
W4118: file systems

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

1

Outline

 File system concepts
 What is a file?

 What operations can be performed on files?

 What is a directory and how is it organized?

 File implementation
 How to allocate disk space to files?

1

2

What is a file

 User view
 Named byte array

• Types defined by user

 Persistent across reboots and power failures

 OS view
 Map bytes as collection of blocks on physical

storage

 Stored on nonvolatile storage device
• Magnetic Disks

2

3

Role of file system

 Naming
 How to “name” files
 Translate “name” + offset logical block #

 Reliability
 Must not lose file data

 Protection
 Must mediate file access from different users

 Disk management
 Fair, efficient use of disk space
 Fast access to files

3

4

File metadata

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within
file system (inode number in UNIX)

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing,
executing

 Time, date, and user identification – data for
protection, security, and usage monitoring

 How is metadata stored? (inode in UNIX)

4

5

File operations

 int creat(const char* pathname, mode_t mode)

 int unlink(const char* pathname)

 int rename(const char* oldpath, const char*
newpath)

 int open(const char* pathname, int flags, mode_t
mode)

 int read(int fd, void* buf, size_t count);

 int write(int fd, const void* buf, size_t count)

 int lseek(int fd, offset_t offset, int whence)

 int truncate(const char* pathname, offset_t len)

 ...

6

Open files

 Problem: expensive to resolve name to identifier on
each access

 Solution: open file before access
 Name resolution: search directories for file name and

check permission

 Read relevant file metadata into open file table in
memory

 Return index in open file table (file descriptor)

 Application pass index to OS for subsequent access

 System-wide open file table shared across processes

 Per-process open file table stores current pointer
position and index to system-wide open file table

7

Directories

 Organization technique
 Map file name to location on disk

 Also stored on disk

 Single-Level directory
 Single directory for entire disk

• Each file must have unique name

 Not very usable

 Two-level directory
 Directory for each user

 Still not very usable

7

8

Tree-structured directory

 Directory stored on disk just like files
 Data consists of <name, index> pairs

• Name can be another directory

 Designated by special bit in meta-data
 Reference by separating names with slashes
 Operations

• User programs can read (readdir())
• Only special system calls can write

 Special directories
 Root (/): fixed index for metadata
 . : this directory
 .. : parent directory

8

9

Acyclic-graph directories

 Directories can share files

 Create links from one file

 Two types of links
 Hard link

• Multiple directory entries point to same file

• Store reference count in file metadata

• Cannot refer to directories; why?

 Symbolic link
• Special file, designated by bit in meta-data

• File data is name to another file

9

10

Path names

 Absolute path name (full path name)
 Start at root directory

• E.g. /home/junfeng/teaching

 Relative path name
 Full path is lengthy and inflexible

 Give each process current working directory

 Assume file in current directory

10

11

Directories as files

 Direction as special files that store pointers
to the contained files
 File data is interpreted by FS code

 Separate functionality in two levels
 Lowest: storage management

 Highest: naming, directory

 Advantage: simplifies design and
implementation

12

Protection

 Type of access
 Read, write, execute, append, delete, list …

 Access control list
 Associate lists of users with access rights for every file

 Advantage: complete control

 Disadvantage
• Tedious to construct list (may not know in advance for all users)

• Require variable-size information

 Classify users
 user, group, other

 Advantage: easier to implement

 Disadvantage: no fine grained control

13

Outline

 File system concepts
 What is a file?

 What operations can be performed on files?

 What is a directory and how is it organized?

 File implementation
 How to allocate disk space to files?

13

14

Typical file access patterns

 Sequential Access
 Data read or written in order

• Most common access pattern
– E.g., copy files, compiler read and write files,

 Can be made very fast (peak transfer rate from
disk)

 Random Access
 Randomly address any block

• E.g., update records in a database file

 Difficult to make fast (seek time and rotational
delay)

14

15

Disk management

 Need to track where file data is on disk
 How should we map logical sector # to surface #,

track #, and sector #?
• Order disk sectors to minimize seek time for

sequential access

 Need to track where file metadata is on disk

 Need to track free versus allocated areas of
disk
 E.g., block allocation bitmap (Unix)

• Array of bits, one per block
• Usually keep entire bitmap in memory

15

16

Allocation strategies

 Various approaches (similar to memory allocation)
 Contiguous
 Extent-based
 Linked
 FAT tables
 Indexed
 Multi-Level Indexed

 Key metrics
 Fragmentation (internal & external)?
 Grow file over time after initial creation?
 Fast to find data for sequential and random access?
 Easy to implement?
 Storage overhead?

16

17

Contiguous allocation

 Allocate files like continuous memory
allocation (base & limit)
 User specifies length, file system allocates space all

at once

 Can find disk space by examining bitmap

 Metadata: contains starting location and size of file

17

18

Contiguous allocation example

19

Pros and cons

 Pros
 Easy to implement

 Low storage overhead (two variables to specify disk
area for file)

 Fast sequential access since data stored in
continuous blocks

 Fast to compute data location for random
addresses. Just an array index

 Cons
 Large external fragmentation

 Difficult to grow file

19

20

Extent-based allocation

 Multiple contiguous regions per file (like
segmentation)
 Each region is an extent

 Metadata: contains small array of entries
designating extents

• Each entry: start and size of extent

20

21

Pros and cons

 Pros
 Easy to implement

 Low storage overhead (a few entries to specify file
blocks)

 File can grow overtime (until run out of extents)

 Fast sequential access

 Simple to calculate random addresses

 Cons
 Help with external fragmentation, but still a

problem

21

22

Linked allocation

 All blocks (fixed-size) of a file on linked list
 Each block has a pointer to next

 Metadata: pointer to the first block

22

pointer block

23

Linked allocation example

24

Pros and cons

 Pros
 No external fragmentation

 Files can be easily grown with no limit

 Also easy to implement, though awkward to spare
space for disk pointer per block

 Cons
 Moderate storage overhead (one pointer per block)

 Potentially slow sequential access

 Difficult to compute random addresses

24

25

Variation: FAT table

 Store linked-list pointers outside block in File-
Allocation Table
 One entry for each block

 Linked-list of entries for each file

 Used in MSDOS and Windows operating
systems

25

26

FAT example

27

Pros and cons

 Pros
 Fast random access. Only search cached FAT

 Cons
 Moderate storage overhead for FAT table

 Potentially slow sequential access

27

28

Indexed allocation

 File has array of pointers (index) to block
 Allocate block pointers contiguously in metadata

• Must set max length when file created

• Allocate pointers at creation, allocate blocks on
demand

• Cons:

 Maintain multiple lists of block pointers
• Last entry points to next block of pointers

• Cons:

28

block pointers

29

Indexed allocation example

30

Pros and cons

 Pros
 Easy to implement

 No external fragmentation

 Files can be easily grown with the limit of the array
size

 Fast random access. Use index

 Cons
 Large space overhead (index)

 Sequential access may be slow.
• Must allocate contiguous block for fast access

30

31

Multi-level indexed files

 Block index has multiple levels

31

outer-index

index table data blocks

32

Multi-level indexed allocation example
(xv6, UNIX FFS, and Linux ext2/ext3)

Inode

Indirect

 Blocks

Indirect

 Blocks

Indirect

 Blocks

Double

Indirect

Indirect

 Blocks

Indirect

 Blocks

Double

Indirect

Triple

Indirect

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

direct blocks

BLKSIZE/4

(BLKSIZE/4)2

(BLKSIZE/4)3

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

Data

Block
Data

Block
Data

Block

33

Pros and cons

 Pros
 No external fragmentation

 Files can be easily grown with much larger limit
compared to one-level index

 Fast random access. Use index

 Cons
 Large space overhead (index)

 Sequential access may be slow.
• Must allocate contiguous block for fast access

 Implementation can be complex

33

