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In  2 002,  COVErITY commercialized3 a research static 
bug-finding tool.6,9 Not surprisingly, as academics, 
our view of commercial realities was not perfectly 
accurate. However, the problems we encountered 
were not the obvious ones. Discussions with tool 
researchers and system builders suggest we were 
not alone in our naïveté. Here, we document some 
of the more important examples of what we learned 
developing and commercializing an industrial-
strength bug-finding tool. 

We built our tool to find generic errors (such as 
memory corruption and data races) and system-
specific or interface-specific violations (such as 
violations of function-ordering constraints). The tool, 
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like all static bug finders, leveraged 
the fact that programming rules often 
map clearly to source code; thus static 
inspection can find many of their vio-
lations. For example, to check the rule 
“acquired locks must be released,” a 
checker would look for relevant opera-
tions (such as lock() and unlock()) 
and inspect the code path after flagging 
rule disobedience (such as lock() with 
no unlock() and double locking). 

For those who keep track of such 
things, checkers in the research system 
typically traverse program paths (flow-
sensitive) in a forward direction, going 
across function calls (inter-procedural) 
while keeping track of call-site-specific 
information (context-sensitive) and 
toward the end of the effort had some 
of the support needed to detect when a 
path was infeasible (path-sensitive). 

A glance through the literature re-
veals many ways to go about static bug 
finding.1,2,4,7,8,11 For us, the central re-
ligion was results: If it worked, it was 
good, and if not, not. The ideal: check 
millions of lines of code with little 
manual setup and find the maximum 
number of serious true errors with the 
minimum number of false reports. As 
much as possible, we avoided using an-
notations or specifications to reduce 
manual labor. 

Like the PREfix product,2 we were 
also unsound. Our product did not veri-
fy the absence of errors but rather tried 
to find as many of them as possible. Un-
soundness let us focus on handling the 
easiest cases first, scaling up as it proved 
useful. We could ignore code constructs 
that led to high rates of false-error mes-
sages (false positives) or analysis com-
plexity, in the extreme skipping prob-
lematic code entirely (such as assembly 
statements, functions, or even entire 
files). Circa 2000, unsoundness was 
controversial in the research communi-
ty, though it has since become almost a 
de facto tool bias for commercial prod-
ucts and many research projects. 

Initially, publishing was the main 
force driving tool development. We 
would generally devise a set of checkers 
or analysis tricks, run them over a few 
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million lines of code (typically Linux), 
count the bugs, and write everything 
up. Like other early static-tool research-
ers, we benefited from what seems an 
empirical law: Assuming you have a rea-
sonable tool, if you run it over a large, 
previously unchecked system, you 
will always find bugs. If you don’t, the 
immediate knee-jerk reaction is that 
something must be wrong. Misconfigu-
ration? Mistake with macros? Wrong 
compilation target? If programmers 
must obey a rule hundreds of times, 
then without an automatic safety net 
they cannot avoid mistakes. Thus, even 
our initial effort with primitive analysis 
found hundreds of errors. 

This is the research context. We now 
describe the commercial context. Our 
rough view of the technical challenges of 
commercialization was that given that 
the tool would regularly handle “large 
amounts” of “real” code, we needed 
only a pretty box; the rest was a business 
issue. This view was naïve. While we in-
clude many examples of unexpected ob-
stacles here, they devolve mainly from 
consequences of two main dynamics: 

First, in the research lab a few peo-
ple check a few code bases; in reality 
many check many. The problems that 
show up when thousands of program-
mers use a tool to check hundreds (or 
even thousands) of code bases do not 
show up when you and your co-authors 
check only a few. The result of sum-
ming many independent random vari-
ables? A Gaussian distribution, most 
of it not on the points you saw and 
adapted to in the lab. Furthermore, 
Gaussian distributions have tails. As 
the number of samples grows, so, too, 
does the absolute number of points 
several standard deviations from the 
mean. The unusual starts to occur with 
increasing frequency. 

W. Bradford Paley’s codeProfiles was
originally commissioned for the Whitney
museum of American Art’s “coDeDoc”
exhibition and later included in momA’s
“Design and the elastic mind” exhibition.
codeProfiles explores the space of code
itself; the program reads its source into
memory, traces three points as they once 
moved through that space, then prints itself 
on the page.      



68    communicAtions of the Acm    |   FeBrUAry 2010  |   vOl.  53  |   nO.  2

contributed articles

For code, these features include 
problematic idioms, the types of false 
positives encountered, the distance 
of a dialect from a language standard, 
and the way the build works. For de-
velopers, variations appear in raw abil-
ity, knowledge, the amount they care 
about bugs, false positives, and the 
types of both. A given company won’t 

deviate in all these features but, given 
the number of features to choose from, 
often includes at least one weird odd-
ity. Weird is not good. Tools want ex-
pected. Expected you can tune a tool to 
handle; surprise interacts badly with 
tuning assumptions. 

Second, in the lab the user’s values, 
knowledge, and incentives are those 

Such champions make sales as easily as 
their antithesis blocks them. However, 
since their main requirements tend to 
be technical (the tool must work) the 
reader likely sees how to make them 
happy, so we rarely discuss them here. 

Most of our lessons come from two 
different styles of use: the initial trial of 
the tool and how the company uses the 

tool after buying it. The trial is a pre-sale 
demonstration that attempts to show 
that the tool works well on a potential 
customer’s code. We generally ship a 
salesperson and an engineer to the cus-
tomer’s site. The engineer configures 
the tool and runs it over a given code 
base and presents results soon after. Ini-
tially, the checking run would happen 

of the tool builder, since the user and 
the builder are the same person. De-
ployment leads to severe fission; us-
ers often have little understanding of 
the tool and little interest in helping 
develop it (for reasons ranging from 
simple skepticism to perverse reward 
incentives) and typically label any error 
message they find confusing as false. A 

tool that works well under these con-
straints looks very different from one 
tool builders design for themselves. 

However, for every user who lacks 
the understanding or motivation one 
might hope for, another is eager to un-
derstand how it all works (or perhaps al-
ready does), willing to help even beyond 
what one might consider reasonable. 
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in the morning, and the results meeting 
would follow in the afternoon; as code 
size at trials grows it’s not uncommon 
to split them across two (or more) days. 

Sending people to a trial dramatical-
ly raises the incremental cost of each 
sale. However, it gives the non-trivial 
benefit of letting us educate customers 
(so they do not label serious, true bugs 

as false positives) and do real-time, ad 
hoc workarounds of weird customer 
system setups. 

The trial structure is a harsh test for 
any tool, and there is little time. The 
checked system is large (millions of 
lines of code, with 20–30MLOC a pos-
sibility). The code and its build system 
are both difficult to understand. How-

sion to conditions likely to be true in a 
larger setting. 

Laws of Bug finding 
The fundamental law of bug finding 
is No Check = No Bug. If the tool can’t 
check a system, file, code path, or given 
property, then it won’t find bugs in it. 
Assuming a reasonable tool, the first 
order bound on bug counts is just how 
much code can be shoved through the 
tool. Ten times more code is 10 times 
more bugs. 

We imagined this law was as simple 
a statement of fact as we needed. Un-
fortunately, two seemingly vacuous cor-
ollaries place harsh first-order bounds 
on bug counts: 

Law: You can’t check code you don’t 
see. It seems too trite to note that check-
ing code requires first finding it... until 
you try to do so consistently on many 
large code bases. Probably the most re-
liable way to check a system is to grab its 
code during the build process; the build 
system knows exactly which files are in-
cluded in the system and how to com-
pile them. This seems like a simple task. 
Unfortunately, it’s often difficult to un-
derstand what an ad hoc, homegrown 
build system is doing well enough to ex-
tract this information, a difficulty com-
pounded by the near-universal absolute 
edict: “No, you can’t touch that.” By de-
fault, companies refuse to let an exter-
nal force modify anything; you cannot 
modify their compiler path, their bro-
ken makefiles (if they have any), or in any 
way write or reconfigure anything other 
than your own temporary files. Which is 
fine, since if you need to modify it, you 
most likely won’t understand it. 

Further, for isolation, companies 
often insist on setting up a test ma-
chine for you to use. As a result, not 
infrequently the build you are given to 
check does not work in the first place, 
which you would get blamed for if you 
had touched anything. 

Our approach in the initial months 
of commercialization in 2002 was a 
low-tech, read-only replay of the build 
commands: run make, record its out-
put in a file, and rewrite the invoca-
tions to their compiler (such as gcc) 
to instead call our checking tool, then 
rerun everything. Easy and simple. 
This approach worked perfectly in the 
lab and for a small number of our ear-
liest customers. We then had the fol-

ever, the tool must routinely go from 
never seeing the system previously to 
getting good bugs in a few hours. Since 
we present results almost immediately 
after the checking run, the bugs must 
be good with few false positives; there 
is no time to cherry pick them. 

Furthermore, the error messages 
must be clear enough that the sales en-
gineer (who didn’t build the checked 
system or the tool) can diagnose and 
explain them in real time in response 
to “What about this one?” questions. 

The most common usage model for 
the product has companies run it as 
part of their nightly build. Thus, most 
require that checking runs complete in 
12 hours, though those with larger code 
bases (10+MLOC) grudgingly accept 
24 hours. A tool that cannot analyze 
at least 1,400 lines of code per minute 
makes it difficult to meet these targets. 
During a checking run, error messages 
are put in a database for subsequent 
triaging, where users label them as 
true errors or false positives. We spend 
significant effort designing the system 
so these labels are automatically reap-
plied if the error message they refer to 
comes up on subsequent runs, despite 
code-dilating edits or analysis-chang-
ing bug-fixes to checkers. 

As of this writing (December 2009), 
approximately 700 customers have 
licensed the Coverity Static Analysis 
product, with somewhat more than a 
billion lines of code among them. We 
estimate that since its creation the tool 
has analyzed several billion lines of 
code, some more difficult than others. 

Caveats. Drawing lessons from a sin-
gle data point has obvious problems. 
Our product’s requirements roughly 
form a “least common denominator” 
set needed by any tool that uses non-
trivial analysis to check large amounts 
of code across many organizations; the 
tool must find and parse the code, and 
users must be able to understand er-
ror messages. Further, there are many 
ways to handle the problems we have 
encountered, and our way may not be 
the best one. We discuss our methods 
more for specificity than as a claim of 
solution. 

Finally, while we have had success 
as a static-tools company, these are 
small steps. We are tiny compared to 
mature technology companies. Here, 
too, we have tried to limit our discus-“c
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lowing conversation with a potential 
customer: 

“How do we run your tool?” 
“Just type ‘make’ and we’ll rewrite 

its output.” 
“What’s ‘make’? We use ClearCase.” 
“Uh, What’s ClearCase?” 
This turned out to be a chasm we 

couldn’t cross. (Strictly speaking, the 
customer used ‘ClearMake,’ but the 
superficial similarities in name are en-
tirely unhelpful at the technical level.) 
We skipped that company and went 
to a few others. They exposed other 
problems with our method, which we 
papered over with 90% hacks. None 
seemed so troublesome as to force us 
to rethink the approach—at least until 
we got the following support call from 
a large customer: 

“Why is it when I run your tool, I 
have to reinstall my Linux distribution 
from CD?” 

This was indeed a puzzling ques-
tion. Some poking around exposed the 
following chain of events: the compa-
ny’s make used a novel format to print 
out the absolute path of the directory 
in which the compiler ran; our script 
misparsed this path, producing the 
empty string that we gave as the desti-
nation to the Unix “cd” (change direc-
tory) command, causing it to change 
to the top level of the system; it ran 
“rm -rf *” (recursive delete) during 
compilation to clean up temporary 
files; and the build process ran as root. 
Summing these points produces the 
removal of all files on the system. 

The right approach, which we have 
used for the past seven years, kicks off 
the build process and intercepts every 
system call it invokes. As a result, we can 
see everything needed for checking, in-
cluding the exact executables invoked, 
their command lines, the directory 
they run in, and the version of the com-
piler (needed for compiler-bug work-
arounds). This control makes it easy to 
grab and precisely check all source code, 
to the extent of automatically changing 
the language dialect on a per-file basis. 

To invoke our tool users need only 
call it with their build command as an 
argument: 

cov-build <build command> 

We thought this approach was bullet-
proof. Unfortunately, as the astute read-

er has noted, it requires a command 
prompt. Soon after implementing it we 
went to a large company, so large it had 
a hyperspecialized build engineer, who 
engaged in the following dialogue: 

“How do I run your tool?” 
“Oh, it’s easy. Just type ‘cov-build’ 

before your build command.” 
“Build command? I just push this 

[GUI] button...” 
Social vs. technical. The social restric-

tion that you cannot change anything, 
no matter how broken it may be, forces 
ugly workarounds. A representative ex-
ample is: Build interposition on Win-
dows requires running the compiler in 
the debugger. Unfortunately, doing so 
causes a very popular windows C++ com-
piler—Visual Studio C++ .NET 2003—to 
prematurely exit with a bizarre error 
message. After some high-stress fuss-
ing, it turns out that the compiler has a 
use-after-free bug, hit when code used a 
Microsoft-specific C language extension 
(certain invocations of its #using direc-
tive). The compiler runs fine in normal 
use; when it reads the freed memory, 
the original contents are still there, so 
everything works. However, when run 
with the debugger, the compiler switch-
es to using a “debug malloc,” which on 
each free call sets the freed memory 
contents to a garbage value. The subse-
quent read returns this value, and the 
compiler blows up with a fatal error. 
The sufficiently perverse reader can no 
doubt guess the “solution.”a 

Law: You can’t check code you can’t 
parse. Checking code deeply requires 
understanding the code’s semantics. 
The most basic requirement is that you 
parse it. Parsing is considered a solved 
problem. Unfortunately, this view is na-
ïve, rooted in the widely believed myth 
that programming languages exist. 

The C language does not exist; nei-
ther does Java, C++, and C#. While a 
language may exist as an abstract idea, 
and even have a pile of paper (a stan-
dard) purporting to define it, a stan-
dard is not a compiler. What language 
do people write code in? The character 
strings accepted by their compiler. 
Further, they equate compilation with 
certification. A file their compiler does 

a Immediately after process startup our tool 
writes 0 to the memory location of the “in de-
bugger” variable that the compiler checks to 
decide whether to use the debug malloc.

A misunderstood 
explanation 
means the error is 
ignored or, worse, 
transmuted into  
a false positive. 
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not reject has been certified as “C code” 
no matter how blatantly illegal its con-
tents may be to a language scholar. Fed 
this illegal not-C code, a tool’s C front-
end will reject it. This problem is the 
tool’s problem. 

Compounding it (and others) the 
person responsible for running the 
tool is often not the one punished if the 
checked code breaks. (This person also 
often doesn’t understand the checked 
code or how the tool works.) In particu-
lar, since our tool often runs as part of 
the nightly build, the build engineer 
managing this process is often in charge 
of ensuring the tool runs correctly. 
Many build engineers have a single con-
crete metric of success: that all tools ter-
minate with successful exit codes. They 
see Coverity’s tool as just another speed 
bump in the list of things they must get 
through. Guess how receptive they are 
to fixing code the “official” compiler ac-
cepted but the tool rejected with a parse 
error? This lack of interest generally ex-
tends to any aspect of the tool for which 
they are responsible. 

Many (all?) compilers diverge from 
the standard. Compilers have bugs. Or 
are very old. Written by people who mis-
understand the specification (not just 
for C++). Or have numerous extensions. 
The mere presence of these divergences 
causes the code they allow to appear. 
If a compiler accepts construct X, then 
given enough programmers and code, 
eventually X is typed, not rejected, then 
encased in the code base, where the 
static tool will, not helpfully, flag it as a 
parse error. 

The tool can’t simply ignore diver-
gent code, since significant markets 
are awash in it. For example, one enor-
mous software company once viewed 
conformance as a competitive disad-
vantage, since it would let others make 
tools usable in lieu of its own. Embed-
ded software companies make great 
tool customers, given the bug aversion 
of their customers; users don’t like it if 
their cars (or even their toasters) crash. 
Unfortunately, the space constraints in 
such systems and their tight coupling 
to hardware have led to an astonishing 
oeuvre of enthusiastically used com-
piler extensions. 

Finally, in safety-critical software 
systems, changing the compiler often 
requires costly re-certification. Thus, 
we routinely see the use of decades-

make two different things the same 

typedef char int; 

(“Useless type name in empty decla-
ration.”)

And one where readability trumps 
the language spec 

unsigned x = 0xdead _ beef; 
(“Invalid suffix ‘_beef’ on integer 

constant.”) 
From the embedded space, creating 

a label that takes no space 
void x; 

(“Storage size of ‘x’ is not known.”) 
Another embedded example that 

controls where the space comes from 

unsigned x @ “text”; 

(“Stray ‘@’ in program.”)
A more advanced case of a nonstan-

dard construct is  

Int16 ErrSetJump(ErrJumpBuf buf)
 = { 0x4E40 + 15, 0xA085; } 

It treats the hexadecimal values of 
machine-code instructions as program 
source. 

The award for most widely used ex-
tension should, perhaps, go to Micro-
soft support for precompiled headers. 
Among the most nettlesome troubles 
is that the compiler skips all the text 
before an inclusion of a precompiled 
header. The implication of this behav-
ior is that the following code can be 
compiled without complaint:  

I can put whatever I want here. 
It doesn’t have to compile. 
If your compiler gives an error, 
 it sucks. 
#include <some-precompiled- 
 header.h> 

Microsoft’s on-the-fly header fabri-
cation makes things worse. 

Assembly is the most consistently 
troublesome construct. It’s already 
non-portable, so compilers seem to 
almost deliberately use weird syn-
tax, making it difficult to handle in a 
general way. Unfortunately, if a pro-
grammer uses assembly it’s probably 
to write a widely used function, and 
if the programmer does it, the most 
likely place to put it is in a widely used 

old compilers. While the languages 
these compilers accept have interest-
ing features, strong concordance with 
a modern language standard is not one 
of them. Age begets new problems. 
Realistically, diagnosing a compiler’s 
divergences requires having a copy of 
the compiler. How do you purchase a 
license for a compiler 20 versions old? 
Or whose company has gone out of 
business? Not through normal chan-
nels. We have literally resorted to buy-
ing copies off eBay. 

This dynamic shows up in a softer 
way with non-safety-critical systems; the 
larger the code base, the more the sales 
force is rewarded for a sale, skewing sales 
toward such systems. Large code bases 
take a while to build and often get tied to 
the compiler used when they were born, 
skewing the average age of the compilers 
whose languages we must accept. 

If divergence-induced parse errors are 
isolated events scattered here and there, 
then they don’t matter. An unsound tool 
can skip them. Unfortunately, failure of-
ten isn’t modular. In a sad, too-common 
story line, some crucial, purportedly “C” 
header file contains a blatantly illegal 
non-C construct. It gets included by all 
files. The no-longer-potential customer 
is treated to a constant stream of parse 
errors as your compiler rips through the 
customer’s source files, rejecting each 
in turn. The customer’s derisive stance 
is, “Deep source code analysis? Your 
tool can’t even compile code. How can 
it find bugs?” It may find this event so 
amusing that it tells many friends. 

Tiny set of bad snippets seen in header 
files. One of the first examples we en-
countered of illegal-construct-in-key-
header file came up at a large network-
ing company 

// “redefinition of parameter ’a’”
void foo(int a, int a);

The programmer names foo’s first 
formal parameter a and, in a form of 
lexical locality, the second as well. 
Harmless. But any conformant com-
piler will reject this code. Our tool cer-
tainly did. This is not helpful; compil-
ing no files means finding no bugs, and 
people don’t need your tool for that. 
And, because its compiler accepted it, 
the potential customer blamed us. 

Here’s an opposite, less-harmless 
case where the programmer is trying to 
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header file. Here are two ways (out 
of many) to issue a mov instruction  

// First way
foo() { 
 _ _ asm mov eax, eab  
 mov eax, eab;
} 

// Second way
#pragma asm 
_ _ asm [ mov eax, eab mov 
eax, eab ]
#pragma end _ asm 

The only thing shared in addition to 
mov is the lack of common textual keys 
that can be used to elide them. 

We have thus far discussed only C, a 
simple language; C++ compilers diverge 
to an even worse degree, and we go to 
great lengths to support them. On the 
other hand, C# and Java have been eas-
ier, since we analyze the bytecode they 
compile to rather than their source. 

How to parse not-C with a C front-end. 
OK, so programmers use extensions. 
How difficult is it to solve this problem? 
Coverity has a full-time team of some of 
its sharpest engineers to firefight this ba-
nal, technically uninteresting problem 
as their sole job. They’re never done.b 

We first tried to make the problem 
someone else’s problem by using the 
Edison Design Group (EDG) C/C++ 
front-end to parse code.5 EDG has 
worked on how to parse real C code 
since 1989 and is the de facto indus-
try standard front-end. Anyone decid-
ing to not build a homegrown front-
end will almost certainly license from 
EDG. All those who do build a home-
grown front-end will almost certainly 
wish they did license EDG after a few 
experiences with real code. EDG aims 
not just for mere feature compatibility 
but for version-specific bug compat-
ibility across a range of compilers. Its 
front-end probably resides near the 
limit of what a profitable company can 
do in terms of front-end gyrations. 

Unfortunately, the creativity of com-
piler writers means that despite two de-
cades of work EDG still regularly meets 

b Anecdotally, the dynamic memory-checking 
tool Purify10 had an analogous struggle at the 
machine-code level, where Purify’s developers 
expended significant resources reverse engi-
neering the various activation-record layouts 
used by different compilers.

defeat when trying to parse real-world 
large code bases.c Thus, our next step is 
for each supported compiler, we write 
a set of “transformers” that mangle 
its personal language into something 
closer to what EDG can parse. The 
most common transformation simply 
rips out the offending construct. As 
one measure of how much C does not 
exist, the table here counts the lines of 
transformer code needed to make the 
languages accepted by 18 widely used 
compilers look vaguely like C. A line of 
transformer code was almost always 
written only when we were burned to a 
degree that was difficult to work around. 
Adding each new compiler to our list of 
“supported” compilers almost always 
requires writing some kind of trans-
former. Unfortunately, we sometimes 
need a deeper view of semantics so are 
forced to hack EDG directly. This meth-
od is a last resort. Still, at last count (as 
of early 2009) there were more than 
406(!) places in the front-end where we 
had an #ifdef COVERITY to handle a 
specific, unanticipated construct. 

EDG is widely used as a compiler 
front-end. One might think that for cus-
tomers using EDG-based compilers we 
would be in great shape. Unfortunately, 
this is not necessarily the case. Even ig-
noring the fact that compilers based on 
EDG often modify EDG in idiosyncratic 
ways, there is no single “EDG front-
end” but rather many versions and pos-
sible configurations that often accept a 
slightly different language variant than 
the (often newer) version we use. As a Si-
syphean twist, assume we cannot work 
around and report an incompatibility. If 
EDG then considers the problem impor-
tant enough to fix, it will roll it together 
with other patches into a new version. 

So, to get our own fix, we must up-

c Coverity won the dubious honor of being the 
single largest source of EDG bug reports after 
only three years of use.

grade the version we use, often caus-
ing divergence from other unupgraded 
EDG compiler front-ends, and more is-
sues ensue. 

Social versus technical. Can we get cus-
tomer source code? Almost always, no. 
Despite nondisclosure agreements, even 
for parse errors and preprocessed code, 
though perhaps because we are viewed 
as too small to sue to recoup damages. 
As a result, our sales engineers must 
type problems in reports from memory. 
This works as well as you might expect. 
It’s worse for performance problems, 
which often show up only in large-code 
settings. But one shouldn’t complain, 
since classified systems make things 
even worse. Can we send someone on-
site to look at the code? No. You listen to 
recited syntax on the phone. 

Bugs 
Do bugs matter? Companies buy bug-
finding tools because they see bugs as 
bad. However, not everyone agrees that 
bugs matter. The following event has 
occurred during numerous trials.  The 
tool finds a clear, ugly error (memory 
corruption or use-after-free) in impor-
tant code, and the interaction with the 
customer goes like thus: 

“So?”
“Isn’t that bad? What happens if 

you hit it?”
“Oh, it’ll crash. We’ll get a call.” 

[Shrug.]
If developers don’t feel pain, they 

often don’t care. Indifference can arise 
from lack of accountability; if QA can-
not reproduce a bug, then there is no 
blame. Other times, it’s just odd: 

“Is this a bug?” 
“I’m just the security guy.” 
“That’s not a bug; it’s in third-party 

code.” 
“A leak? Don’t know. The author left 

years ago...” 
No, your tool is broken; that is not 

a bug. Given enough code, any bug-

Lines of code per transformer for 18 common compilers we support. 

160 QnX 280 hP-UX 285 picc.cpp

294 sun.java.cpp 384 st.cpp 334 cosmic.cpp

421 intel.cpp 457 sun.cpp 603 iccmsa.cpp

629 bcc.cpp 673 diab.cpp 756 xlc.cpp

912 ArM 914 GnU 1294 Microsoft

1425 keil.cpp 1848 cw.cpp 1665 Metrowerks
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finding tool will uncover some weird 
examples. Given enough coders, 
you’ll see the same thing. The fol-
lowing utterances were culled from 
trial meetings: 

Upon seeing an error report saying 
the following loop body was dead code 
foo(i = 1; i < 0; i++) 
  ... deadcode ... 

“No, that’s a false positive; a loop ex-
ecutes at least once.” 

For this memory corruption error 
(32-bit machine) 

int a[2], b;
memset(a, 0, 12);

“No, I meant to do that; they are next 
to each other.” 

For this use-after-free 

free(foo); 
foo->bar = ...; 

“No, that’s OK; there is no malloc 
call between the free and use.” 

As a final example, a buffer overflow 
checker flagged a bunch of errors of the 
form 

unsigned p[4]; 
... 
p[4] = 1; 

“No, ANSI lets you write 1 past the 
end of the array.” 

After heated argument, the program-
mer said, “We’ll have to agree to dis-
agree.” We could agree about the dis-
agreement, though we couldn’t quite 
comprehend it. The (subtle?) interplay 
between 0-based offsets and buffer siz-
es seems to come up every few months. 

While programmers are not often 
so egregiously mistaken, the general 
trend holds; a not-understood bug 
report is commonly labeled a false 
positive, rather than spurring the pro-
grammer to delve deeper. The result? 
We have completely abandoned some 
analyses that might generate difficult-
to-understand reports. 

How to handle cluelessness. You can-
not often argue with people who are 
sufficiently confused about technical 
matters; they think you are the one 
who doesn’t get it. They also tend to get 
emotional. Arguing reliably kills sales. 
What to do? One trick is to try to orga-
nize a large meeting so their peers do 

the work for you. The more people in 
the room, the more likely there is some-
one very smart and respected and cares 
(about bugs and about the given code), 
can diagnose an error (to counter argu-
ments it’s a false positive), has been 
burned by a similar error, loses his/her 
bonus for errors, or is in another group 
(another potential sale). 

Further, a larger results meeting 
increases the probability that anyone 
laid off at a later date attended it and 
saw how your tool worked. True story: 
A networking company agreed to buy 
the Coverity product, and one week 
later laid off 110 people (not because of 
us). Good or bad? For the fired people 
it clearly wasn’t a happy day. However, 
it had a surprising result for us at a 
business level; when these people were 
hired at other companies some sug-
gested bringing the tool in for a trial, 
resulting in four sales. 

What happens when you can’t fix 
all the bugs? If you think bugs are bad 
enough to buy a bug-finding tool, you 
will fix them. Not quite. A rough heuris-
tic is that fewer than 1,000 bugs, then 
fix them. More? The baseline is to re-
cord the current bugs, don’t fix them 
but do fix any new bugs. Many compa-
nies have independently come up with 
this practice, which is more rational 
than it seems. Having a lot of bugs usu-
ally requires a lot of code. Much of it 
won’t have changed in a long time. A 
reasonable, conservative heuristic is 
if you haven’t touched code in years, 
don’t modify it (even for a bug fix) to 
avoid causing any breakage. 

A surprising consequence is it’s not 
uncommon for tool improvement to be 
viewed as “bad” or at least a problem. 
Pretend you are a manager. For anything 
bad you can measure, you want it to di-
minish over time. This means you are 
improving something and get a bonus. 

You may not understand techni-
cal issues that well, and your boss cer-
tainly doesn’t understand them. Thus, 
you want a simple graph that looks like 
Figure 1; no manager gets a bonus for 
Figure 2. Representative story: At com-
pany X, version 2.4 of the tool found 
approximately 2,400 errors, and over 
time the company fixed about 1,200 of 
them. Then it upgraded to version 3.6. 
Suddenly there were 3,600 errors. The 
manager was furious for two reasons: 
One, we “undid” all the work his people 

…it’s not  
uncommon for  
tool improvement  
to be viewed  
as “bad” or at  
least a problem.
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had done, and two, how could we have 
missed them the first time? 

How do upgrades happen when 
more bugs is no good? Companies in-
dependently settle on a small number 
of upgrade models: 

Never. Guarantees “improvement”; 
Never before a release (where it would 

be most crucial). Counterintuitively hap-
pens most often in companies that be-
lieve the tool helps with release quality 
in that they use it to “gate” the release; 

Never before a meeting. This is at least 
socially rational; 

Upgrade, then roll back. Seems to hap-
pen at least once at large companies; 
and 

Upgrade only checkers where they fix 
most errors. Common checkers include 
use-after-free, memory corruption, 
(sometimes) locking, and (sometimes) 
checkers that flag code contradictions.

Do missed errors matter? If people 
don’t fix all the bugs, do missed errors 
(false negatives) matter? Of course not; 
they are invisible. Well, not always. 
Common cases: Potential customers 
intentionally introduced bugs into the 
system, asking “Why didn’t you find it?” 
Many check if you find important past 

bugs. The easiest sale is to a group whose 
code you are checking that was horribly 
burned by a specific bug last week, and 
you find it. If you don’t find it? No mat-
ter the hundreds of other bugs that may 
be the next important bug. 

Here is an open secret known to bug 
finders: The set of bugs found by tool 
A is rarely a superset of another tool B, 
even if A is much better than B. Thus, 
the discussion gets pushed from “A is 
better than B” to “A finds some things, 
B finds some things” and does not help 
the case of A. 

Adding bugs can be a problem; los-
ing already inspected bugs is always a 
problem, even if you replace them with 
many more new errors. While users 
know in theory that the tool is “not a 
verifier,” it’s very different when the tool 
demonstrates this limitation, good and 
hard, by losing a few hundred known er-
rors after an upgrade. 

The easiest way to lose bugs is to add 
just one to your tool. A bug that causes 
false negatives is easy to miss. One such 
bug in how our early research tool’s 
internal representation handled array 
references meant the analysis ignored 
most array uses for more than nine 
months. In our commercial product, 
blatant situations like this are prevent-
ed through detailed unit testing, but un-
covering the effect of subtle bugs is still 
difficult because customer source code 
is complex and not available. 

churn 
Users really want the same result from 
run to run. Even if they changed their 
code base. Even if they upgraded the tool. 
Their model of error messages? Compil-
er warnings. Classic determinism states: 
the same input + same function = same 

result. What users want: different input 
(modified code base) + different func-
tion (tool version) = same result. As a 
result, we find upgrades to be a constant 
headache. Analysis changes can easily 
cause the set of defects found to shift. 
The new-speak term we use internally is 
“churn.” A big change from academia is 
that we spend considerable time and en-
ergy worrying about churn when modify-
ing checkers. We try to cap churn at less 
than 5% per release. This goal means 
large classes of analysis tricks are disal-
lowed since they cannot obviously guar-
antee minimal effect on the bugs found. 
Randomization is verboten, a tragedy 
given that it provides simple, elegant so-
lutions to many of the exponential prob-
lems we encounter. Timeouts are also 
bad and sometimes used as a last resort 
but never encouraged. 

Myth: More analysis is always good. 
While nondeterministic analysis might 
cause problems, it seems that adding 
more deterministic analysis is always 
good. Bring on path sensitivity! Theorem 
proving! SAT solvers! Unfortunately, no. 

At the most basic level, errors found 
with little analysis are often better than 
errors found with deeper tricks. A good 
error is probable, a true error, easy to di-
agnose; best is difficult to misdiagnose. 
As the number of analysis steps increas-
es, so, too, does the chance of analysis 
mistake, user confusion, or the per-
ceived improbability of event sequence. 
No analysis equals no mistake. 

Further, explaining errors is often 
more difficult than finding them. A 
misunderstood explanation means the 
error is ignored or, worse, transmuted 
into a false positive. The heuristic we 
follow: Whenever a checker calls a com-
plicated analysis subroutine, we have to 
explain what that routine did to the user, 
and the user will then have to (correctly) 
manually replicate that tricky thing in 
his/her head. 

Sophisticated analysis is not easy to 
explain or redo manually. Compound-
ing the problem, users often lack a 
strong grasp on how compilers work. 
A representative user quote is “‘Static’ 
analysis’? What’s the performance over-
head?” 

The end result? Since the analysis 
that suppresses false positives is invis-
ible (it removes error messages rather 
than generates them) its sophistication 
has scaled far beyond what our research 

figure 1. Bugs down over  
time = manager bonus. 

time

bad

time

bad

figure 2. no bonus. 
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system did. On the other hand, the 
commercial Coverity product, despite 
its improvements, lags behind the re-
search system in some ways because it 
had to drop checkers or techniques that 
demand too much sophistication on 
the part of the user. As an example, for 
many years we gave up on checkers that 
flagged concurrency errors; while find-
ing such errors was not too difficult, ex-
plaining them to many users was. (The 
PREfix system also avoided reporting 
races for similar reasons though is now 
supported by Coverity.)

No bug is too foolish to check for. Giv-
en enough code, developers will write 
almost anything you can think of. Fur-
ther, completely foolish errors can be 
some of the most serious; it’s difficult to 
be extravagantly nonsensical in a harm-
less way. We’ve found many errors over 
the years. One of the absolute best was 
the following in the X Window System: 

if(getuid() != 0 && geteuid == 0) {
 ErrorF(“only root”);
 exit(1);

}

It allowed any local user to get root 
accessd and generated enormous press 
coverage, including a mention on Fox 
news (the Web site). The checker was 
written by Scott McPeak as a quick hack 
to get himself familiar with the system. It 
made it into the product not because of 
a perceived need but because there was 
no reason not to put it in. Fortunately. 

false Positives 
False positives do matter. In our experi-
ence, more than 30% easily cause prob-
lems. People ignore the tool. True bugs 
get lost in the false. A vicious cycle starts 
where low trust causes complex bugs 
to be labeled false positives, leading to 
yet lower trust. We have seen this cycle 
triggered even for true errors. If people 
don’t understand an error, they label it 
false. And done once, induction makes 
the (n+1)th time easier. We initially 
thought false positives could be elimi-
nated through technology. Because of 
this dynamic we no longer think so. 

We’ve spent considerable technical 

d The tautological check geteuid == 0 was in-
tended to be geteuid() == 0. In its current 
form, it compares the address of geteuid to 0; giv-
en that the function exists, its address is never 0.

perience covered here was the work of 
many. We thank all who helped build the 
tool and company to its current state, 
especially the sales engineers, support 
engineers, and services engineers who 
took the product into complex environ-
ments and were often the first to bear 
the brunt of problems. Without them 
there would be no company to docu-
ment. We especially thank all the cus-
tomers who tolerated the tool during 
its transition from research quality to 
production quality and the numerous 
champions whose insightful feedback 
helped us focus on what mattered.  
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effort to achieve low false-positive rates 
in our static analysis product. We aim 
for below 20% for “stable” checkers. 
When forced to choose between more 
bugs or fewer false positives we typi-
cally choose the latter. 

Talking about “false positive rate” is 
simplistic since false positives are not 
all equal. The initial reports matter in-
ordinately; if the first N reports are false 
positives (N = 3?), people tend to utter 
variants on “This tool sucks.” Further-
more, you never want an embarrass-
ing false positive. A stupid false posi-
tive implies the tool is stupid. (“It’s not 
even smart enough to figure that out?”) 
This technical mistake can cause so-
cial problems. An expensive tool needs 
someone with power within a company 
or organization to champion it. Such 
people often have at least one enemy. 
You don’t want to provide ammunition 
that would embarrass the tool champi-
on internally; a false positive that fits in 
a punchline is really bad. 

conclusion 
While we’ve focused on some of the 
less-pleasant experiences in the com-
mercialization of bug-finding prod-
ucts, two positive experiences trump 
them all. First, selling a static tool has 
become dramatically easier in recent 
years. There has been a seismic shift in 
terms of the average programmer “get-
ting it.” When you say you have a static 
bug-finding tool, the response is no lon-
ger “Huh?” or “Lint? Yuck.” This shift 
seems due to static bug finders being in 
wider use, giving rise to nice network-
ing effects. The person you talk to likely 
knows someone using such a tool, has a 
competitor that uses it, or has been in a 
company that used it. 

Moreover, while seemingly vacuous 
tautologies have had a negative effect 
on technical development, a nice bal-
ancing empirical tautology holds that 
bug finding is worthwhile for anyone 
with an effective tool. If you can find 
code, and the checked system is big 
enough, and you can compile (enough 
of) it, then you will always find serious 
errors. This appears to be a law. We en-
courage readers to exploit it. 
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