUT (IN) set is
computed from the OUT (IN), KILL and GEN sets. For simplicity
we only consider forward analysis from this point on.

CFGs with branches contain join points where multiple paths
come together, e.g., the block containing statements d8 and d9 in
Figure 1. A meet operation decides how the values coming from
the predecessor node are combined to form the value of the IN set.
If the CFG contains cycles, an iterative algorithm that visit nodes
repeatedly is used until the analysis converges to a fixed point such
that revisiting all of the nodes does not change the values of any IN
or OUT set. The algorithm works by adding the ENTER node to a
work list. As nodes are processed, if their OUT set changes, their
successors are added to the work list. When the work list is empty
the algorithm has converged at a fixed-point.

We note that all dataflow schemas compute approximations to
the actual ground truth. The actual problem being solved is un-
decidable (e.g., constant propagation [43]). This is because it is
undecidable, in general, if a particular path along a CFG will be
taken during a program’s execution. As a result, dataflow solu-
tions return conservative or safe estimates to the actual problem. A
conservative approach guarantees that the results obtained by the
analysis will err on the side of safety. Thus while an RD analysis
may say more definitions reach some point than actually do, it will
never fail to find all definitions that do reach a program point.

6.1.1 The Reaching Definitions Dataflow Problem
The first task in applying these concepts to the RD problem is to

construct a CFG. Next, we define the GEN and KILL sets for each
block B. The last assignment to a variable v in the block creates a
definition d of v that can reach other statements outside the block,
and therefore the definition is placed in the GEN set. Thus for
block B1 of Figure 1, the definitions at d1, d2, and d3 can reach
the other blocks, and therefore are added to B1’s GEN set. The
definition of the KILL set comes from the following observation:
an assignment to some variable v in a block prevents any definition
of the variable v outside from flowing through the block. Thus any
definition outside the block become members of the KILL set. Thus
in block B5, definition d8 causes definition d4 to be in the kill set.

We now define the IN set. Consider the set of predecessors of
some block B. Any definition that is in the OUT set of one of these
predecessors can reach B, and thus is in IN[B] set of B. Therefore,
IN[B] is the union of the OUT sets of all of its predecessors, e.g.,
IN [B2] is OUT [B5] ∪ OUT [B1]. Finally, the OUT set for a
block B must be computed. The OUT set is simply the IN set
with the effects of flowing through the block applied to it. The
expression IN [B]−KILL[B] gives those definitions that reached
the block and can reach later blocks, and unioning this with the
GEN set gives all definitions that can pass through this block and
reach other blocks. Thus fB : OUT [B] = GEN [B] ∪ (IN [B]−
KILL[B]) is the transfer equation for block B.

Interprocedural analysis, which incorporates the effects of rou-
tine calls and routine arguments, is beyond the scope of this discus-
sion but is covered in detail in [44].

6.2 No-Sleep Code Path Dataflow Analysis
We now formulate the single-thread no-sleep code path prob-

lem as an RD problem, and show how to solve it using standard
dataflow analysis [6]. We only analyze non-reference counted, no-
timer wakelocks and exotic component power APIs. We leave the
study of other categories as future work.

6.2.1 No-Sleep Code Path to Reaching Definitions
For no-sleep code path analysis, we are only interested in the

points in the code path where the smartphone component power is
managed, e.g., the points in the CFG where wakelocks for the CPU
or screen are acquired or released, or points where the camera is
turned on and off. As a result, the domain of the dataflow problem
is a set consisting of component wakelocks for traditional compo-
nents and component power management assignments for exotic
components. For brevity, from now on we use wakelocks to refer
to the power control handles for both traditional and exotic compo-
nents.

Once the transformation is completed, the no-sleep code path
problem is reduced to finding the RD in the transformed CFG, i.e.,
finding which definition of a wakelock reaches the EXIT node of
the CFG. If only those definitions that declare all the variables as
0 (i.e., the component can sleep) reach the EXIT node, the code is
said to be free of no-sleep bugs, since all of the possible code paths
put all accessed components to sleep before reaching the end of the
CFG, and therefore the end of the code.

Solving the code path problem. We now show how to apply the
standard iterative algorithm for dataflow analysis to solve our no-
sleep code path problem.

For our no-sleep code path problem, the set of non-zero variable
definitions reaching the EXIT node represents the no-sleep code
path bugs in the app. Table 3 shows, for each block B, the IN [B]
and OUT [B] sets at the end of three iterations. It shows the IN [B]
and OUT [B] sets are the same at the end of the second and third

274

Figure 1: Transforming no-sleep code path into reaching definition
dataflow problem, and the resulting IN and OUT sets.

iteration, and hence the algorithm has reached a fixed-point and
converged in three iterations. The value of OUT [EXIT] in the
last iteration contains the reaching definitions at the end of the code:
all definitions but d1 and d4 can reach the end of the code, including
d2, d5 and d8 which indicate the existence of a no-sleep bug. Their
presence indicates no-sleep code paths along which a component
(GPS, camera, and CPU wakelock_2, respectively) is woken up
but not put to sleep.

6.2.2 Handling Uncaught Runtime Exceptions
Java runtime exceptions (RTE) [45] (e.g., null pointer and ar-

ray index out of bounds exceptions) can be thrown during normal
Java Virtual Machine (JVM) operations. RTEs that are handled ex-
plicitly by a try-catch block in code are handled as before by
adding a path from the source block to the handler block. However,
RTEs are often not handled by a program and the thread raising the
exception is terminated by the JVM when the exception is thrown.

Uncaught RTEs are a source of no-sleep bugs and must be han-
dled by our analysis. Consider the code in Listing 5. A CPU wake-
lock is acquired, followed by a call to the critical routine from in-
stance b. The wakelock is released after the call. If a RTE is raised
(e.g., a null pointer exception on line 3 caused by b being null),
the thread is halted. This results in a no-sleep energy bug since the
thread terminates before the wakelock is released. We identified an
instance of this bug [26] in our characterization study. Listing 6
details the patch applied by the developer to fix a null pointer RTE
(code lines appended with “-”or “+” indicate that these lines were
removed from or added to the new version, respectively). The de-
veloper added handlers for the null pointer RTE and moved the lock
release into a finally block to ensure that it is run regardless of
any exceptions.

Our technique places an edge from each RTE that is not handled
within a routine to the EXIT node for that routine. This creates a
path for a lock acquire definition to reach the exit, and could lead
to more false positives (although we have not seen that in our test
cases). Techniques such as null pointer analysis [46], ABCD [47]
for array bounds check, and RTE analysis techniques, e.g., [48] can
be used to make the analysis more precise and generate fewer false
positives.

6.2.3 Handling Event Based Entry Points
Android app programming is primarily event-based program-

ming. Unlike traditional code, where the main() routine starts the
app with the app exiting when main() returns, Android app pro-

Listing 5: No-sleep code path due to runtime exceptions.

1 wake_lock_.acquire();//CPU should not sleep
2 Object b = xyz.getObject(); //b is a reference to an

object
3 b.net_sync(); //Perform critical task here
4 wake_lock_.release();//CPU is free to sleep

Listing 6: Fixing no-sleep code path due to runtime exceptions.

1 wake_lock_.acquire();
2 - client = new AppengineClient(this);
3 Log.d(TAG, "onHandleIntent");
4 + try {
5 + client = new AppengineClient(this);
6 //....
7 + } finally {
8 wake_lock_.release();
9 + }

gramming typically consists of several functions which are event
handlers, one corresponding to each event the app handles. These
events could be a button click, an incoming call, a notification from
server, a response from a component (e.g., GPS), etc. Each event
handler is invoked when the event is fired and the handler may in
turn invoke a tree of routines underneath it before exiting.

Handling multiple entry points of an app creates a new challenge:
each handler has its own CFG,9 and a component may be turned
on in one event handler and put to sleep under another (e.g., start
camera when start button is clicked and stop camera when stop
button is clicked). However, the order of execution of the different
events, which is needed to stitch together the CFGs of different
handlers, may be unknown at compile time and depends on user
interactions.

We handle this complication as follows. (1) For common event
handlers (e.g., onCreate, onPause) which have known in-
vocation orders, we simply perform the RD analysis across them
on the combined CFG obtained from stitching together individual
CFGs following those invocation orders. For example, if a com-
ponent is not put to sleep when the app is paused after being
first created, it usually is a sign of a no-sleep bug. (2) For the
remaining handlers, we ask the developers to specify all expected
invocation orders, and then perform no-sleep bug RD analysis on
the combined CFG for these orders.

7. NO-SLEEP RACE CONDITIONS
To statically detect possible no-sleep race conditions for multi-

thread apps, we adapt the RD dataflow analysis previously devel-
oped for parallel programs [49, 50].

A multi-threaded program typically has a repeating pattern of
sequential sections ending with a thread fork, interleaved execution
of parallel threads followed by a thread join, followed by the next
sequential section in the pattern. Execution is sequential within
each thread and so a CFG can be built for the thread. CFGs for
different threads can be stitched together by connecting the fork
spawning the thread with the ENTRY node for the thread’s CFG,
and the EXIT node of the CFG with the join node using a parallel
control edge [50].

The RD analysis is now modified for this new CFG. Three obser-
vations [50] motivate these modifications. (1) All threads in a paral-
lel section are executed; (2) Any of the definitions dti, dtj , . . . , dtk
to some variable v executing in different threads, and not ordered
9We extract the entry point of an event handler, i.e., the root
of its CFG, from various .xml files in the build tree (e.g.,
Manifest.xml, main.xml).

275

Table 3: Computing IN and OUT for no-sleep code paths.

Block B OUT[B]0 IN[B]1 OUT[B]1 IN[B]2 (=IN[B]3) OUT[B]2 (=OUT[B]3)
B1 {} {} {d1, d2, d3} {} {d1, d2, d3}
B2 {} {d1, d2, d3} {d1, d2, d3, d4, d5} {d1, d2, d3, d5, d6, d7, d8, d9} {d1, d2, d3, d4, d5, d7, d9}
B3 {} {d1, d2, d3, d4, d5} {d1, d2, d3, d4, d6} {d1, d2, d3, d4, d5, d7, d9} {d1, d2, d3, d4, d6, d7, d9}
B4 {} {d1, d2, d3, d4, d6} {d1, d3, d4, d6, d7} {d1, d2, d3, d4, d6, d7, d9} {d1, d3, d4, d6, d7, d9}
B5 {} {d1, d2, d3, d4, d5, d6, d7} {d2, d3, d5, d6, d7, d8, d9} {d1, d2, d3, d4, d5, d6, d7, d9} {d2, d3, d5, d6, d7, d8, d9}

EXIT {} {d2, d3, d5, d6, d7, d8, d9} {d2, d3, d5, d6, d7, d8, d9} {d2, d3, d5, d6, d7, d8, d9} {d2, d3, d5, d6, d7, d8, d9}

Figure 2: Tracing no-sleep race bug: Parallel Flow Graph (PFG) for
code in Listing 4.

by synchronization, may be the last definition of v to execute, there-
fore no such definition ttp can be said to kill another definition dtq,
p, q ∈ {i, j, . . . , k}; (3) Any kill performed unconditionally by any
thread in a parallel section (i.e., along all sequential paths through
the thread) kills all definitions that occur before the parallel sec-
tion’s fork; (4) Any definition d performed conditionally within a
thread does not kill definitions d′ before the thread’s parallel sec-
tion’s fork since either d or d′ may reach the parallel section’s join,
and following statements. The details of modifying the dataflow
analysis to account for these additional constraints and ordering
synchronization are discussed in detail in [50] and are not repeated
here.

Figure 2 shows that the RD analysis on the PFG finds that defi-
nitions d3, d4 and d7 can reach the EXIT node. Since d7 turns on
the component, this is a no-sleep race bug.

8. IMPLEMENTATION
ProGuard Extension: We implemented no-sleep bug tracing as a
1K-LOC extension to ProGuard [15]. The ProGuard tool is used
to shrink, optimize and obfuscate Android code and helps to make
smaller .apk installer files. It builds an intermediate Representa-
tion of the input source containing CFGs that we use. We chose
ProGuard since it is integrated into the Android build system, it
automatically runs when an Android app or the framework is com-
piled and does not require a separate, manual invocation. How-
ever, source code is not required to perform the analysis since Pro-
Guard can run directly on the bytecode generated by the Java com-
piler. If we only have the .apk installer for an app we first use
use ded [16] to decompile the embedded .dex files (Dalvik Ex-
ecutable [51]) and convert them to Java bytecode (.class files).
We then run ProGuard and the no-sleep bug dataflow analysis on
the .class bytecodes.
Handling Object References and Intent Resolution: Java object
references and intent resolutions are the only indirect control trans-
fer mechanisms in the Android framework and apps. An indirect

Listing 7: Handling simple code paths.

1 wl1.acquire(); wl2.acquire(); //wakeup
2 if(wl1 != null) //if object is not null
3 wl1.release(); //release the wakelock
4 if(wl2.isHeld()) //if wl2 is acquired
5 wl2.release(); //release the wakelock

control transfer mechanism poses problems for static analysis since
it is difficult to determine at compile time which class the object is
an instance of, or which handler will service the intent, and hence
which particular method (routine) will be called. We use a con-
servative approach by analyzing all routines’ references that could
possibly be referred to at runtime.
Handling Special Code Paths: To reduce the number of false pos-
itives, we handle the two special cases shown in Listing 7. Two
wakelocks (wl1, wl2) are acquired before if conditions and are
released under their respective if. We found these two usages to
be common in mobile apps. The RD no-sleep bug analysis for code
in Listing 7 would flag both lock acquires as reaching the end of the
block since they are not released in the else branches. However,
in both cases, it is evident that there is no bug since if the wakelock
is either null or not held, it need not be released. We handle these
two common usages specially, by inserting an else branch to the
if condition which contains a definition of release().
Runtime Exceptions: In our characterization study, we did not
observe any occurrences of uncaught RTEs other than null pointer
exceptions (NPEs). Hence, in our current implementation, we only
handle NPEs. We leave handling other RTEs as future work. To
handle NPEs, we trace the null reaching definitions at each access
point of the object for every object declared in the program. If a
null definition reaches an object access point, we add a path from
that point to the EXIT node in the CFG.
Race Conditions: Our current implementation only implements
analysis for no-sleep race condition for programs without synchro-
nization points. We leave as future work extensions to handle syn-
chronization points, which can be implemented by adopting the
techniques proposed in [50].

9. EVALUATION
We now present experimental results of no-sleep bug detection

using our dataflow analysis based no-sleep bug detection tool. We
first present a summary of the detection results on 500 apps running
on Android and then discuss false positives and the runtime of the
scheme.
Methodology: We collected app installers (.apk files) for 500
apps, including popular apps like Facebook, Google apps such as
gtalk and stock apps in the Android framework including Email
and Dialer. These include all the apps listed in Table 2. Automatic
analysis of the manifest.xml file for permissions reveals that
187 apps explicitly manipulate component wake/sleep cycles. We
then decompiled the .apk installers using ded [16] and obtained

276

Table 4: Summary of detecting no-sleep code paths.

App type # Breakdown of 51 that #
breakdown contain no-sleep code paths

Total input set of apps 500 New bugs 30
Manipulated component 187 Incorrect event handling 26
Fully decompiled 86 if,else + exception paths 12
In the framework 6 Forgot release (incl. Services) 3
No-sleep code paths 42 Miscellaneous 1
True negatives 31 False positives 13

86 apps that were decompiled10 to bytecode and Java source code.
For these 86 apps, we ran our detection analysis tool directly on
the bytecode, and then used the decompiled Java source code to
identify false positives incurred by our analysis. Table 4 gives a
breakdown of the apps (left) and causes of bugs in them (right).
No-Sleep Bug Analysis: Manually enumerating all possible paths
in the program to verify the correctness of the tool along each of
those paths is not humanly possible due to the exponential number
of paths. We used the following approach. For each of the 86 apps,
we manually11 tally the no-sleep bugs (no-sleep code paths in single
threads). We then check if the bugs had been reported by the tool.
Using this approach we segregated the apps into four categories:
(a) True Positive (TP): Apps in which we manually found the bug
and it was reported by the tool; (b) True Negative (TN): Apps in
which we could not manually find bugs and the tool reported no
bug; (c) False Positive (FP): Apps in which we did not find bugs
manually, but the tool reported bugs; and (d) False Negative (FN):
Apps where we found a bug manually but the tool did not. The last
category contained no apps. Table 4 summarizes the results. We
found 31 apps in the TN set and 55 in the TP and FP sets. Below
we break down these 55 apps according to the causes.

(1) Incorrect event handling (26): The largest category of bugs
in these apps are bugs from inappropriate handling of events in An-
droid apps, specifically the handlers in the default Android activity
cycle [52]: onPause() and onStop(). An activity is a sin-
gle focused window that a user interacts with. It is the foreground
GUI part of an app that the user sees. The framework calls the
onPause() event routine of the activity in the app whenever the
activity is interrupted by another activity coming in front of it, e.g.,
an incoming phone call displaying an “incoming call-box” while
the user is playing a game. Once the activity is completely sent to
the background, i.e., the activity is no longer visible, the framework
calls onStop(). The framework calls onDestroy() when the
app finally exits.

The bug occurred in any app that wakes up a component when it
is started or resumed in the default event handlers onCreate()
or onResume(), respectively, and lets the component sleep only
when the app finally exits, in handler onDestroy(). Basically,
when such an app is interrupted during this interval by another ac-
tivity started by the user (like clicking the home screen, or start-
ing another app), the respective component is kept awake since the
original app is frozen and may not run for a long time. We observed
instances of this bug in 26 apps involving CPU wakelocks (in 23)
and GPS (in 3).

(2) if-else + exceptions (12): In 12 apps, including Agenda
Widget and Android Email App (Table 2), not all paths (using
if-else) released the component. Also, no-sleep code paths
akin to the code in Listing 2 were observed in apps including the

10Decompilation failed completely for the remaining apps, i.e., not
even a single source file was generated.

11These include leveraging bug reports when available for apps in
Table 2.

Listing 8: No-sleep code path: false positives.

1 //Use a routine to manipulate component
2 void WakeUpCPU(boolean wakeup){
3 if(wakeup) wl.acquire(); //wakeup
4 else wl.release(); //release the lock
5 } //End WakeUpCPU
6 void CriticalTask(){
7 WakeUpCPU(true); //acquire the lock
8 // Do critical task ...
9 WakeUpCPU(false); //release the lock

10 } //End CriticalTask

Facebook and Android Email apps. The component (CPU in these
cases) was not allowed to sleep in case of a thrown exception.

(3) Forgot to release a wakelock (3): In K9mail [23], Agenda
Widget [21] and SIP service [19], the programmer forgot to re-
lease the CPU wakelock. In case of K9mail, this was due to using
ThreadLocal variables for wakelocks [23].

(4) Miscellaneous (1): In Android WifiService [31], the wake-
lock is not released in all cases of received messages.

(5) False positives (13): 13 apps were reported to contain a no-
sleep path, but upon further manual analysis, they turned out to
false positives, as discussed next.

We detected a no-sleep bug caused by a race condition in the
Android Email app, as was discussed in detail in §4.2. Analyzing
multi-threaded Android apps involving explicit synchronizations is
left as future work.
Reasons for False Positives: There were two major reasons for
the false positives reported in the 13 apps: use of helper functions
or variables for component access, and interference of higher level
app logic in lock placement.

(a) Helper functions/variables (3): The code in Listing 8
describes an app using a helper function for wakelock ma-
nipulation. Routine WakeUpCPU(boolean) manipulates the
wakelock depending on the boolean input variable. Routine
CriticalTask() acquires and releases the wakelock using
the helper routine by passing true and false as input argu-
ments. RD analysis of routine WakeUpCPU(boolean) sug-
gests that one code path (the if branch of the condition) reaches
the end of the routine and hence there exists one path in routine
CriticalTask() that reaches the end of the routine with the
wakelock held.

Similarly, we found apps to use additional helper variables to
track the liveness status of the component instead of relying on
standard API routines (e.g., isHeld()) that come bundled with
the Android framework. The boolean helper variable is toggled
each time the component is switched on or off and is checked be-
fore setting the component free. This use of multiple variables to
achieve a single purpose not only results in false positives in our
static analysis of no-sleep bugs, but also was previously found to
be the root cause of multi-variable access bugs [7].

(b) Higher level App logic (10): Listing 9 demonstrates a false
positive observed in the Android Dialer app due to higher level
app logic. The incoming call handler acquires the wakelock if the
caller is not blacklisted by the user and otherwise it immediately
returns. Similarly, when the call is disconnected, the app releases
the wakelock only when the caller was not blacklisted. This in-
duces a false positive in static reaching definitions analysis since
the acquire() in HandleIncomingCall() reaches the end
of DisconnectCall(). We leave addressing this issue to future
work.
Analysis Runtime and Wakelock Statistics: Table 5 presents de-
tailed statistics of no-sleep bugs in 5 popular apps. For each app,

277

Table 5: Summary of no-sleep code paths for 5 popular apps.

App KLOC # wakelock objs Analysis
(# classes) (# acq def.) time

{# lib class} {# rel. def.} (sec)
Facebook v1.3.0 93.5 (712) {710} 1 (256) {128} 408

Telephony 74.8 (326) {495} 7 (18) {29} 53
Exchange 17.0 (626) {952} 1 (19) {12} 51
SipService 3.8 (43) {366} 2 (6) {8} 33

CW 0.3 (8) {100} 1 (1) {1} 3

Figure 3: CFG of a routine in the Android Email app.

the table shows the LOC, the number of classes in the app and in
the libraries, the number of wakelocks, and how many times they
were defined, i.e., acquired and released, and the time taken to run
the no-sleep code path analysis.

From the table we see that the runtime of the analysis varied from
3 seconds (for CommonsWare (CW), 0.3 KLOC) to 408 seconds
for FaceBook (93.5 KLOC decompiled). The 3 services that belong
to the Android framework took about 50 seconds to perform the
code analysis. Since the tool performs off-line static analysis, i.e.,
on a desktop/server, there is no energy drain on the mobile devices.
The table also shows that the Telephony service in Android holds
7 different wakelocks (all with option PARTIAL_WAKE_LOCK) with
18 acquire and 29 release definitions, for different utilities, includ-
ing CDMA connection, GSM connection, SMS Dispatcher, Radio
Interface Layer, etc. Other apps utilize one or two wakelocks.
Although the FaceBook app manipulates only one wakelock, the
wakelock APIs could be called from multiple locations, resulting
in a total of 256 acquire and 128 release definitions.
Battery Drain of No-Sleep Bugs: Table 2 lists the amount of time
it will take to drain a fully charged battery under typical usage on
the Google Nexus One phone due to the corresponding no-sleep
bugs.
Real App CFG (Android Email App): To illustrate the complex-
ity of the apps, apart from the number of lines of code and num-
ber of wakelock objects shown in Table 5, we show in Figure 3
a trimmed down version of the CFG of one of the central rou-
tines in the Android Email app, runPingLoop(). The nodes
in the graph show branch points. These include, but are not lim-
ited to, handling error conditions such as (a) PING returned empty,
(b) PING returned with a login failure, (c) NAT failure, (d) syn-
chronization aborted by the user, and (e) alarm event trigger. The
left-most node (solid black) denotes the entry point and the right-
most node denotes the exit point. The edges depicted in thick black
lines are the ones along which the CPU wakelock is being held,
while edges in dotted green lines are when wakelocks have been
released. Out of the four edges reaching the exit node, only one
reaches after releasing the wakelock.

10. RELATED WORK
Debugging in Mobile Environments: Diagnosing bugs in smart-
phone environment is a new domain, and there is little existing

Listing 9: No-sleep code path: false positives in the Dialer App.

1 void HandleIncomingCall(){
2 if(caller != BLACKLISTED) wl.acquire();
3 else return;
4 //....Handle rest of incoming call
5 } //End HandleIncomingCall
6 void DisconnectCall(){
7 if(caller != BLACKLISTED) wl.release();
8 else return;
9 //....Handle rest of disconnecting call

10 } //End DisconnectCall

work. MobiBug [53] is a framework for mobile debugging that
focuses on how to perform lightweight logging on resource-limited
smartphones. It proposes three ideas: spreading the logging task
among many phones, building a conditional distribution model for
the app behavior and its dependencies, and sampling what each
phone logs. MobiBug is designed to be a runtime traditional bug
tracing system, targeting bugs that usually result in app crashes.
However, energy bugs [4] differ from traditional bugs in that they
do not lead to any app crash; the apps continue to work normally
except that the battery drains rapidly. [4] presents a taxonomy of
many types of energy bugs in smartphones and estimates no-sleep
bugs to constitute about 70% of all energy bugs in smartphone apps.
Our paper is the first directed towards solving energy bugs in mo-
bile phones.
Applications of Reaching Definitions: Reaching definitions anal-
ysis has many uses, and most are part of the compiling folklore
(see [6]).
Debugging Software Concurrency Bugs: Debugging traditional
software bugs on non-mobile devices is a well-studied topic. There
have been several bug characterizing studies (e.g., [5, 54]) which
classify different categories of software bugs, e.g., concurrency bugs,
semantic bugs, and configuration bugs. The debugging solutions
fall into three categories: static, dynamic, or hybrid analysis. Some
examples of static analysis include Racerx [55] which uses a flow
sensitive, inter-procedural analysis to detect data races and dead-
locks, and MUVI [7] which applies data mining to infer patterns of
multi-variable access correlations. Our solution for no-sleep energy
bugs falls in the realm of static analysis, and is based on reaching
definitions analysis.

11. CONCLUSION
This paper makes the first advances towards understanding and

automatically detecting software energy bugs on smartphones. It
makes three contributions. First, it presents the first comprehensive
real world no-sleep energy bug characterization study. Our study
reveals three major causes of no-sleep energy bugs and provides
useful guidelines and hints to design effective detection schemes.
Second, it proposes the first detection solution, based on the classic
reaching definitions dataflow analysis, to automatically infer po-
tential no-sleep bugs in an app. Third, evaluation of our tool on
86 Android apps and the Android framework shows that our tool
accurately detected all reported instances of no-sleep bugs, as well
as 30 instances of new no-sleep bugs.

Our work is only the beginning of smartphone energy bug re-
search and opens a wide avenue for further studies. A sample list
of future work includes: (1) develop solutions to no-sleep dilation
bugs; (2) explore run-time and hybrid compile-time and run-time
solutions to no-sleep bugs; (3) characterize and detect other types
of energy bugs in smartphone apps; (4) understand energy bugs
in the smartphone OSes; and (5) develop better programming lan-
guage support to avoid no-sleep bugs at programming time.

278

Acknowledgments. We thank the anonymous reviewers, espe-
cially our shepherd, Maria Ebling, for their helpful comments. This
work was supported in part by NSF grant 0916901. Abhinav Pathak
was supported in part by a 2011 Intel PhD Fellowship.

12. REFERENCES
[1] “Smartphone sales overtake pcs for the first time.” URL:

http://mashable.com/2012/02/03/
smartphone-sales-overtake-pcs/

[2] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat,
“Ecosystem: Managing energy as a first class operating
system resource,” in Proc. of ASPLOS, 2002.

[3] “Android powermanager class.” URL: http://developer.
android.com/reference/android/os/PowerManager.html

[4] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy
debugging for smartphones: A first look at energy bugs in
mobile devices,” in Proc. of Hotnets, 2011.

[5] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes
— a comprehensive study on real world concurrency bug
characteristics,” in ASPLOS, 2008.

[6] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers:
principles, techniques, and tools. Pearson/Addison Wesley.

[7] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. Popa, and
Y. Zhou, “Muvi: automatically inferring multi-variable
access correlations and detecting related semantic and
concurrency bugs,” in SOSP, 2007.

[8] “Android sensorevent class.” URL: http://developer.android.
com/reference/android/hardware/SensorEvent.html

[9] “Class powermanager.wakelock: Reference count.” URL:
http://developer.android.com/reference/android/os/
PowerManager.WakeLock.html#
setReferenceCounted(boolean)

[10] “Class powermanager.wakelock: Timer based.” URL: http://
developer.android.com/reference/android/os/PowerManager.
WakeLock.html#acquire(long)

[11] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang,
“Fine-grained power modeling for smartphones using
system-call tracing,” in Proc. of EuroSys, 2011.

[12] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao,
and L. Yang, “Accurate Online Power Estimation and
Automatic Battery Behavior Based Power Model Generation
for Smartphones,” in Proc. of CODES+ISSS, 2010.

[13] A. Shye, B. Scholbrock, and G. Memik, “Into the wild:
studying real user activity patterns to guide power
optimizations for mobile architectures,” in MICRO, 2009.

[14] “Dialer app.” URL: http://www.java2s.com/Open-Source/
Android/android-platform-apps/Phone/com/android/phone/
PhoneApp.java.htm

[15] “Android proguard.” URL: http://developer.android.com/
guide/developing/tools/proguard.html

[16] “Decompiling apps.” URL: http://siis.cse.psu.edu/ded/
[17] “Android - an open handset alliance project.” URL: http://

code.google.com/p/android/issues/list
[18] “Maemo community.” URL: http://maemo.org/intro/
[19] “Sipservice: release wake lock for cancelled tasks.” URL:

https://github.com/android/platform_frameworks_base/
commit/0c01e6e060d079b0a25a44c1159db63944afce17

[20] “Github: Social coding.” URL: https://www.github.com/
[21] “Agenda.” URL: http://www.androidagendawidget.com
[22] “Facebook 1.3 not releasing partial wake lock.” URL: http://

geekfor.me/news/facebook-1-3-wakelock/

[23] “K9mail: Simplifying wakelock.” URL: http://code.google.
com/p/k9mail/source/detail?r=1696

[24] “Checkinmap: Disable location updates when checkinmap is
paused.” URL: https://github.com/jmschanck/Ushahidi_
Android/commit/
337b48f5f2725f3e84796fab12947ffbec3c0357

[25] “My tracks android app.” URL: http://mytracks.appspot.com
[26] “Babblesink: Move line inside try in case of npe before

release of wake lock.” URL: https://github.com/hatstand/
babblesink/commit/
9fbc6f01ce81ef4625a6bd62a3b4b787e6080e36

[27] “Ensuring that the wakelock is released during exception.”
URL: https://github.com/commonsguy/cwac-wakeful/
commit/c7d440f1150887bb9a1a3c44015c7579d7ab1970

[28] “frameworks/base/telephony: Release wakelock on ril
request send error.” URL: https://gist.github.com/
CyanogenMod/android_frameworks_base/commit/
133d22d577aa86a8e4095e3af29851d1bd7f7b1b

[29] “Ensure wake lock is released when an ioexception is thrown
during a sync.” URL: https://github.com/mtuton/android_
apps_email/commit/
85fec873c4413ef86d40972cc3dbe925ee23e733

[30] “Android issue #9307 fixed - partial wake lock released.”
URL: https://github.com/CyanogenMod/android_packages_
apps_Email/commit/
f53bf8f178380ed882a0fa34e10c41f9e8242b93

[31] “Wakelock issue for driver stop.” URL: https://github.com/
buglabs/android-buglabs-frameworks-base/commit/
3bf504df9fc1971078fdde7eed418a0dd8f601e2#wifi

[32] “Fix wakelock leak in
powermanagerservice.sendnotificationlocked().” URL: http://
gitorious.org/rowboat/frameworks-base/commit/
93597ed1839de164c81f83832d4c2373ea32ac8f

[33] “Using a locationlistener is generally unsafe for leaving a
permanent partial_wake_lock.” URL: http://code.google.
com/p/android/issues/detail?id=4333

[34] “Locationmanagerservice: Fix race when removing
locationlistener.” URL: https://gist.github.com/
CyanogenMod/android_frameworks_base/commit/
0528b9b26a9d64ba43acd0e334638303d514b8eb#location/
java/android/location/ILocationProvider.aidl

[35] “Email application partial wake lock.” URL: http://code.
google.com/p/android/issues/detail?id=9307

[36] “E-mail app has a bug which causes a partial wake lock to be
held until manually interrupted.” URL: http://code.google.
com/p/android/issues/detail?id=6811

[37] “Android backup service.” URL: http://code.google.com/
android/backup/index.html

[38] “Googlebackuptransport holds backup wake lock so long
which leads to high current.” URL: http://www.google.bg/
support/forum/p/Google+Mobile/thread?
tid=481ff31338a19536

[39] “Fix threading problem that resulted in the wakelock being
held too long.” URL: https://github.com/CyanogenMod/
android_hardware_qcom_gps/commit/
a162c4351926285892214b0726aaf07f0631dc72

[40] “Googlemaps holding wakelock for long.” URL: http://www.
google.com/support/forum/p/maps/thread?
tid=016d2cec36d7410b

[41] “java.lang.exception class.” URL: http://download.oracle.
com/javase/1.4.2/docs/api/java/lang/Exception.html

279

http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/
http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#setReferenceCounted(boolean)
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#setReferenceCounted(boolean)
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#setReferenceCounted(boolean)
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#acquire(long)
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#acquire(long)
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#acquire(long)
http://www.java2s.com/Open-Source/Android/android-platform-apps/Phone/com/android/phone/PhoneApp.java.htm
http://www.java2s.com/Open-Source/Android/android-platform-apps/Phone/com/android/phone/PhoneApp.java.htm
http://www.java2s.com/Open-Source/Android/android-platform-apps/Phone/com/android/phone/PhoneApp.java.htm
http://developer.android.com/guide/developing/tools/proguard.html
http://developer.android.com/guide/developing/tools/proguard.html
http://siis.cse.psu.edu/ded/
http://code.google.com/p/android/issues/list
http://code.google.com/p/android/issues/list
http://maemo.org/intro/
https://github.com/android/platform_frameworks_base/commit/0c01e6e060d079b0a25a44c1159db63944afce17
https://github.com/android/platform_frameworks_base/commit/0c01e6e060d079b0a25a44c1159db63944afce17
https://www.github.com/
http://www.androidagendawidget.com
http://geekfor.me/news/facebook-1-3-wakelock/
http://geekfor.me/news/facebook-1-3-wakelock/
http://code.google.com/p/k9mail/source/detail?r=1696
http://code.google.com/p/k9mail/source/detail?r=1696
https://github.com/jmschanck/Ushahidi_Android/commit/337b48f5f2725f3e84796fab12947ffbec3c0357
https://github.com/jmschanck/Ushahidi_Android/commit/337b48f5f2725f3e84796fab12947ffbec3c0357
https://github.com/jmschanck/Ushahidi_Android/commit/337b48f5f2725f3e84796fab12947ffbec3c0357
http://mytracks.appspot.com
https://github.com/hatstand/babblesink/commit/9fbc6f01ce81ef4625a6bd62a3b4b787e6080e36
https://github.com/hatstand/babblesink/commit/9fbc6f01ce81ef4625a6bd62a3b4b787e6080e36
https://github.com/hatstand/babblesink/commit/9fbc6f01ce81ef4625a6bd62a3b4b787e6080e36
https://github.com/commonsguy/cwac-wakeful/commit/c7d440f1150887bb9a1a3c44015c7579d7ab1970
https://github.com/commonsguy/cwac-wakeful/commit/c7d440f1150887bb9a1a3c44015c7579d7ab1970
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/133d22d577aa86a8e4095e3af29851d1bd7f7b1b
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/133d22d577aa86a8e4095e3af29851d1bd7f7b1b
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/133d22d577aa86a8e4095e3af29851d1bd7f7b1b
https://github.com/mtuton/android_apps_email/commit/85fec873c4413ef86d40972cc3dbe925ee23e733
https://github.com/mtuton/android_apps_email/commit/85fec873c4413ef86d40972cc3dbe925ee23e733
https://github.com/mtuton/android_apps_email/commit/85fec873c4413ef86d40972cc3dbe925ee23e733
https://github.com/CyanogenMod/android_packages_apps_Email/commit/f53bf8f178380ed882a0fa34e10c41f9e8242b93
https://github.com/CyanogenMod/android_packages_apps_Email/commit/f53bf8f178380ed882a0fa34e10c41f9e8242b93
https://github.com/CyanogenMod/android_packages_apps_Email/commit/f53bf8f178380ed882a0fa34e10c41f9e8242b93
https://github.com/buglabs/android-buglabs-frameworks-base/commit/3bf504df9fc1971078fdde7eed418a0dd8f601e2#wifi
https://github.com/buglabs/android-buglabs-frameworks-base/commit/3bf504df9fc1971078fdde7eed418a0dd8f601e2#wifi
https://github.com/buglabs/android-buglabs-frameworks-base/commit/3bf504df9fc1971078fdde7eed418a0dd8f601e2#wifi
http://gitorious.org/rowboat/frameworks-base/commit/93597ed1839de164c81f83832d4c2373ea32ac8f
http://gitorious.org/rowboat/frameworks-base/commit/93597ed1839de164c81f83832d4c2373ea32ac8f
http://gitorious.org/rowboat/frameworks-base/commit/93597ed1839de164c81f83832d4c2373ea32ac8f
http://code.google.com/p/android/issues/detail?id=4333
http://code.google.com/p/android/issues/detail?id=4333
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/0528b9b26a9d64ba43acd0e334638303d514b8eb#location/java/android/location/ILocationProvider.aidl
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/0528b9b26a9d64ba43acd0e334638303d514b8eb#location/java/android/location/ILocationProvider.aidl
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/0528b9b26a9d64ba43acd0e334638303d514b8eb#location/java/android/location/ILocationProvider.aidl
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/0528b9b26a9d64ba43acd0e334638303d514b8eb#location/java/android/location/ILocationProvider.aidl
http://code.google.com/p/android/issues/detail?id=9307
http://code.google.com/p/android/issues/detail?id=9307
http://code.google.com/p/android/issues/detail?id=6811
http://code.google.com/p/android/issues/detail?id=6811
http://code.google.com/android/backup/index.html
http://code.google.com/android/backup/index.html
http://www.google.bg/support/forum/p/Google+Mobile/thread?tid=481ff31338a19536
http://www.google.bg/support/forum/p/Google+Mobile/thread?tid=481ff31338a19536
http://www.google.bg/support/forum/p/Google+Mobile/thread?tid=481ff31338a19536
https://github.com/CyanogenMod/android_hardware_qcom_gps/commit/a162c4351926285892214b0726aaf07f0631dc72
https://github.com/CyanogenMod/android_hardware_qcom_gps/commit/a162c4351926285892214b0726aaf07f0631dc72
https://github.com/CyanogenMod/android_hardware_qcom_gps/commit/a162c4351926285892214b0726aaf07f0631dc72
http://www.google.com/support/forum/p/maps/thread?tid=016d2cec36d7410b
http://www.google.com/support/forum/p/maps/thread?tid=016d2cec36d7410b
http://www.google.com/support/forum/p/maps/thread?tid=016d2cec36d7410b
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Exception.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Exception.html

[42] “Email 2.3 app keeps awake when no data connection is
available.” URL: http://www.google.com/support/forum/p/
Google+Mobile/thread?tid=53bfe134321358e8

[43] J. B. Kam and J. D. Ullman, “Global data flow analysis and
iterative algorithms,” J. ACM, vol. 23, 1976.

[44] E. M. Myers, “A precise inter-procedural data flow
algorithm,” in POPL. ACM, 1981.

[45] “java.lang class runtimeexception.” URL: http://docs.oracle.
com/javase/1.4.2/docs/api/java/lang/RuntimeException.html

[46] F. Qian, L. Hendren, and C. Verbrugge, “A comprehensive
approach to array bounds check elimination for java,” in
Compiler Construction, 2002.

[47] R. Bodik, R. Gupta, and V. Sarkar, “Abcd: Eliminating array
bounds checks on demand,” in PLDI, 2000.

[48] M. Bravenboer and Y. Smaragdakis, “Exception analysis and
points-to analysis: better together,” in International
symposium on Software testing and analysis, 2009, pp. 1–12.

[49] J. Lee, D. Padua, and S. Midkiff, “Basic compiler algorithms
for parallel programs,” in ACM SIGPLAN Notices, 1999.

[50] D. Grunwald and H. Srinivasan, “Data flow equations for
explicitly parallel programs,” in PPoPP, 1993.

[51] “.dex: Dalvik executable format.” URL: http://source.
android.com/tech/dalvik/dex-format.html

[52] “Android activity.” URL: http://developer.android.com/
reference/android/app/Activity.html

[53] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl, “There’s an
app for that, but it doesn.t work. diagnosing mobile
applications in the wild,” in Hotnets, 2010.

[54] Z. Yin, X. Ma, J. Zheng, Y. Zhou, B. Lakshmi, and
S. Pasupathy, “An empirical study on configuration errors in
commercial and open source systems,” in SOSP, 2011.

[55] D. Engler and K. Ashcraft, “Racerx: Effective, static
detection of race conditions and deadlocks,” SOSP, 2003.

280

http://www.google.com/support/forum/p/Google+Mobile/thread?tid=53bfe134321358e8
http://www.google.com/support/forum/p/Google+Mobile/thread?tid=53bfe134321358e8
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/RuntimeException.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/RuntimeException.html
http://source.android.com/tech/dalvik/dex-format.html
http://source.android.com/tech/dalvik/dex-format.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

	Introduction
	Motivation
	Our Contributions

	Power Encumbered Programming
	Managing Traditional Components
	Managing Exotic Components
	Issues from Event-based Programming
	No-Sleep Bugs

	Methodology
	Characterizing No-Sleep Bugs
	No-Sleep Code Path
	No-Sleep Race Condition
	No-Sleep Dilation

	Debugging No-Sleep Bugs
	No-Sleep Code Paths
	Dataflow Analysis: An Overview
	The Reaching Definitions Dataflow Problem

	No-Sleep Code Path Dataflow Analysis
	No-Sleep Code Path to Reaching Definitions
	Handling Uncaught Runtime Exceptions
	Handling Event Based Entry Points

	No-Sleep Race Conditions
	Implementation
	Evaluation
	Related Work
	Conclusion
	References

