
W4118: dynamic memory allocation

Instructor: Junfeng Yang

References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Outline

 Dynamic memory allocation overview

 Heap allocation strategies

 Memory management review
 Copy-on-write

1

Dynamic memory allocation

 Static (compile time) allocation is not possible
for all data

 Two ways of dynamic allocation
 Stack allocation

• Restricted, but simple and efficient

 Heap allocation
• More general, but less efficient

• More difficult to implement

2

Dynamic allocation issue: fragmentation

 Fragment: small trunks of free memory, too
small for future allocation requests “holes”
 External fragment: visible to system

 Internal fragment: visible to process (e.g. if allocate
at some granularity)

 Goal
 Reduce number of holes

 Keep holes large

 Stack fragmentation v.s. heap fragmentation

3

Typical heap implementation

 Data structure: free list
 Chains free blocks together

 Allocation
 Choose block large enough for request

 Update free list

 Free
 Add block back to list

 Merge adjacent free blocks

4

Heap allocation strategies

 Best fit
 Search the whole list on each allocation

 Choose the smallest block that can satisfy request

 Can stop search if exact match found

 First fit
 Choose first block that can satisfy request

 Worst fit
 Choose largest block (most leftover space)

 Which is better?

5

Example

 Free space: 2 blocks, size 20 and 15

 Workload 1: allocation requests: 10 then 20

 Workload 2: allocation requests: 8, 12, then 13

6

Best fit

First fit

Worse fit

Request of 20: fail!

Best fit

First fit

Worse fit

Request of 13: fail!

Request of 20: fail!

Request of 13: fail!

Comparison of allocation strategies

 Best fit
 Tends to leave very large holes and very small holes

 Disadvantage: very small holes may be useless

 First fit:
 Tends to leave “average” size holes

 Advantage: faster than best fit

 Worst fit:
 Simulation shows that worst fit is worst in terms of

storage utilization

7

Buddy allocator motivation

 Allocation requests: frequently 2^n
 E.g., allocation physical pages in Linux

 Generic allocation strategies: overly generic

 Fast search (allocate) and merge (free)
 Avoid iterating through free list

 Avoid external fragmentation for req of 2^n

 Keep physical pages contiguous

8

Real: used in FreeBSD and Linux

9

Buddy allocator implementation

 Data structure
 N free lists of blocks of size 2^0, 2^1, …, 2^N

 Allocation restrictions: 2^k, 0<= k <= N

 Allocation of 2^k:
 Search free lists (k, k+1, k+2, …) for appropriate size

• Recursively divide larger blocks until reach block of correct size

• Insert “buddy” blocks into free lists

 Free
 Recursively coalesce block with buddy if buddy free

Buddy
allocation
example

10

p1 = alloc(2^0)

freelist[3] = {0}

freelist[0] = {1}, freelist[1] = {2}

freelist[2] = {4}

p2 = alloc(2^2)

freelist[0] = {1}, freelist[1] = {2}

free(p2)
freelist[3] = {0}

free(p1)

freelist[2] = {0}

11

Pros and cons of buddy allocator

 Advantages
 Fast and simple compared to general dynamic

memory allocation
 Avoid external fragmentation by keeping free

physical pages contiguous

 Disadvantages
 Internal fragmentation

• Allocation of block of k pages when k != 2^n

12

Slab allocator

 Motivation:
 Frequent (de)allocationof certain kernel objects

• E.g., file struct and inode
 Other allocators: overly general; assume variable size

 Slab: cache of “slots”
 Slot size = object size
 Free memory management = bitmap
 Allocate: set bit and return slot
 Free: clear bit

 Real: used in FreeBSD and Linux, implemented on
top of buddy page allocator, for objects smaller
than a page

Memory management review

13

Multiple address spaces co-exist

AS1

AS2

AS3

14
Logical view Physical view

max

max

max

0

0

0

max

0

Memory Management Unit (MMU)

 Map program-generated address (virtual
address) to hardware address (physical
address) dynamically at every reference

 Check range and permissions

 Programmed by OS

15

CPU MMU MEMORY

Virtual Addresses

Physical Addresses

Page translation

 Address bits = page number + page offset

 Translate virtual page number (vpn) to physical
page number (ppn) using page table

 pa = page_table[va/pg_sz] + va%pg_sz

16

CPU vpn off ppn off

Page table

ppn vpn

Memory

ppn

Page protection

 Implemented by associating protection bits
with each virtual page in page table

 Protection bits
 present bit: map to a valid physical page?

 read/write/execute bits: can read/write/execute?

 user bit: can access in user mode?

 x86: PTE_P, PTE_W, PTE_U

 Checked by MMU on each memory access

17

18

A cool trick: copy-on-write

 In fork(), parent and child often share
significant amount of memory
 Expensive to copy all pages

 COW Idea: exploit VA to PA indirection
 Instead of copying all pages, share them

 If either process writes to shared pages, only then
is the page copied

 Real: used in virtually all modern OSes

18

How to implement COW?

 (Ab)use page protection

 Mark pages as read-only in both parent and
child address space

 On write, page fault occurs

 In page fault handler, distinguish COW fault
from real fault
 How?

 Copy page and update page table if COW fault

19

