
W4118: multikernel

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Motivation: sharing is expensive

 Difficult to parallelize single-address space
kernels with shared data structures
 Locks/atomic instructions: limit scalability

 Must make every shared data structure scalable
• Partition data

• Lock-free data structures

• …

 Tremendous amount of engineering

 Root cause
 Expensive to move cache lines

 Congestion of interconnect

 1

Multikernel: explicit sharing via messages

 Multicore chip == distributed system!
 No shared data structures!

 Send messages to core to access its data

 Advantages
 Scalable

 Good match for heterogeneous cores

 Good match if future chips don’t provide cache-
coherent shared memory

2

Challenge: global state

 OS must manage global state
 E.g., page table of a process

 Solution
 Replicate global state

 Read: read local copy low latency

 Update: update local copy + distributed protocol to
update remote copies

• Do so asynchronously (“split phase”)

3

Barrelfish overview

 Figure 5 in paper

 CPU driver
 kernel-mode part per core

 Inter-Processor interrupt (IPI)

 Monitors
 OS abstractions

 User-level RPC (URPC)

4

IPC through shared memory

5

send()
{
 // set up message
 memcpy(m.buf, …);
 m.flag |= 0x80;
}

recv()
{
 while(!(m.flag & 0x80))
 ;
 m.buf … //process message
}

#define CACHELINE (64)
struct box{
 char buf[CACHELINE-1]; // message contents
 char flag; // high bit == 0 means sender owns it
}; __attribute__ ((aligned (CACHELINE)))

struct box m __attribute__ ((aligned (CACHELINE)));

Case study: TLB shootdown

 When is it necessary?

 Windows & Linux: send IPIs

 Barrelfish: sends messages to involved monitors
 1 broadcast message N-1 invalidates, N-1 fetches

 N unicast

 Multicast protocol
• Send message to each processor

• Each process forwards to its cores

 NUMA-aware multicast
• Send to highest latency nodes first

 6

