
W4118: virtual machines

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Virtual machines (VM)

1

Real computer

CPU Memory Devices

VM0 VM1 VM2 VM4

Software

Why virtual machines?

 Manage big machines
 Multiplex CPUs/memory/devices at VM granularity
 E.g., Amazon EC2

 Multiple OS on one machine
 E.g., use Windows on Linux OS

 Isolate faults/break-ins
 One VM is compromised/crashes, others OK

 Kernel development
 Like QEMU, but faster

 OS granularity checkpoint/record/replay

2

Usual VM goals

 Accurate
 Guest can’t distinguish VM from real computer

 Isolated
 Guest can’t escape VM

 Fast

 Some VM implementations require guest kernel
modifications
 E.g., Xen

3

Virtual machine lineage

 1960s: IBM used VMs to share mainframe
 VM/370, today’s z/VM

 Still in use!

 1990s: VMWare re-popularized VMs for x86
 VMWare ESX servers

 VMWare work station

 …

4

Virtual machine structures

5

Real computer

Virtual Machine
Monitor (VMM)

Guest OS

User programs

Real computer

Virtual Machine
Monitor (VMM)

Guest OS

User programs

Host OS

“guest”

“host”

VMM responsibilities

 Time-share CPU among guests

 Space-share memory among guests

 Simulate disk, network, and other devices
 Often multiplex on host devices

6

Naïve approach: simulation

 Interpret each guest instruction

 Maintain each VM state purely in software

 Problem: too slow!

7

2nd approach: trap-and-emulate

 Execute guest instructions on real CPU when
possible
 E.g., addl %eax, %ebx

 Run guest OS in unprivileged mode

 Privileged instructions trap, and VMM emulates
 E.g., movl %eax, %cr3

 VMM hides real machine state from guests
 E.g., virtual %cr3 set by guest, real %cr3 set by VMM,

 More: page table, privilege level, interrupt flag, …

8

Trap-and-emulate: tricky on x86

 Not all instructions that should be emulated
cause traps

 Instructions have different effects depending
on privilege mode

 Instructions reading privileged state don’t trap

 Page table modifications don’t trap

 Trap them all slow

9

Real x86 state to hide&protect

 CPL (low bits of CS) = 3, but guest expects 0

 Physical memory: guest expects 0..PHYSTOP,
VMM maps to one slice of physical memory

 Page table: don’t map to physical addresses
expected by guest OS
 Shadow page table

 %cr3: points to shadow page table

10

Real x86 state to hide&protect (cont.)

 GDT: guest OS descriptors have DPL = 3, but
guest expects 0

 GDTR: points to shadow GDT table

 IDT descriptors: traps go to VMM, not guest

 IDTR: points to shadow IDT table

 IF in EFLAGS: guest expects 0 after cli

 …

11

Virtualize physical memory

 Guest wants
 Physical address starts at PA = 0
 Use “all” physical memory

 VMM must
 Space-share all physical memory among guests
 Protect one guest’s memory from another

 Idea:
 Claim DRAM smaller than real DRAM
 Ensuring paging is enabled
 Rewrite guest’s PTEs to map to real PA
 Copy guest’s PTEs to shadow page table and map copied

PTEs to real PA

12

Example: VMM allocates a guest 0x1000000-

0x2000000

13

Do all instructions that read/write
sensitive state cause traps at CPL = 3?

 pushw %cs: reveals CPL = 3, not 0

 sgdt: reveals real GDTR

 sidt: reveals real IDTR

 pushfl: reveals IF flag

 popfl: if CPL = 3, no trap

 iret: no privilge mode change so won’t restore SS/ESP

14

3rd approach: binary translation

 Simplified idea
 Replace non-trapping instructions that read/write

sensitive state with trap instruction
• int3: triggers a break point exception. Shortest

instruction (1 byte), doesn’t change code size/layout

 Keep track of original instruction

 VMM emulate original instruction in trap

 Problems: how does the rewriter find all code?
 Or where the instruction boundaries are,

 Or whether bytes are code or data …

15

Dynamic binary translation

 Idea: disassemble code only as executed, since
jump instructions reveal where code is

 When VMM first loads guest kernel, translate
from entry (fixed) up to first jump
 Replace bad instructions with equivalent instructions on

virtual states
 Replace “jmp X” with “movl X, %eax; jmp translator;”

 In translator, look where the jump goes
 Repeat above steps

 Keep track of what we’ve translated to avoid re-
translate
 Store translated code in code cache (original

translated mapping)

16

Binary translation example

17

Entry:

 pushl %ebp

 popfl

 jnz x

x:

 …

 jmp y

Entry’:

 pushl %ebp

 vm->IF = …

 popfl

 movl x, %eax

 jnz translator

x’:

 …

 movl y, %eax

 jmp translator

Handling page table modifications

 VMM must make shadow page table entries
(PTEs) consistent with guest PTEs

 PTE loading: copy guest PTEs to shadow PTEs
on context switch

 PTE tracing: when guest modifies guest PTEs,
modify shadow PTEs as well

18

PTE loading

 Naïve approach: on guest %cr3 write, copy all
gueste PTES
 Problem: slow context switch

 Another approach: start with minimum
mappings (just the PTEs of VMM), and copy on
demand
 Problem: too many page faults

 Approach used in VMware: reuse populated
shadow PTEs

19

PTE tracing

 Approach I: mark the memory region holding
guest PTES as readonly, and copy updates to
shadow PTEs on “hidden ” page faults
 Problem: too many page faults

 Approach II: binary translate code that writes
to shadow PTEs to call out to VMM
 Faster than traps

20

4th approach: hardware support

 Simplified implementation of VMM

 Hardware maintains per-guest virtual state
 CPL, EFLAGS, idtr, etc

 Hardware knows it is in “guest mode”
 Instructions directly modify virtual state

 Avoids many traps to VMM

21

Hardware support details

 Hardware basically adds a new privilege level
 VMM mode, CPL=0, CPL=3

 Guest-mode, CPL=0 is not fully privileged

 No traps on system calls; hardware handles
CPL transition

 Hardware supports two page tables: guest
page table and VMM’s page table
 Virtual address guest physical address

 Guest physical address host physical address

22

