
W4118: FFS and LFS

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

1

File system examples

 BSD Fast File System (FFS)
 What were the problems with Unix FS?

 How did FFS solve these problems?

 Log-Structured File system (LFS)
 What was the motivation of LFS?

 How did LFS work?

1

2

Original Unix FS

 From Bell Labs

 Simple and elegant

 Problem: slow
 2% of maximum disk bandwidth even for sequential

disk transfer (20KB/s)

data blocks (512 bytes) inodes

su
pe

r

Unix disk layout

3

Why so slow?

 Problem 1: blocks too small
 Fixed costs per transfer (seek and rotational

delays)
 Require more indirect blocks

 Problem 2: unorganized freelist
 Consecutive file blocks are not close together
 Pay seek cost even for sequential access

 Problem 3: no data locality
 inodes far from data blocks
 inodes of files in directory not close together

4

Problem 1: original Unix FS performance

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

512B 1024B 2048B 4096 1MB

Block size

Space Wasted Bandwidth

5

Larger blocks

 BSD FFS: make block 4096 or 8192 bytes

 Solve the internal fragmentation problem by chopping
large blocks into small ones called fragments
 Algorithm to ensure fragments only used for end of file

 Limit number of fragments per block to 2, 4, or 8

 Keep track of free fragments

 Pros
 Transfer speeds of larger blocks

 Greatly reduce wasted space for small files or ends of
files

6

Problem 2: unorganized freelist

 Leads to random allocation of sequential file
blocks overtime

Initial performance good Get worse over time

7

Fixing the unorganized free list

 Periodical compact/defragment disk
 Cons: locks up disk bandwidth during operation

 Keep adjacent free blocks together on freelist
 Cons: costly to maintain

 Bitmap of free blocks
 Bitmap: 010001000101010000001

 Used in BSD FFS

8

Problem 3: data Locality

 Locality techniques
 Store related data together
 Spread unrelated data apart

• Make room for related data

 Always find free block nearby
• Rule of thumb: keep some free space on disks (10%)

 FFS new organization: cylinder group
 Set of adjacent cylinders
 Fast seek between cylinders in same group
 Each cylinder group contains superblock, inodes,

bitmap of free blocks, usage summary for block
allocation, data blocks

9

Achieving locality in FFS

 Maintain locality of each file
 Allocate data blocks within a cylinder group

 Maintain locality of inodes in a directory
 Allocate inodes in same dir in a cylinder group

 Make room for locality within a directory
 Spread out directories to cylinder groups

 Switch to a different cylinder group for large files

10

BSD FFS performance improvements

 Achieve 20-40% of disk bandwidth on large
files
 10X improvements over original Unix FS

 Stable over FS lifetime

 Can be further improved with additional placement
techniques

 Better small file performance

 More enhancements

11

File system examples

 BSD Fast File System (FFS)
 What were the problems with Unix FS?

 How did FFS solve these problems?

 Log-Structured File system (LFS)
 What was the motivation of LFS?

 How did LFS work?

11

12

Log-structured file system

 Motivation
 Faster CPUs: I/O becomes more and more of a

bottleneck

 More memory: file cache is effective for reads

 Implication: writes compose most of disk traffic

 Problems with previous FS
 Perform many small writes

• Good performance on large, sequential writes, but
most writes are small, random

 Synchronous operation to avoid data loss

 Depends upon knowledge of disk geometry

13

LFS idea

 Insight: treat disk like a tape-drive
 Best performance from disk for sequential access

 Write data to disk in a sequential log
 Delay all write operations

 Write metadata and data for all files intermixed in
one operation

 Do not overwrite old data on disk

14

Pros and cons

 Pros
 Always Large sequential writes  good performance

 No knowledge of disk geometry
• Assume sequential better than random

 Potential problems
 How do you find data to read?

 What happens when you fill up the disk?

15

Read in LFS

 Same basic structures as Unix
 Directories, inodes, indirect blocks, data blocks

 Reading data block implies finding the file’s inode
• Unix: inodes kept in array

• LFS: inodes move around on disk

 Solution: inode map indicates where each inode
is stored
 Small enough to keep in memory

 inode map written to log with everything else

 Periodically Written to known checkpoint location on
disk for crash recovery

16

Disk cleaning

 Disk runs low on free space
 Run a disk cleaning process
 Compacts live information to contiguous blocks of disk

 Problem: long-lived data repeatedly copied over time
 Solution: partition disk in to segments

• Group older files into same segment
• Do not clean segments with old files

 Try to run cleaner when disk is not being used

 LFS: neat idea, influential
 Paper on LFS is likely the most widely cited OS paper
 Real file systems based on the idea

